
Les Cahiers du GERAD ISSN: 0711–2440

A Heuristic Approach for the

Shared Storage Based on the

Duration-of-Stay of Unit Loads

L. Chen, A. Langevin,
D. Riopel, P. Montulet

G–2008–37

May 2008

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la recherche sur

la nature et les technologies.

A Heuristic Approach for the Shared Storage

Based on the Duration-of-Stay of Unit Loads

Lu Chen

School of Mechanical Engineering
Shanghai Jiao Tong University

Shanghai, China, 200240
and Département de mathématiques et génie industriel

École Polytechnique de Montréal
Montréal (Québec) Canada, H3C 3A7

lu.chen@polymtl.ca

André Langevin

Diane Riopel

GERAD and Département de mathématiques et génie industriel

École Polytechnique de Montréal
Montréal (Québec) Canada, H3C 3A7
{andre.langevin, diane.riopel}@polymtl.ca

Pierre Montulet

Département de mathématiques et génie industriel

École Polytechnique de Montréal
Montréal (Québec) Canada, H3C 3A7

pierre.montulet@polymtl.ca

May 2008

Les Cahiers du GERAD

G–2008–37

Copyright c© 2008 GERAD

Abstract

Shared storage policy allows more flexible use of space than that allowed by the ded-
icated storage policy. This paper addresses duration-of-stay based shared storage in an
automated storage/retrieval system. An integer programming model is formulated to
obtain optimal solution for small and medium sized problems. A graph based heuristic
approach is developed to solve large scale problems in reasonable time. The computa-
tional results indicate that the approach is very effective in finding high quality solutions,
in terms of both total travel time and space requirements.

Key Words: Shared storage; Duration-of-stay; Heuristics.

Résumé

L’entreposage partagé permet une utilisation plus flexible de l’espace que l’entreposage
dédié. Cet article traite de l’entreposage partagé basé sur la durée de séjour dans un
système d’entreposage automatisé. Un modèle de programmation linéaire en nombres
entiers permet d’obtenir une solution optimale pour les problèmes de petite et moyenne
taille. Une méthode heuristique est développée pour résoudre les problèmes de grande
taille. Les tests indiquent que l’heuristique est très efficace pour trouver des solutions de
haute qualité par rapport au temps de manutention et à l’espace requis.

Les Cahiers du GERAD G–2008–37 1

1 Introduction

Warehouses are an essential component of any supply chain. Products are stored temporarily
in warehouses and retrieving products from storage can fill customer orders. The research on
warehousing systems gained interest in 1970s (Shouman et al., 2005). A number of warehouse
operation decision support models have been proposed in the literature. They are extensively
discussed in de Koster et al. (2007), Gu et al. (2007) and Cormier (2005).

The storage location assignment problem is to assign incoming products to storage loca-
tions in order to reduce material handling cost and improve space utilization. Most of the
research has focused on unit-load warehouse. With regard to unit load storage, there are
four main storage policies (Francis et al., 1992). They are: dedicated storage policy, random-
ized storage policy, class-based storage policy and shared storage policy. Dedicated storage
involves the assignment of specific storage locations for each product stored. Heskett (1963,
1964) considers the location assignment in a dedicated storage warehouse. He defines the
cube-per-order index (COI) of an item to be the ration of the item’s total required space to
the number of trips required to satisfy its demand per period. The reciprocal of the COI
is called the turnover rate of that item, therefore the COI policy is also referred to as the
turnover-based storage policy. The results on COI-based policy and its optimality in different
systems are discussed widely. Malmborg and Krishnakumar (1989) investigate the optimal
storage assignment policy for a multi-address warehousing system employing a dedicated stor-
age policy. The authors demonstrate that the COI-based assignment policy is optimal with
respect to the order picking cost for fixed inventory levels and a fixed assignment of items
to order pickers. Malmborg and Altassan (1998) extend the analysis for item assignment
policies in unit load warehousing systems to less than unit load warehousing systems. This
study provides an analytical tool for assessing the impact of alternative storage policies in
less than unit load storage systems, such as COI-based dedicated storage and random storage
with “closest open location” rule. Montulet et al. (1998) study the problem of minimizing the
peak load with single command and dedicated storage policy. The peak load is the maximum
value of the daily loads over a fixed planning horizon. The daily load is the expected total
time of the command cycles. A mathematical model is formulated and a branch-and-bound
algorithm is developed to solve the problem.

Randomized storage allows the incoming item to be stored in any of the open locations. The
closest open location (COL) rule is often used in practice. The random assignment method
requires less space at the expense of increased travel distance (Francis et al., 1992). Hausman
et al. (1976) argue that the COL storage and random storage have a similar performance if
items are moved by full pallets only. Malmborg (1996) provides a model to analyze tradeoffs in
space requirements and retrieval efficiency associated with dedicated and randomized storage
policies.

As a compromise between dedicated storage and randomized storage, class-based storage
is frequently used, in which the items are partitioned into a small number of classes based
on their turnover rates. Most research on class-based storage has been performed in the
context of an automated storage and retrieval system (AS/RS). Normally, the class of items
having the highest turnover rate is assigned to the “better” locations. Graves et al. (1977)
observe that in order to store an incoming item in the correct class region, empty slots must
be available. This increases space requirements with the number of classes. Accordingly,
class-based storage requires more space than randomized storage. Hausman et al. (1976) use
continuous representation of the traveling distance and the turnover to quantify the reduction
in machine travel times of the class-based assignment over random assignment. Significant
potential reductions in machine travel times in automatic warehousing seem to be possible

2 G–2008–37 Les Cahiers du GERAD

based on class-based storage policy. Lai et al. (2002) deal with the problem of paper reel
assignment where different classes of paper reels need to be placed in the cells of a warehouse.
Here paper reels are divided into classes based on their diameters instead of turnover rate.
A mathematical model is formulated to assign the paper reels into the cell space so that the
total transportation cost is minimized. A two-stage simulated annealing approach is used to
solve the problem. Zhang et al. (2000) extend the mathematical model to the paper reel
assignment problem with adjacency constraints imposed on certain items.

Shared storage policy based on duration-of-stay (DOS) is another storage policy that is
from industry practice but has received relatively little attention from the research community.
DOS-based shared storage recognizes and takes advantage of the inherent differences in lengths
of time that individual items remain in storage. It can provide substantial benefits when
precise information is available concerning the timing of storages and retrievals for individual
items of products. However, as stated by Francis et al. (1992), it would be incorrect to assume
that we cannot benefit from using DOS-based shared storage in the absence of such precise
information.

This paper deals with the storage location assignment problem (SLAP) in an AS/RS with
DOS-based shared storage policy. The single command mode is assumed where there is only
one storage or one retrieval on each round trip of the storage/retrieval (S/R) machine. The
objective of the problem is to improve the storage efficiency based on the travel time of the
S/R machine.

This paper is organized as follows. In Section 2, we introduce the problem and present the
related work. In Section 3, an integer programming formulation for the SLAP is proposed.
A heuristic procedure is developed in Section 4. Computational experiments are conducted
and the results are reported in Section 5. Finally, in Section 6 we present our conclusions and
indicate some possible extensions.

2 DOS-based shared storage

In DOS-based shared storage policy, the expected DOS of the xth item of a product with
replenishment lot size Q is x/λ for x = 1, 2, . . . , Q, where λ is the demand rate of that
product. Then the items of all the different products are assigned to the locations according
to their DOSs. DOS-based shared storage policy allows more flexible use of space than that
allowed by the dedicated storage policy. This provides the potential to better utilize the more
desirable storage locations, and increases the efficiency of the storage system.

Storage policy based on the DOS of each item is more complex and few research results
are available, although it is often found in practice. Goetschalckx and Ratliff (1990) appear
to be the first to study formally the shared storage policy based on the DOS of each item.
Two heuristics are developed for static and dynamic unit load warehousing context. Simula-
tion results are provided which compare travel times for dedicated storage, random storage,
turnover-based storage and DOS-based storage. The authors show that, for single command
storage and retrieval, DOS-based shared storage policy has the potential to significantly de-
crease travel time.

Montulet et al. (1997) study the DOS-based storage policy in a single command, non-
interleaving, and static warehousing system. A column generation method is applied to solve
medium size problems optimally. A heuristic approach is proposed for large scale problems.
Kulturel et al. (1999) compare the turnover-based and DOS-based storage assignment policies

Les Cahiers du GERAD G–2008–37 3

in an AS/RS, which operates based on the continuous review inventory policy. The average
travel time of the handling machine is used as the main performance measure.

Goetschalckx and Ratliff (1990) propose a heuristics, called GReedy Heuristics (GRH),
based on the following Lemma:

Lemma 1 For all shared storage systems that satisfy the travel independence condition, any
storage policy that relies only on the ranking of the travel times to the locations is optimal if
and only if it simultaneously maximizes the number of unit loads stored in the first, first two,
. . . , first K locations (locations are ordered according to there accessibilities).

The condition in the Lemma is very restrictive. Trying to maximize the number of items
stored in the most accessible locations, GRH assigns the items with early departure times
to the closest open locations in each step. Ties are broken by ordering the items by non-
decreasing arrival times.

3 Problem Formulation

We address the storage location assignment problem in an AS/RS that operates under DOS-
based shared storage policy. The AS/RS under consideration in this paper is a storage system
with multiple aisles. Each aisle is served by a dedicated S/R machine that can reach a pick
face on each side of the aisle. All items in the system are stored and moved in unit loads.
The S/R machine can carry one unit load at a time and can either store an incoming load
in an empty location in the rack or pick up a load from a location in the rack and deliver it
to the I/O station of the system. Each aisle has one I/O station for incoming and outgoing
loads. An effective storage location assignment can reduce the mean travel times of the S/R
machine.

The single command mode is assumed where there is only one deposit or one retrieval on
each round trip. The time to deposit or pickup a unit load is assumed to be independent of
the sequence of the requests. We minimize the total travel time for performing all the storage
and retrieval operations. The total travel time consists of the following two components: the
deposit time for all the storage unit loads; and the retrieval time for all the retrieval unit
loads.

3.1 Notations

The following notations are defined for the mathematical formulation:

N : number of unit loads

K: number of locations

i, j: index of unit load, i, j = 1, 2, . . . , N

k: index of location, k = 1, 2, . . . ,K

Each unit load i, i = 1, 2, . . . , N , has a duration-of-stay DOSi. It is an interval [ai, di],
where ai is the arrival time of unit load i, and di is its departure time. A location may be
empty before ai, but cannot be assigned to i until i arrives at ai. i is a storage unit load at
time ai, and becomes a retrieval unit load at time di. There is a one-way traveling time ck

to each location k, k = 1, 2, . . . ,K. This time is independent of which unit load is stored in
that location. Also, ck is assumed to be a small value, and not comparable to the DOSs of
the unit loads.

4 G–2008–37 Les Cahiers du GERAD

An N ×N matrix W,W = {wij |i, j = 1, 2, . . . , N}, is defined to indicate whether any two
unit loads could be assigned to the same location. wij equals to 1 if the DOSs of i and j are
not overlapped between each other. Thus, i and j can be assigned to the same location in the
planning horizon. wij is defined as:

wij =

{

1, ai ≥ dj or aj ≥ di, i, j = 1, . . . , N, i 6= j

0, otherwise

The objective is to minimize the total travel time required to process the storage and
retrieval operations of the N unit loads in the current time horizon.

Decision variables:

xik = 1, if i is stored in location k, 0 otherwise;

yijk = 1, if i and j are stored in the same location k, 0, otherwise.

3.2 Mathematical model

In this section, we formulate the SLAP as an integer programming problem.

Min

N
∑

i=1

K
∑

k=1

4ckxik (1)

subject to:

K
∑

k=1

xik = 1, i = 1, . . . , N (2)

yijk + 0.5 ≥ 0.5(xik + xjk), i, j = 1, . . . , N, k = 1, . . . ,K (3)

(1 − wij)yijk = 0, i, j = 1, . . . , N, k = 1, . . . ,K (4)

xik, yijk ∈ {0, 1} (5)

For each unit load there are four one-way trips, therefore the objective function (1) is to
minimize the total travel time. Constraints (2) ensure that each unit load is assigned to only
one location. Constraints (3) ensure that yijk = 1 when i and j are assigned to the same
location k. When wij = 1, constraints (4) are not binding. When wij = 0, constraints (4)
ensure that i and j are not assigned to the same location. Constraints (5) specify the binary
property of the decision variables.

Solving the problem for the optimum will require a prohibitive computational effort. For
example, the solution process terminates because too much memory is used for a problem with
120 unit loads and 40 locations using CPLEX 10.1.1. This encourages the use of heuristic
procedures that can find a good solution reliably in a reasonable amount of time.

4 A heuristic approach

GRH is myopic in that it assigns the items in the current step without considering their
influence on the future decisions. It is because that it maximizes the number of items stored

Les Cahiers du GERAD G–2008–37 5

in the most accessible locations separately in each step. Some items which are not assigned
too early could improve the results of the subsequent steps. It is on this observation that our
Graph Based Heuristic approach (GBH) is inspired.

In order to describe the procedure, a storage graph is introduced that represents all the
storage activities in a planning horizon. A storage activity is defined here as a temporary stay
of an incoming unit load i that arrives at time ai and departs at time di. For a given time
horizon T , the storage graph G = (V,C,A)G = (V,C,A)G = (V,C,A) is defined as follows:

• VVV is the set of nodes corresponding to all the time periods in T . V = {1, 2, . . . , T + 1}.
The node of time period 1 is denoted as the source node, and the node of T + 1 is
denoted as the sink node.

• CCC is the set of directed connection arcs. There is a connection arc between each pair of
consecutive nodes.

• AAA is the set of directed storage arcs. Each storage arc represents a storage activity. The
node of arrival time period and the node of departure time period of one storage activity
are connected by a storage arc. A weight defined later is associated with each storage
arc.

This storage graph GGG contains the DOS information of all the unit loads to be stored.
Moreover, a path from the source node to the sink node is a combination of unit loads whose
DOSs are not overlapped and could be assigned to the same location.

Example 1. Consider an AS/RS system consisting of four unit loads to be stored in a
four-day horizon and three storage locations. Here N = 4, K = 3. Table 1 shows the arrival
and departure time of the four unit loads. The traveling time for the S/R machine from the
I/O point to each location is 1, 2, and 3 respectively.

Table 1: DOS of storage unit loads

i arrival time departure time DOS
1 1 2 1
2 1 3 2
3 3 4 1
4 2 5 3

Figure 1 illustrates a storage graph of the system for the instance. Each storage arc has a
label indicating the associated storage activity.

5 4 3 2 1

s4

s3
s2

s1

Figure 1: A storage graph with 4 unit loads

Each storage arc si is associated with a weight of B + DOSi, where B is a constant bigger
than T , and DOSi is the duration of stay of the corresponding unit load i. Thus, the GBH

6 G–2008–37 Les Cahiers du GERAD

tries to satisfy at best the condition of optimality in the Lemma by finding, in the assignment
of each step, the longest path in the graph. Obviously, with this definition of weight, the path
that contains the largest number of storage arcs will be the longest.

Example 2. The longest path of the graph in Figure 1 is shown in Figure 2. The length of
the path equals to 2B + 4.

5 4 3 2 1

s4

s3

s1

s2

Figure 2: The longest path of the storage graph (in shadow)

The GBH consists of searching the longest path in the storage graph, and follows the steps
as:

Step 1: Find the longest path p in GGG from the source node to the sink node;

Step 2: Assign the unit loads corresponding to the storage arcs in p to the most accessible
open location;

Step 3: Delete the storage arcs in p from GGG;

Step 4: If AAA is empty, then stop; otherwise, go to step 1.

Let us see how the GRH and the GBH do the assignment by using the small instance of
Example 1. By GRH, the unit loads are ordered by non-decreasing departure times. It begins
with the assignment of unit load 1 to location 1, which is the most accessible open location.
When unit load 2 enters, it is assigned to location 2 because location 1 is occupied with unit
load 1. The same rules apply to unit load 3 and 4. The whole solution is illustrated in
Figure 3(a). The total travel time is 4×(1×2+2×1+3×1) = 28. Applying the GBH for the
system in the instance, we get an assignment solution that is illustrated in Figure 3(b). That
is, unit load 1 and 4 are assigned to location 1; unit load 2 and 3 are assigned to location 2.
The total traveling time in this case is 4 × (1 × 2 + 2 × 2) = 24. And only two locations are
needed.

 (a) GRH solution of the instance system (b) GBH solution of the instance system

time 1 2 3 4 5

k=1

k=2

k=3

1

2

3

4

time 1 2 3 4 5

k=1

k=2

k=3

1

2 3

empty

4

Figure 3: Two solutions of the instance system

Les Cahiers du GERAD G–2008–37 7

5 Experiments

The experiments were conducted to determine how well the proposed approach GBH performs
as compared with the GRH. A single aisle consisting of two racks is considered in our com-
putational experiments. Let L be the length and H be the height of the AS/RS rack, and Vh

and Vv the horizontal and vertical travel speed of the S/R machine. Then, the times required
to travel the full length and height, respectively, are given by th = L/Vh and tv = H/Vh. Let
Z = max{th, tv}, b = min{th/Z, tv/Z}, which are referred to as the maximum travel time and
shape factor, respectively. We consider a “square-in-time” system, where b = 1.

Each location is associated with a pair of travel times in horizontal and vertical directions
(hk, vk) that were randomly generated from uniform distributions U(0,1). It is assumed that
the S/R machine travels simultaneously in the horizontal and vertical directions, i.e., Tcheby-
chev travel. Thus, the traveling time ck of storing/retrieval a unit load in/from location
k, k = 1, . . . ,K, is

ck = max(hk, vk) (6)

The experiments are conducted in the same way as they are in Goetschalckx and Ratliff
(1990). The information on the DOS of each unit load is generated randomly. It is controlled
by parameters that allow us to produce instance sets with specific characteristics. These
parameters are: the number of products P , the reorder quantity Q, and the average demand
inter-arrival time DIT . Various test problems are generated by varying P from 5 to 80 and
Q from 1 to 40.

All the products in a single experiment have the same Q. For each product, replenish-
ment occurs immediately after the last unit of inventory is retrieved. The DITp of product
p, p = 1, 2, . . . , P , is sampled from a uniform distribution of (1,4) (numbers are rounded).
The first replenishment date for product p, FRDp, is a random variable, and is gener-
ated from a uniform distribution of (1, Q∗DITp). The length of planning horizon is set to
T = max{Q∗DITp|p = 1, . . . , P}. Therefore, during a planning horizon the times of replen-

ishment for product p equals to
⌊

T−FRDp

DITp∗Q

⌋

.

We used Visual C++ programming language to code the algorithms, and perform the
computational test on a personal computer with a Pentium 930 MHz processor and 384 MB
RAM. CPLEX 10.1.1 integer programming software is used to find the optimal solutions for
small sized problems.

To assess the quality of the heuristic methods, we compare the solution values from the
heuristics with the optimal solution for small and medium sized problems. We compare the
average travel time performance of both heuristics over various values of problem size (P
and Q). The average travel time is the total travel time divided by the total number of
storage/retrieval operations. For each scenario, we randomly generated 10 instances. Table 2
gives the number of times both methods find the optimum out of 10 instances (see column
‘#OPT’), the average relative gap from the optimum, and the CPU seconds for both methods.
The table also gives the average CPU time of the CPLEX solver.

Experimental results show that the GBH performs very effectively and is superior over the
GRH for all the testing problems. For 149 testing problems out of 150 in total, the GBH
found the optimum. The GRH found the optimum for 91 testing problems out of 150. The
average gap of the GRH ranges from 0% to 1.21%, while the average gap of the GBH ranges

8 G–2008–37 Les Cahiers du GERAD

Table 2: Performance comparison for small and medium sized problems

GRH GBH solver

PPP QQQ #OPT GAP CPU #OPT GAP CPU CPU

5 1 10 0% 0.152 10 0% 0.154 0.046
5 2 9 0.22% 0.173 10 0% 0.174 0.255
5 3 8 0.57% 0.216 10 0% 0.211 1.104
5 4 6 0.45% 0.265 10 0% 0.262 2.772
5 5 5 0.77% 0.289 10 0% 0.295 2.090

8 1 10 0% 0.163 10 0% 0.162 0.085
8 2 8 0.23% 0.222 10 0% 0.223 0.088
8 3 7 0.34% 0.285 10 0% 0.286 4.478
8 4 4 0.50% 0.443 10 0% 0.435 1700
8 5 3 0.78% 0.596 10 0% 0.574 2040

10 1 10 0% 0.171 10 0% 0.184 0.144
10 2 6 0.31% 0.242 10 0% 0.241 1.324
10 3 1 0.77% 0.378 9 0.02% 0.365 21.53
10 4 3 0.40% 0.631 10 0% 0.602 1322
10 5 1 1.21% 0.854 10 0% 0.836 2777

from 0% to 0.02%. The results also suggest that as the problem size increases the quality of
the GBH solutions is still very good, while the quality of the GRH solutions deteriorates.

The performances of the GBH and GRH are compared as a function of different parameters
for large scale problems, whose sizes range from several items to several thousands (more than
three thousands).

Both heuristics have comparable computing times, ranging from a split second to less than
fifteen minutes for the problems of different sizes. Figure 4 compares the performance on the
average travel time of both heuristics. The GBH results in shorter travel times than the GRH
for all the instances.

0,60

0,65

0,70

0,75

0,80

0,85

10 20 30 40 50 60 70 80

Number of Products

A
v
e
ra

g
e
 t

ra
v
e
l
ti

m
e

GRH GBH

(a) Average travel time versus number of products

0.60

0.65

0.70

0.75

0.80

0.85

5 10 15 20 25 30 35 40

Reorder Quantity

A
v

e
ra

g
e
 t

ra
v

e
l
ti

m
e

GRH GBH

(b) Average travel time versus reorder quantity

Figure 4: Performance comparison on the average travel time

Les Cahiers du GERAD G–2008–37 9

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

10 20 30 40 50 60 70 80

Number of Products

P
e
rf

o
rm

a
n

c
e
 I
m

p
ro

v
e
m

e
n

t

Average travel time Space requirements

(a) Average improvements versus number of products

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

5 10 15 20 25 30 35 40

Reorder Quantity

P
e
rf

o
rm

a
n

c
e
 I
m

p
ro

v
e
m

e
n

t

Average travel time Space requirements

(b) Average improvements versus reorder quantity

Figure 5: Average performance improvements of the GBH over the GRH

Figure 5 illustrates the average performance improvements of the GBH over the GRH.
Figure 5(a) shows the performance improvements as a function of number of products. The
travel time savings of the GBH is from 0.56% to 2.13%, with an average of 1.61%. The
savings of the space requirements is from 2.01% to 7.50%, with an average of 5.87%. The
improvements by the GBH increase with increasing number of products. Figure 5(b) shows
the performance improvements as a function of reorder quantity. The travel time savings
of the GBH are from 0.95 to 1.75%, with an average of 1.25%. The savings of the space
requirements are from 3.08% to 6.09%, with an average of 5.20%. Also, the improvements
by the GBH increase with increasing reorder quantity. It is observed from the results that
the performances of the GBH show much improvement over the GRH as the problem size
increases.

6 Conclusions

The study of Goetschalckx and Ratliff (1990) shows that the DOS-based shared storage has an
average travel time saving of 25% when compared with the turnover-based dedicated storage.
The storage location assignment problem addressed in this paper aims at minimizing the
total travel time by an S/R machine in an AS/RS with DOS-based shared storage policy.
An integer programming model is provided to solve the problem optimally. A graph based
heuristic GBH is developed to solve large scale problems in reasonable time.

It is found that the GBH has a better performance than the GRH by Goetschalckx and
Ratliff (1990), in terms of both total travel time and space requirements. The GBH gives
optimal solutions for all the small and medium sized test problems with only one exception.
Compared with the GRH for large sized problems, the GBH has an improvement of from
0.56% to 2.13% in terms of total travel time, and an improvement of from 2.01% to 7.50% in
terms of space requirements.

Future work could focus on extending the model to integrate the interleaving rules. An-
other interesting direction is to consider storage location assignment with limit processing
capacity of the system. A question arises in this context, that is, how to distribute the
workload in order to avoid the phenomena of queues.

10 G–2008–37 Les Cahiers du GERAD

References

Cormier, G., 2005. Operational research methods for efficient warehousing. In: Langevin,
A. and Riopel, D. (eds.), Logistics Systems: Design and Optimization, pp. 93–122.
Springer, New York.

De Koster, R., Le-Duc, T., and Roodbergen, K.J., 2007. Design and control of warehouse
order picking: A literature review. European Journal of Operational Research, 182:
481–501.

Eynan, A. and Rosenblatt, M.J., 1993. An interleaving policy in automated storage/retrieval
systems. International Journal of Production Research, 31(1): 1–18.

Francis, R.L., McGinnis, L.F., and White, J.A., 1992. Facility layout and location: an
analytical approach, Prentice-Hall, Englewood Cliffs, N.J.

Geotschalckx, M. and Ratliff, H.D., 1990. Shared storage policies based on the duration stay
of unit loads. Management Science, 36 (9): 1120–1132.

Gu, J., Goetschalckx, M., and McGinnis, L.F., 2007. Research on warehouse operation: a
comprehensive review. European Jounal of Operational Research, 177: 1–21.

Hausman W.H., Schwarz L.B., and Graves S.C., 1976. Optimal storage assignment in auto-
matic warehousing systems. Management Science, 22(6): 629–638.

Heskett, J.L., 1963. Cube-per-order index – A key to warehouse stock location. Transport
and Distribution Management 3, 27–31.

Heskett, J.L., 1964. Putting the cube-per-order index to work in warehouse layout. Trans-
port and Distribution Management 4, 23–30.

Lai, K.K., Xue, J., and Zhang, G.Q., 2002. Layout design for a paper reel warehouse: a two-
stage heuristic approach. International Journal of Production Economics, 75: 231–243.

Malmborg, C.J., 1996. Storage assignment policy tradeoffs. International Journal of Pro-
duction Research, 34(2): 363–378.

Malmborg, C.J. and Altassan, K.M., 1998. Analysis of storage assignment policies in less
than unit load warehousing systems. International Journal of Production Research,
36(12): 3459–3475.

Malmborg, C.J. and Krishnakumar, B., 1989. Optimal storage assignment policies for mul-
tiaddress warehouse systems. IEEE Transaction on Systems, Man, and Cybernetics,
19(1): 197–204.

Montulet, P., Langevin, A., and Riopel, D., 1997. Le problème de l’optimisation de lentre-
posage partagé : méthodes exacte et heuristique. INFOR, 35(2): 138–153.

Montulet, P., Langevin, A., and Riopel, D., 1998. Minimizing the peak load: an alternate
objective for dedicated storage policies. International Journal of Production Research,
36(5): 1369–1385.

Shouman, M.A., Khater, M., and Boushaala, A.A., 2005. Comprehensive survey and classifi-
cation scheme of warehousing systems. Proceedings of the 2005 International Conference
on Simulation and Modeling. Thailand.

Zhang, G.Q., Xue, J., and Lai, K.K., 2000. A genetic algorithm based heuristic for adjacent
paper-reel layout problem. International Journal of Production Research, 38(4): 3343–
3356.

	Introduction
	DOS-based shared storage
	Problem Formulation
	Notations
	Mathematical model

	A heuristic approach
	Experiments
	Conclusions

