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Abstract

This paper explores the dynamic properties of price-based policies in a model of com-
petition between two jurisdictions. Jurisdictions invest over time in infrastructure to
increase the quality of the environment, a global public good. They are identical in all
respects but one: initial stocks of infrastructure. This is a dynamic type of heterogeneity
that disappears in the long run. Therefore, at the steady state, usual intuitions from
static settings apply: identical jurisdictions inefficiently under-invest, calling for public
subsidies. In the short run, however, counterintuitive properties are established: i) the
evolution of capital stocks can be non-monotonic, ii) one jurisdiction can be temporarily
taxed, even though it should increase its investment, whereas the other is subsidized. It is
shown how these phenomena are related to initial conditions and the kind of interactions
between infrastructure capitals, complementarity or substitutability.

Résumé

L’article étudie les propriétés dynamiques des instruments en prix dans un modèle
de concurrence en infrastructures. Il suppose l’existence de deux juridictions adjacentes.
Chaque juridiction investit dans ses infrastructures « vertes » de façon à fournir à ses
résidents un bien public : un environnement de meilleure qualité. Les deux juridictions sont
supposées identiques en tout sauf leur stock initial d’infrastructures ; une hétérogénéité
qui s’effacera dans le long terme. Ainsi, à l’état stationnaire, nos intuitions usuelles
s’appliquent. Les deux juridictions sous-investissent, de sorte qu’une politique de subven-
tion à l’investissement est requise pour parvenir à l’optimum social. Cependant, dans le
cours terme, la propriété contre-intuitive suivante est établie : la politique en prix optimale
peut impliquer que le planificateur social taxe une juridiction et subventionne sa concur-
rente. L’article relie cette propriété à l’écart entre les dotations initiales en infrastructures
« vertes » et à la substituabilité ou complémentarité des deux stocks d’infrastructures dans
le processus de production de la qualité de l’environnement.
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thank Alain Jean-Marie, Erik Ansik, Ngo Van Long and Georges Zaccour for helpful
comments. Also, we thank participants at the 15th annual conference of the EAERE and
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1 Introduction

In recent years the theoretical analysis of price-based policies for the control of environmental
externalities under imperfect competition has received a renewed attention. Previously, most
of the literature focused on the design of optimal tax or subsidy policies in a static setting
where several instantaneous effects of these instruments should be balanced; e.g., with respect
to taxation, the gain in terms of social welfare arising from the reduction of pollution emissions
against the loss from output restriction.

However, little is known about how intertemporal externalities affect the design and the
dynamic properties of price-based policies. Introducing the time dimension opens the possi-
bility to raise the critical issue of credibility of public policies, namely how regulations should
be framed to ensure that they remain optimal in their ability to achieve or increase social
efficiency as circumstances change over time. Such an explicit consideration of credibility
requirements may qualify substantially the intuitions about price-based regulations gained in
a static setting and provide interesting and sometimes counter-intuitive policy advices.

An important contribution to this literature is Benchekroun and Van Long (1998). They
consider efficiency inducing taxation1 for the regulation of an oligopolistic industry which is
responsible for releasing a stock pollutant – one for which pollution accumulation generates
present as well as long-term environmental damages. They formulate a differential game of
pollution control in which the environmental regulator imposes a taxation rule in a symmetric
oligopolistic industry. In this game, the state variable is the pollution stock, the tax policy is
the control of the environmental regulator and output decisions are the controls of the firms
which are assumed to use either open-loop or markov strategies.

Benchekroun and Van Long (1998) analyze a Markovian tax policy whereby the output
tax rate faced by a firm at any given time depends solely on the current pollution stock. By
construction, such a linear markovian tax rule is credible, in the sense that it is time consistent
and subgame perfect. The authors provide a characterization of the optimal tax rule that is
shown to be increasing in the pollution stock and to ’decentralize’ the socially optimal time-
path of production. As for the dynamic properties of the tax, they obtain a surprising result.
In an initial time interval where the stock of pollution is low, the tax rate may be negative
implying a subsidy. Paradoxically, this subsidy induces firms to produce less than they would
have if the industry had not been regulated. Upon reflection, the explanation for this result
is simple. Since the tax rate at any given time depends solely on the pollution stock, firms
anticipate that an increase in their production will lead to reduced subsidies in the future and
eventually precipitate the turn of the subsidy into a tax. As noted by Benchekroun and Van
Long (1998), this is an instance of ‘carrot and stick‘ policy.

Motivated by a long standing concern for infrastructure competition, this paper elaborates
on Benchekroun and Van Long’s seminal contribution by studying how differences in initial
stocks of infrastructure alter the dynamic properties of the optimal and credible tax or subsidy
policy. We consider a stylized dynamic extension of the model of interjurisdictional spillovers
introduced by Wildasin (1991). The focus of our attention are two jurisdictions that are
located in the same watershed or airshed.2 Each jurisdiction invest in public (or green)

1On efficiency inducing taxation, see also Bergstrom et al. (1981), Karp and Livernois (1992) and
Karp and Livernois (1994).

2Here, we depart from the original meaning of the terms ‘watershed‘ and ‘airshed‘ and adopt the North-
American usage in which they have come to describe the geographical boundary for water and air quality
standards.
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infrastructure3 in order to provide a public good to its own residents. However, the public good
produced by one jurisdiction benefits also the residents in the other jurisdiction who cannot be
excluded from ‘its‘ consumption once it is provided. In the absence of any regulation initiative,
the presence of positive interjurisdictional spillovers will result in the underprovision of public
infrastructure. Indeed, local jurisdictions will not take into account the positive spillovers that
benefit the non-residents when setting their investment policies. A first remedy is to elevate
the decision making process to a higher level of jurisdiction so that external benefits of public
infrastructure become internal to the jurisdiction which funds them. A drawback of this
solution is that it alienates local residents from the control they have over issues that impact
their local community and daily life. A second remedy is for the higher level of jurisdiction
to implement an infrastructure capital subsidization policy that will help coordinate local
investment decisions while preserving subsidiarity. This is the route we travel by in this
paper.

The logic of regulation in our model is similar to that of Benchekroun and Van Long
(1998). A benevolent authority sets the capital infrastructure subsidization scheme and local
jurisdictions decides upon their expenditures in public infrastructure taking the subsidization
rule as given. A key difference with Benchekroun and Van Long (1998) lies in the state of
the system which is not scalar. Instead it is a two-dimensional vector describing the stocks of
infrastructure of each jurisdiction at any given time.

Consistently with the purposes of our paper we expunge the model of any asymmetry
across jurisdictions except regarding their initial stock of infrastructure in order to highlight
how this particular asymmetry affects the dynamic properties of the subsidy.4 This is a
dynamic type of heterogeneity that vanishes in the long-run. Consequently, at the steady
state, usual intuitions from static symmetric settings apply. Due to the presence of positive
interjurisdictional spillovers, both jurisdictions will inefficiently under-invest, which calls for
the implementation of a green capital subsidization scheme. In the short run, however, a
counterintuitive property appears: It is shown that the optimal scheme may require to simul-
taneously tax one jurisdiction and subsidize the other for an initial period of time. And which
jurisdiction should be initially taxed depends on whether infrastructure stocks are substitute
or complement. When they are substitute (respectively complement), the jurisdiction with
the lower (resp. larger) initial stock is first taxed.

The remainder of this paper is organized as follows. Section 2 presents the basic model.
In Section 3, the utilitarian social optimum is characterized. Then, in Section 4, we derive
the optimal infrastructure capital subsidization scheme and we discuss its dynamic properties
in Section 5. Section 6 provides examples and discusses intuitions. Finally, in Section 7, we
conclude.

2 A dynamic framework for infrastructure competition

We consider a dynamic extension of the model of interjurisdictional spillovers introduced by
Wildasin (1991). Two jurisdictions indexed by i = 1, 2 are located in the same watershed
or airshed. Each jurisdiction is inhabited by identical households who are assumed to be
immobile and infinitely lived. These households can be treated as a representative consumer
whose preferences are defined over a composite private commodity, denoted by xi, and an

3Throughout this article, we shall use the terms ‘public‘ and ‘green‘, interchangeably.
4We also assume away any informational obstacles to regulation. For a recent review on such issues, see for

instance Lewis (1996).
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index of environmental quality denoted by si. These preferences can be represented by the
utility function

ui(xi, si) = xi + si, ∀i = 1, 2. (1)

Local stocks of infrastructure are the inputs in the production process of environmen-
tal quality. This relationship can be expressed by a quadratic production function si =
Pi(Ki,Kj).

We assume that jurisdictions compete in public infrastructure over an infinite time period.
Let ei(t) denote Jurisdiction i’s expenditure on its public infrastructure at time t ∈ [0,∞[
and Ki(t) denote its stock of green infrastructure. Each jurisdiction is endowed with an
initial stock of green infrastructure equal to Ki(0) = K0

i . Investment is a flow that allows
jurisdictions to adjust their stocks of public infrastructure. Jurisdiction i’s public expenditure
ei(t) modifies its current stock of infrastructure according to the following law of motion

K̇i(t) = ei(t)− δKi(t), ∀i = 1, 2, (2)

where δ is the constant rate of depreciation. In this paper, we assume that investment is
reversible and resale of infrastructure capital is impossible. In other words, ei(t) is restricted
to be non-negative and δ is strictly positive.

Investment in infrastructure capital is costly. Let Ci(ei) denotes Jurisdiction i’s cost of
infrastructure capital adjustment. We assume that Ci(0) = 0 and C ′

i(ei) > 0, C ′′
i (ei) > 0. In

other words, Jurisdiction i’s cost of altering its infrastructure stock is an increasing and convex
function of the rate of investment. In our model, where investment is reversible (δ > 0), this
assumption implies that instantaneous adjustments of capital stocks are ruled out.

We assume that each jurisdiction is endowed with an exogenous revenue yi which can be
used to finance public expenditures and consumption good expenses. Accordingly, Jurisdic-
tion i’s budget constraint is

xi + Ci(ei) = yi. (3)

Plugging the budget constraint (3) into the utility function (1) yields the reduced-form utility
for each jurisdiction:

Wi(Ki,Kj , ei) = yi + Pi(Ki,Kj)− Ci(ei) . (4)

Each local jurisdiction is assumed to choose the time-path of public expenditure in infras-
tructure capital that maximizes the integral of its discounted stream of net social benefits.
Denoting by r ∈]0, 1[ the common discount factor of both jurisdictions, the objective of Ju-
risdiction i is to maximize

Ji =
∫ ∞

0
[yi + Pi (Ki(t),Kj(t))− Ci (ei(t))] e−rtdt, ∀i = 1, 2, (5)

with respect to the state equations (2) and the non-negativity constraint ei(t) ≥ 0. To
complete the description of each jurisdiction’s problem, the information structure must be
specified. In this paper, it is assumed that each jurisdiction is able to observe the state
of the game at any given time and make investment decisions based on this information.
Namely, we assume that both jurisdictions use markov strategies; i.e., decision rules of the
form ei(t) = φi(Ki(t),Kj(t)).
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The above elements define a game of competition in infrastructure which belongs to the
extensively studied class of capital accumulation games.5 In analyzing the outcome of in-
terjurisdictional competition, the relevant solution concept is then the markov perfect Nash
equilibrium : a pair of markov perfect strategies that are mutual best-responses. In our model
where green infrastructures generate positive spillovers across the boundaries of jurisdictions,
the Nash equilibrium outcome predicts that both jurisdictions will underinvest. This under-
investment conclusion has been a major argument in favour of transferring decision making
about public infrastructure to a higher level of jurisdiction that encompasses all the spillovers.

In this paper, we consider a different remedy. We assume that the higher level jurisdiction
wishes to coordinate local jurisdictions investment decisions and ’decentralize’ the social op-
timum by means of a capital investment subsidization scheme. Specifically, we assume that
the social regulator implements a linear markovian subsidization policy to support local ex-
penditures in green capital. Under this tax scheme, each Jurisdiction i is granted an amount
τi(Ki,Kj) per unit of investment in public infrastructure capital ei. It is important to note
here that the unit rate of subsidization depends exclusively on the two jurisdictions stocks of
infrastructure at any given time t.

In the remainder of this paper, we restrict our attention to the qualitative implications of
initial differences in public infrastructure for the dynamic properties of the optimal subsidy
policy. With this purpose in mind, we assume that the two jurisdictions are identical in
all respects, except (perhaps) their initial stocks of public infrastructure. In other words, we
assume identical cost functions, C1(e) = C2(e) = C(e), ∀e ∈ <+ and symmetric environmental
quality indexes P2(K2,K1) = P1(K2,K1), ∀(K1,K2) ∈ <2

+. However, we allow for different
initial stocks of infrastructure by assuming that K0

1 ≥ K0
2 .

Furthermore, in order to actually solve for the optimal capital investment subsidization
scheme we make specific assumptions about functional forms. Environmental quality indexes
are assumed to be quadratic and given by

Pi(Ki, Kj) = p0 + p1Ki + p2Kj +
p3

2
K2

i + p4 Ki Kj +
p5

2
K2

j , ∀i = 1, 2,

with p1, p2 > 0, p3 < 0 and p5 < 0. Furthermore we assume that p1 and p2 are sufficiently
large to ensure that ∂Pi

∂Ki
> 0 and ∂Pi

∂Kj
> 0; i.e., the quality of the environment in Jurisdiction i

is increasing in its own stock of infrastructure and interjurisdictional externalities are positive.
These assumptions imply that environmental quality is produced through a technology that
features decreasing returns to scale. Parameter p4 6= 0 is not restricted in sign and will
play an important part in our investigations. We introduce the following terminology due to
Figuières (2004). Capital stocks are said to be complements when an increase in the stock of
capital accumulated by one jurisdiction enhances the marginal productivity of its rival’s own
stock of capital. Conversely, when an increase in the capital stock of one jurisdiction lowers
the marginal productivity of its rival’s own stock of capital, they are said to be substitutes.
Correspondingly, stocks are complements if p4 is positive, whereas they are substitutes if p4

is negative.

Lastly, we assume that the capital adjustment cost function is quadratic and given by

C(e) = c1 e +
c2

2
e2 (6)

5See Dockner et al. (2000, chapt. 9) for an introduction. Also, see Driskill and McCafferty (1989);
Fershtman and Muller (1984, 1986); Figuières (2002, 2004); Figuières, Gardères and Rychen (2002);
Reynolds (1991).
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where c1 ≥ 0, c2 > 0 are cost parameters. The marginal cost of investment is thus increasing
in ei. Observe that this specification of the two jurisdictions cost functions as a strictly convex
function of their investments has important consequences for the analysis: it induces firms to
adjust their stocks of infrastructure gradually.

3 The utilitarian social optimum

Let us assume that the responsibility for infrastructure financing has been transferred to a
higher level of government that encompasses both local jurisdictions; e.g., an intercommunal
or interregional association. As a consequence of this delegation, interjurisdictional spillovers
are now internalized into the decision making of a single economic agent. Then, the problem
faced by the social planner is to find the time-paths of investment (e1(.), e2(.)) that solve

max
(e1(.), e2(.))

J1 + J2 (7)

subject to (2) and ei(t) ≥ 0,∀t ∈]0,∞[. This amounts to solving a two-state variable optimal
control problem. We will refer to the solution to this problem as the utilitarian social optimum
and use it as a benchmark for the remainder of the analysis.

In this section we show that there exists a unique optimal path of investment in pub-
lic infrastructure. To solve for the social optimum we make use of Pontryagin’s maximum
principle. The current value Hamiltonian of the centralized problem (7) is defined as6

H(e1, e2, K1, K2, λ1, λ2) =
2∑

i=1

(Pi(Ki,Kj)− C(ei)) +
2∑

i=1

λi (ei − δKi), (8)

where λ1 and λ2 are the co-state variables associated with K̇1 and K̇2, respectively. Assuming
interior solutions, Pontryagin’s maximum principle implies the following necessary conditions
for optimality (∂H/∂ei = 0, λ̇i = rλi − ∂H/∂Ki):

λi = c1 + c2 ei, ∀i = 1, 2, (9)

λ̇i = (r + δ) λi − (p1 + p2)− (p3 + p5) K1 − 2 p4 K2, ∀i(i 6= j) = 1, 2, (10)

along with the dynamic process of capital accumulation (2); the transversality condition at
infinity is

lim
t→∞

[λ1(t) (K1(t)−Kc
1(t)) + λ2(t) (K2(t)−Kc

2(t))] e
−rt = 0, (11)

where Kc
i (.) denotes a candidate for optimization and Ki(.) is any other path. Using Equation

(9) to eliminate ei from (2), optimality conditions can be summarized as
λ̇1

λ̇2

K̇1

K̇2

=


(r + δ) 0 − (p3 + p5) −2 p4

0 (r + δ) −2 p4 − (p3 + p5)
1/c2 0 −δ 0

0 1/c2 0 −δ




λ1

λ2

K1

K2

−


(p1 + p2)
(p1 + p2)

c1/c2

c1/c2

 (12)

along with the initial conditions (K1(0) = K0
1 , K2(0) = K0

2 ) and the transversality condition
(11). The above system of differential equations (12) can be rewritten more compactly as

6We have not incorporated explicitly the constraints ei(t), ej(t) ≥ 0 at the formulation stage of the problem.
We preferred to solve it and check afterward that those constraints are verified. The same remark applies to
the study of decentralized behaviors in the next section.
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ẋ = A x − b. A steady-state solution (K∞
1 , K∞

2 ) is defined as a constant trajectory that
solves (12); i.e., ẋ = 0. Setting time derivatives equal to zero, we obtain a system of algebraic
equations which can be solved for (K∞

1 , K∞
2 , λ∞1 , λ∞2 ) to yield:

e∞1 = e∞2 = δ K∞, (13)

K∞
1 = K∞

2 = K∞ =
(r + δ) c1 − (p1 + p2)

(p3 + p5) + 2 p4 − δ (r + δ) c2
. (14)

The stability properties of the steady-state can be determined by examining the eigenvalues
of the coefficient matrix A. Solving the characteristic equation

det(ρI −A) =
[(p3 + p5)− (r + δ − ρ)(δ + ρ) c2]

2 − 4 p2
4

c2
2

= 0, (15)

where I is the identity matrix, yields four real and distinct eigenvalues, two of which are
positive and two of which are negative, confirming a saddle-point solution. The following
proposition provides a characterization of the social optimum.

Proposition 1 The socially optimal time-paths of investment in public infrastructure are

e1(t) =
1
2
(δ + ρ1)(K0

1 −K0
2 )eρ1t +

1
2
(δ + ρ2)(K0

1 + K0
2 − 2K∞)eρ2t + δ K∞, (16)

e2(t) =
1
2
(δ + ρ1)(K0

2 −K0
1 )eρ1t +

1
2
(δ + ρ2)(K0

1 + K0
2 − 2K∞)eρ2t + δ K∞, (17)

where (ρ1, ρ2) are the negative roots of the coefficient matrix A:

ρ1 =
1
2

[
r −

√
(r + 2 δ)2c2 − 4 (p3 + p5 − 2 p4)√

c2

]
, (18)

ρ2 =
1
2

[
r −

√
(r + 2 δ)2c2 − 4 (p3 + p5 + 2 p4)√

c2

]
. (19)

The stocks of green infrastructure (K1(t), K2(t)) evolve along the following trajectories

K1(t) =
1
2
(K0

1 −K0
2 )eρ1t +

1
2
(K0

1 + K0
2 − 2K∞)eρ2t + K∞, (20)

K2(t) =
1
2
(K0

2 −K0
1 )eρ1t +

1
2
(K0

1 + K0
2 − 2K∞)eρ2t + K∞, (21)

which converge to the unique steady state K∞.

Proof. See Appendix A.

Finally, note that the two jurisdictions’ optimal rates of investment at any time t can be
written as functions of the state vector (K1(t), K2(t)). The so-called feedback representations
of the optimal controls then read as

ê1(K1,K2) =
1
2

[2δ + ρ1 + ρ2]K1 +
1
2
(ρ2 − ρ1)K2 − ρ2K

∞, (22)

ê2(K2,K1) =
1
2

[2δ + ρ1 + ρ2]K2 +
1
2
(ρ2 − ρ1)K1 − ρ2K

∞. (23)

Having characterized the utilitarian optimal solution, we now turn to the analysis of the
decentralized scenario.
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4 A pigovian remedy to infrastructure competition

Now we assume that the higher level jurisdiction seeks to implement the social optimum
through the choice of a capital investment subsidy scheme. With the aim of coordinat-
ing local expenditures, the social regulator announces a linear-markovian subsidy scheme
T ∗ = {τ∗1 (K1,K2), τ∗2 (K1,K2)} before jurisdictions take their decisions.7 Under this scheme,
each Jurisdiction i is granted a subsidy τi(Ki(t),Kj(t)) per unit of expenditure in public
infrastructure at time t, where the unit subsidy rate depends only on the two jurisdictions
current period stocks of green infrastructure capital, Ki(t) and Kj(t). In the remainder of
this paper, it is assumed that τi(Ki, Kj) is not restricted in sign. Indeed, it may be negative
implying a tax. It is shown that this pigouvian scheme T ∗ decentralizes the social utilitarian
optimum as a markov perfect Nash equilibrium. In other words, the equilibrium that the
economy will reach when each Jurisdiction i determines its preferred investment rule – taking
as given both Jurisdiction j ’s investment rule ej(Kj ,Ki) and the subsidy rule τ∗i (Ki,Kj) –
coincide with the social optimum.

To begin with, let us consider how a linear-markovian subsidy affects local jurisdictions’
incentives to invest in green infrastructure. In the presence of subsidization, at a markov
perfect Nash equilibrium Jurisdiction i solves the dynamic optimization problem

max
ei

Ji =
∫ +∞

0
e−rt [Pi(Ki, Kj)− C(ei) + τi(Ki, Kj)ei] dt (24)

s.t. K̇i = ei − δ Ki, Ki(0) = K0
i , (25)

K̇j = ej(Kj , Ki)− δKj , Kj(0) = K0
j . (26)

The current value Hamiltonian for this problem is defined as

Hi = Pi(Ki,Kj)− C(ei) + τi(Ki,Kj)ei + µi(ei − δKi) + σi(ej(Kj ,Ki)− δKj), (27)

where µi and σi are the costate variables associated with K̇i and K̇j , respectively. Let
us recall that the optimal strategies of Jurisdiction i’s opponent are necessarily of form
ej(Kj ,Ki) = φ1 + φ2Kj + φ3Ki, given the linear-quadratic structure of the game. Assuming
interior solutions, Pontryagin’s maximum principle then implies that the following conditions

µi = c1 + c2 ei −m− n Ki − q Kj , (28)
µ̇i = (r + δ) µi − (p1 + p3 Ki + p4 Kj)− n ei − σiφ3, (29)
σ̇i = (r + δ − φ2)σi − (p2 + p4 Ki + p5 Kj)− q ei. (30)

hold along Jurisdiction i’s optimal trajectory of investment (where the transversality condition
has been omitted for sake of brevity).

The optimality conditions provide the higher level jurisdiction with the information needed
to foresee how a subsidy policy will alter local jurisdictions’ incentives to invest in public
infrastructure. On the basis of this information, the regulator will select the infrastructure
capital subsidization scheme T ∗ so as to decentralize the social optimum. Formally, this
amounts to choosing T ∗ in such a way that the optimality conditions (28)-(30) match the
conditions for a social optimum (9) and (10). The following proposition characterizes the
optimal tax rule:

7Benchekroun and Van Long (1998) more precisely state that the scheme is announced at date t = 0 before
economic agents take their decision. In a linear quadratic infinite horizon model, such a scheme is subgame
perfect. Thus an alternative timing, more in line with the dynamic spirit of our analysis, is for the regulator
to revise and announce the tax or subsidy rate at each date before jurisdictions decide upon their investment.
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Proposition 2 The optimal subsidization scheme that decentralizes the socially optimal time-
path of expenditure in public infrastructure capital as a markov perfect Nash Equilibrium is

τ∗i (Ki,Kj) = m∗ + n∗Ki + q∗Kj , ∀i(i 6= j) = 1, 2, (31)

where

q∗ =
−1

4 (r − ρ1 − ρ2) (−2 (r + δ) + ρ1 + ρ2)

{
8 p4 (−r + ρ1 + ρ2)

+
[
4 p5 − c2 (2 r − ρ1 − 3 ρ2) (2 r − 3 ρ1 − ρ2)

]
(ρ1 − ρ2)

}
,

(32)

and

n∗ =
2 (p4 − p5) (r − 2 ρ1)

(r + 2δ) (−2 r + 3ρ1 + ρ2)
+ q∗

[
1 +

2 (r − 2 ρ1) (δ + ρ1)
(r + 2δ) (−2 r + 3 ρ1 + ρ2)

]
, (33)

and

m∗ = − 1
(r + δ)

{[
p1 − (r + δ) c1

]
+

p2 (ρ1 − ρ2)
(−2 r + ρ1 + ρ2)

}
+

K∞

(r + δ)

{[
δ (r + δ) c2 − p3 + p5

]
+

2 (p4 + p5) (r − ρ1)
(−2 r + ρ1 + ρ2)

}
+

q∗

(r + δ)

[
−r +

2 δ (r − ρ1)
(−2 r + ρ1 + ρ2)

]
K∞ + n∗

[
−2 +

r

(r + δ)

]
K∞ .

(34)

Proof. See Appendix B.

5 Complementarity, substitutability and the role of initial con-
ditions

In the next section, we rely on selected numerical examples and illustrations to provide impor-
tant insights about the qualitative properties of the optimal markovian scheme. Most notably,
on the basis of these examples it will be shown that for an initial period of time the optimal
pigovian rule may require to simultaneously tax one jurisdiction and subsidize the other. This
property is to be linked to the gap between initial endowments of public infrastructure and the
nature of the technical relationship between the two stocks. The following qualitative results
add important information about how the technical relationship among the stocks alters the
strategic features of the game. Moreover, it will provide additional guidance in the choice of
our numerical examples.

First of all, let us state a result which shows the connection between the technical rela-
tionship among stocks and best reply functions under optimal regulation.

Proposition 3 Let the stocks be complement, p4 > 0 (resp. substitute, p4 < 0). Then:

• the pigovian scheme is an increasing (resp. decreasing) function of the rival stock, i.e.
q∗ > 0 (resp. q∗ < 0).
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• at the optimally regulated markov perfect equilibrium, Jurisdiction i’s decision rule is
an increasing (resp. a decreasing) function of the rival stock.

Proof. Appendix C1.

Assumption 1 p4 > 0 and −2p4+p3+p5

(r+δ−ρ1)c2
= δ + ρ1 ' 0.

Assumption 1 captures a family of investments problems where capital stocks are comple-
ments (p4 > 0) and costs are relatively large (c2 � 0).

Lemma 1 Let Assumption 1 hold. Then K∗
i (t) > K∗

j (t) ⇐⇒ τ∗i (t) < τ∗j (t) .

Proof. Appendix C2.

Therefore one can deduce:

Proposition 4 Let Assumption 1 hold. Assume also that Jurisdiction j is initially taxed
whereas Jurisdiction i is subsidized, τ∗j (0) < 0 and τ∗i (0) > 0. Then K∗

j (0) > K∗
i (0).

This proposition means in particular that, under complementarity and large variable costs,
when there is an initial taxation, then it applies to the jurisdiction with the largest initial
capital stock.

Assumption 2 p4 < 0 and p4 < p5 and p4 < (p3 + p5)/2.

Assumption 2 captures a family of investments problems where capital stocks are substi-
tutes (p4 < 0) and the degree of substitutability is strong enough (p4 < p5).

Lemma 2 Let Assumption 2 hold. Then K∗
i (t) > K∗

j (t) ⇐⇒ τ∗i (t) > τ∗j (t) .

Proof. Appendix C3.

Thus, the following reversed property can now be established:

Proposition 5 Let Assumption 2 hold. Assume also that Jurisdiction j is initially taxed
whereas Jurisdiction i is subsidized, τ∗j (0) < 0 and τ∗i (0) > 0. Then K∗

j (0) < K∗
i (0).

This proposition indicates that, under ”strong” substitutability, when there is an initial
taxation, then it applies to the jurisdiction with the lowest initial capital stock.

The next section uses numerical examples to illustrate those results and to discuss the
corresponding intuitions.

6 Illustrations

First of all, it is useful to highlight in what respects static and dynamic Pigovian instruments
differ. In a static setting the subsidization rate faced by Jurisdiction i is constant so that an
increase in its level of investment translates directly into an increase of the subsidy it receives.
In addition to this quantity effect, in a dynamic setting, jurisdictions have to take into account
the intertemporal ‘price‘ effects of their decisions. First, since the rate of subsidization of each
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jurisdiction depends on both stocks of infrastructure, a change in the rate of investment of any
jurisdiction directly alters the subsidy rate enjoyed by both jurisdictions. Second, at a MPE
Jurisdiction i correctly anticipates the decision rule of its rival, ej (Kj ,Ki) and so the indirect
effect a stock increase will have on Kj and τ∗i (Ki,Kj). Namely, Jurisdiction i anticipates that
Jurisdiction j will reply to a change in Ki by adjusting its capital stock Kj and that this
strategic move will affect τ∗i (Ki,Kj).

Second, social efficiency requires that i) the gap between the two stocks remains optimal
all along the transition phase and ii) eventually closes when the socially optimal steady-state
is reached. It should be noted that while K∞ (see expression 14) is independent of the initial
conditions, the optimal evolution of the gap depends on the technological relationship that
links capital stocks. Indeed, cost efficiency requires that the substitutability (or complemen-
tarity) property of the stocks be used to minimize the cost of the transition to the steady-state.
Hence, it should come as no surprise that both the optimal evolution of the stocks (equations
16 and 17) and the optimal evolution of the corrective instrument designed to decentralize
the social optimum (propositions 4 and 5 ) depend on the initial conditions.

The challenge is to come to grips with these uncommon features. With this purpose
in mind, we now go through four numerical examples in which stocks are assumed to be
complements and all parameters except initial capital stocks remain unchanged. A fifth
example will be used to illustrate a situation in which stocks are substitute.

6.1 An example with technical complementarity

For the selected numerical parameters, the optimal tax/subsidy policy (2) is given by:

τ∗i (Ki,Kj) = 158.564− 1.89455 Ki + 1.8511 Kj . (35)

Note that τ∗i (Ki,Kj) is decreasing in its first argument and increasing in its second (see
Proposition 3). Furthermore, observe that the optimal policy rule may not offer a subsidy
to both jurisdictions. For example, if Jurisdiction i is initially endowed with a large stock
of green infrastructure and competes with a rival which lacks infrastructure, then τ∗i (Ki,Kj)
may be negative for an initial period of time – implying that Jurisdiction i is temporarily
taxed. The optimal corrective instrument (35) induces Jurisdiction i to adopt the following
equilibrium Markov strategy8

ei (Ki,Kj) = 26.1367− 0.262795 Ki + 0.255191 Kj (36)

which coincide with the socially optimal time-path of investment in green infrastructure. Note
that this strategy is increasing in the rival stock. A property that could have been anticipated
from Proposition 4 since the selected parameter values satisfy Assumption 1.

6.1.1 Identical initial endowments

To begin with, assume that both jurisdictions are initially endowed with identical stocks of
green infrastructure. Naturally, this case implies that both jurisdictions are identical and will
follow the same time-path of investment in public infrastructure, K1(t) = K2(t) = K(t), ∀t.
Consequently, the optimal tax/subsidy policy rewrites as:

τ∗i (K) = m∗ + (n∗ + q∗) K

8Details on the computation of the unregulated markov-perfect Nash-equilibrium of the game among juris-
dictions are omitted here as they can be found in Figuières (2002).
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(a) Time-paths of investment (b) Time-paths of capital accumulation

(c) Time-paths of subsidization

Figure 1: Socially optimal trajectories when jurisdictions are initially endowed with identical stocks
of green infrastructure (parameter values: p0 = 0, p1 = 50, p2 = 50, p3 = −1.525, p4 = 1.5, p5 =
−1.525, r = 1/10, c1 = 0, c2 = 10, δ = 0.275, K10 = K20 = 0)

Socially optimal time-paths of investment in green infrastruture, capital accumulation and
subsidization are depicted in Figure 1. Note that n∗ + q∗ < 0 so that τ∗i (K) is a decreasing
function of K. In other words, the optimal rate of subsidization monotonically decreases
over time towards its steady-state level τ̂∞. This pattern of evolution should come as no
surprise. Indeed, comparing the Feedback-Nash investment trajectory with the optimal one
(see Figure 1a), it appears clearly that the need to reinforce incentives to invest is greater at
earlier dates.

6.1.2 Difference in initial endowments

Now we assume that Jurisdiction 1 is initially endowed with a larger stock of green infras-
tructure than Jurisdiction 2. This implies that the two jurisdictions will follow separate
trajectories of investment (and thus capital accumulation). However, such an asymmetry
will disappear in the long-run since both trajectories converge to the same steady-state. The
graphical comparison of unregulated and regulated investment levels reveals that Jurisdic-
tion 2 should initially commit to larger investments than Jurisdiction 1, although this demand
is smoothly lifted over time.

Figure 2 allows us to visualize how the required incentives are provided by the optimal
markovian scheme. Initially, Jurisdiction 2 receives a higher subsidy for investing in green
infrastructure than Jurisdiction 1. However as Jurisdiction 2’s stock of infrastructure capital
catches up with that of its rival this preferential treatment is smoothly removed by simulta-
neously reducing τ∗2 (K) and increasing τ∗1 (K) and eventually vanishes. Graphically, one sees
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(a) Time-paths of investment (b) Time-paths of capital accumulation

(c) ∆Ki(t) = Ki(t)− K̂i(t)

Figure 2: Socially optimal trajectories when Jurisdiction 1 initially is endowed with slightly more
capital stock (1) (parameter values: p0 = 0, p1 = 50, p2 = 50, p3 = −1.525, p4 = 1.5, p5 = −1.525, r =
1/10, c1 = 0, c2 = 10, δ = 0.275, K10 = 40,K20 = 0)

that granted subsidies converge to the same steady-state value. However, τ∗2 (K) approaches
the steady-state from above whereas τ∗2 (K) approaches τ∞2 from below.

6.1.3 Carrot and stick policy with complementarity

In this example the gap between initial stocks of infrastructure has been increased further
compared to the previous case. Figures 3 and 4 allows for a comparison between unregulated
and socially optimal outcomes. The comparison reveals that the optimal tax/subsidy policy
should alter jurisdictions’ investment incentives in such a way that:

• Jurisdiction 2 is lead to increase its investment at all dates, although to a lesser extent
as time passes by,

• Jurisdiction 1 is driven to reduce its level of investment for an initial time period before
resuming its investment effort and eventually investing more than it would do in the
laissez-faire scenario for the remainder of the planning horizon (Figures 3(a) and 3(b)),

• the gap between green capital stocks is first reduced so that the complementarity of the
stocks is better exploited before allowing both capital stocks to increase well above their
level in the unregulated scenario (Figures 4(a) and 4(b)).

The optimal Pigovian scheme (35) meets the above requirements. To see this, let us
first consider the incentives it provides to the second jurisdiction. Observe that an increase
in e2 augments K2 which in turn changes the subsidy rate through two channels. First,
since τ∗2 (K2,K1) is a decreasing function of K2, an increase in K2 leads to a decrease in
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(a) Time-paths of investment (b) Time-paths of capital accumulation

(c) Time-paths of subsidization

Figure 3: Carrot and stick policy with complementarity (parameter values: p0 = 0, p1 = 50, p2 =
50, p3 = −1.525, p4 = 1.5, p5 = −1.525, r = 1/10, c1 = 0, c2 = 10, δ = 0.275, K10 = 90 = K∞1 ,K20 =
0)

τ∗2 (K2,K1). Second, due to feedback complementarity (see 36) an increase in K2 also provides
Jurisdiction 1 with an incentive to increase its investment in order to augment K1 – But since
τ∗2 (K2,K1) is an increasing function of K1, this strategic move leads to an increase in the
subsidy rate. In the chosen example, the second positive effect dominates the first negative
effect implying that Jurisdiction 2 is incited to invest more.

Incentives faced by Jurisdiction 1 are much more elaborated. Observe that an increase in
its investment also has two opposite effects. Yet, which one prevails depends on the relative
importance of the stocks, i.e. on the current state of the system. At a neighborhood of the
initial conditions, with a large K10 and a small K20, the negative effect prevails and gives
Jurisdiction 1 the incentive to reduce its investment. Note that τ∗1 (K10,K20) is negative: this
is a situation with complementarity (p4 > 0) which illustrates Proposition 4.

This leads to the required initial reduction in the gap between the two stocks. As the rival
stock K2 increases, the positive effect soon dominates and τ∗1 (K1,K2) turns into a subsidy
which gives Jurisdiction 1 the incentive to invest more.

6.2 An example where stocks are substitute

Finally, Figures 5 and 6 illustrate a situation in which stocks are substitute (p4 < 0). For the
chosen numerical values, the optimal pigovian scheme is:

τ∗i (Ki,Kj) = 104.926− 1.3549 Ki − 1.7409 Kj . (37)
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(a) Time-paths of capital accumulation (b) ∆Ki(t) = Ki(t)− K̂i(t)

Figure 4: Differences in capital stocks with complementarity (parameter values: see Figure 3)

Observe that τ∗i (Ki,Kj) is now decreasing in both arguments. Furthermore, as in the previous
cases, jurisdictions are not always subsidized. For sufficiently large stocks of green infrastruc-
ture (and especially a large rival stock) the optimal corrective instrument is negative, implying
a tax on investment.

Optimal time-paths of investment now are

ei (Ki,Kj) = 20.5688− 0.181696 Ki − 0.342131 Kj , (38)

and are decreasing functions of the rival stock. A property that could have been anticipated
from Proposition 5 since the chosen parameter values satisfy Assumption 2.

The graphical comparison of regulated and unregulated time-paths of investment reveals
that:

• Jurisdiction 1 underinvests for the whole planning horizon whereas Jurisdiction 2 should
initially reduce its investment effort (roughly, until t = 24) and resume its investment
effort afterward (See Figures 5(a) and 6(b)).

• the gap between the stocks should initially be increased (Figure 6(a)) to fully exploit
their substitutability which implies an increase of K1 and a reduction followed by an
increase of K2.

Let us now turn to the incentive properties of the optimal corrective instrument. Fur-
thermore, let us focus our attention on the complex mix of incentives it should provide to
Jurisdiction 2. At the beginning of the planning period, τ∗2 (K2,K1) is negative which implies
that Jurisdiction 2 faces a tax. This stems from the fact that Jurisdiction 2 should initially
reduce its investment. Ceteris paribus, such a reduction would lead to a reduction of K2 which
in turns would bring about a decrease of τ∗2 (K2,K1). Also the reduction of K2 increases e1

and K1 (because of strategic feedback substitutability) and decrease τ∗2 (K2,K1). At the initial
state of the system, the second effect dominates; the scheme is a tax that reduces when e2

reduces. Yet, if this jurisdiction is taxed at early dates, it becomes subsidized long before
t = 24. Still, despite this subsidization Jurisdiction 2 is correctly induced to lower its invest-
ments until t ' 24, because at the prevailing states of the system the subsidy is a decreasing
function of e2. As in Benchekroun and Van Long (1998) the sign of the instrument - negative
for a tax, positive for a subsidy- in a dynamic context is relatively unrelated to the immediate
goals of reducing or increasing the incentives. Instead, what matters is whether the scheme
is a decreasing or an increasing function of the efforts.
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(a) Time-paths of investment (b) Time-paths of capital accumulation

(c) Time-paths of subsidization

Figure 5: Carrot and stick policy with substitutability (parameter values: p0 = 0, p1 = 75, p2 =
65, p3 = −1, p4 = −1.25, p5 = −1, r = 1/10, c1 = 1, c2 = 8, δ = 0.225, K10 = 48,K20 = 22)

(a) Time-paths of capital accumulation (b) ∆Ki(t) = Ki(t)− K̂i(t)

Figure 6: Differences in capital stocks with substitutability (parameter values: see Figure 5)

And the gap is correctly increased with the large initial stock jurisdiction being encouraged
to invest more while the low initial stock jurisdiction being further induced to decrease its
investment before being encouraged to invest.

7 Conclusion

This paper complements earlier contributions on price-based policies in a dynamic setting by
investigating how differences in initial conditions alter the dynamic properties of the opti-
mal tax or subsidy policy. Specifically, we concentrate on a model of competition in public
infrastructure between two jurisdictions. Each jurisdiction invests over time in green infras-



16 G–2008–19 Les Cahiers du GERAD

tructure to provide environmental services to its own residents. However, once supplied, it is
supposedly impossible to exclude the residents of the other jurisdiction from the consumption
of these environmental services. We assume that the two jurisdictions are identical in all
respects except (perhaps) their initial stocks of green infrastructure capital. As is well known,
this is a dynamic type of heterogeneity that disappears in the long run. Consequently, at
the steady state, usual intuitions from static settings apply. Due to the presence of posi-
tive interjurisdictional spillovers, both jurisdictions will inefficiently under-invest, which calls
for the implementation of a green capital subsidization scheme. In the short run, however,
counterintuitive properties are established:

i) the pigovian scheme is not necessarily a subsidy. This finding confirms that the sign of the
instrument, negative for a tax, positive for a subsidy, in a dynamic context is relatively
unrelated to the immediate goals of reducing or increasing the incentives. Intuitions
gained from static settings cannot be transposed into dynamic frameworks without care;
important qualifications are often required. For instance in situations where the goal
is to encourage investments, to some extent it does not matter whether the incentive
instrument is a tax rather than a subsidy, provided that the tax is a decreasing function
of the investment.

ii) One jurisdiction can be temporarily taxed, even though at those taxation dates its in-
vestments should be increased, whereas the other is subsidized. It is shown how these
phenomena are related to initial conditions and to the kind of technological link be-
tween stocks of infrastructure (complementarity or substitutability). Put differently,
initial conditions can be important drivers for the qualifications alluded to above.

A follow-up research of the present analysis would be to investigate the pigouvian regulation
of infrastructure competition when public capitals generate negative externalities. One may
expect in this context that, despite the needs to discourage non cooperative investments, one
jurisdiction might be subsidized at early dates.

Appendices

A Optimal time-paths of investment

In this appendix we characterize the socially optimal time-paths of investment in public
infrastructure. From the theory of differential equations, solutions to the system of differential
equations (12) are of the form

K1 = α1e
ρ1t + β1e

ρ2t + K∞, (39)
K2 = α2e

ρ1t + β2e
ρ2t + K∞. (40)

where the parameters α1, α2, β1, β2 are constant coefficients to be determined. Differentiating
(39) and (40) with respect to time yields

K̇1 = α1ρ1e
ρ1t + β1ρ2e

ρ2t, (41)

K̇2 = α2ρ1e
ρ1t + β2ρ2e

ρ2t. (42)

Also, we know that when optimal time-paths of public expenditure exist, they can be written
in feedback form as

ei(t) = φ1 + φ2Ki(t) + φ3Kj(t), ∀i(i 6= j) = 1, 2. (43)
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Substituting these strategies into the Nerlove-Arrow equations yields an alternative (feedback)
representation of optimal capital stock trajectories:

K̇1 = (φ2 − δ)K1 + φ3K2 + φ1, (44)

K̇2 = φ3K1 + (φ2 − δ)K2 + φ1. (45)

This system can be rewritten in matrix form as K̇ = BK+h. The coefficient matrix B admits
two distinct real roots:

ρ1 = φ2 − δ − φ3, (46)

ρ2 = φ2 − δ + φ3. (47)

We are now in a position to determine the values of the coefficients {α1, α2, β1, β2} by
identifying equations (39) and (40) with (44) and (45). From (44) we know that φ3K2 =
K̇1 − (φ2 − δ)K1 − φ1. Plugging (39) and (41) into this expression, and rearranging terms
yields:

φ3K2 = α1(ρ1 − (φ2 − δ))eρ1t + β1(ρ2 − (φ2 − δ))eρ2t − (φ2 − δ)K∞ − φ1. (48)

Now, from (46) and (47) we know that (ρ1 − (φ2 − δ)) = −φ3 and (ρ2 − (φ2 − δ)) = φ3.
Plugging this into (48) and rearranging terms yields

K2 = −α1e
ρ1t + β1e

ρ2t − φ−1
3 ((φ2 − δ)K∞ + φ1) , (49)

By identification of (39) and (49), it comes that α1 = −α2 = α, β2 = β1 = β and K∞ =
−φ1/(φ3+φ2−δ). From (46) and (47), it comes that φ2 = (ρ1+ρ2+2δ)/2 and φ3 = (ρ2−ρ1)/2.
Plugging this in K∞ yields φ1 = −ρ2K

∞. Now,let us denote ∆Ki(t) = Ki(t)−K∞. Observe
that K1(0) = α1 +β1 +K∞ and K2(0) = α2 +β2 +K∞ so that we have a system of equation

α + β = ∆K1(0), (50)
β − α = ∆K2(0), (51)

which can be solved to get the values of the coefficients α and β :

α =
1
2
(∆K1(0)−∆K2(0)) =

1
2
(K0

1 −K0
2 ), (52)

β =
1
2
(∆K1(0) + ∆K2(0)) =

1
2
(K0

1 + K0
2 − 2K∞). (53)

Substituting α for α1, −α for α2 and β for β1 and β2 into (39) and (40) yields Equations (20)
and (21). Finally, Equations (16) and (17) easily follow from Equation (2) by observing that
ei = K̇i + δKi yields

e1 = α(δ + ρ1)eρ1t + β(δ + ρ2)eρ2t + δK∞, (54)

e2 = −α(δ + ρ1)eρ1t + β(δ + ρ2)eρ2t + δK∞. (55)

B Optimal tax/subsidy policy

Let us recall that Jurisdiction i’s optimal time-path of investment in public infrastructure
is given by (54). Plugging ec

1 into the short-run equilibrium condition (28) and rearranging
terms yields

µi = v1 + v2αeρ1t + v3βeρ2t, (56)
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where v1 = −m + c1 + (δc2 − n− q) K∞, v2 = −n + q + c2 (δ + ρ1) and v3 = −(n + q) +
c2 (δ + ρ2). Differentiating (56) with respect to time, we get

µ̇i = v2 α ρ1 eρ1t + v3 β ρ2 eρ2t. (57)

Using Equation (57) to eliminate µ̇i from Equation (29), solving for σi and rearranging terms
yields

σi = w1 + w2αeρ1t + w3βeρ2t, (58)

where

w1 = − 1
φ3

(p1 + K∞ (n δ + p3 + p4)− (r + δ) v1) , (59)

w2 =
1
φ3

((p4 − p3) + v2 (r + δ − ρ1)− n (δ + ρ1)) , (60)

w3 = − 1
φ3

((p3 + p4)− v3 (r + δ − ρ2) + n (δ + ρ2)) . (61)

Finally, using Equation (58) to eliminate σi from (30) yields

σ̇i = z1 + z2αeρ1t + z3βeρ2t (62)

with

z1 = p2 + K∞ (q δ + p4 + p5)− w1 (r + δ − φ2) , (63)

z2 = (p4 − p5) + q (δ + ρ1) + w2 (−r − δ + ρ1 + φ2) , (64)

z3 = (p4 + p5) + q (δ + ρ2) + w3 (−r − δ + ρ2 + φ2) . (65)

We now replace the coefficients w1,w2,w3 and v1, v2, v3 by their respective values into Equa-
tions (63)–(65) to get

z1 =
1
φ3

[((r + δ) (m− c1) + p1) (r + δ − φ2) + p2 φ3] + K∞ (q δ + p4 + p5) (66)

+
K∞

φ3
[((n + q) r + (2 n + q) δ − δ (r + δ) c2 + p3 + p4) (r + δ − φ2)] (67)

z2 =
X

φ3
(− (q (r + δ)) + n (r + 2 δ) + p3 − p4 + q ρ1 − c2 (r + δ − ρ1) (δ + ρ1)) (68)

+ [(p4 − p5) + q (δ + ρ1)] , (69)

z3 =
Y

φ3
((n + q) r + (2 n + q) δ + p3 + p4 − q ρ2 − c2 (r + δ − ρ2) (δ + ρ2)) (70)

+ [(p4 + p5) + q (δ + ρ2)] , (71)

where

X = (r + δ − ρ1 − φ2), (72)
Y = (r + δ − ρ2 − φ2). (73)

Finally, we solve the algebraic system {z1 = 0, z2 = 0, z3 = 0} for the parameters
{m, n, q}. After tedious but straightforward manipulations, one obtains expressions (32)–
(34).
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C Qualitative properties

C.1 Analysis of ∂τi/∂Kj and of Regulated best response functions

In order to establish the link between the sign of p4 and that of ∂τi/∂Kj , recall that

q∗ =
(4 p5 − c2 (2 r − ρ1 − 3ρ2) (2 r − 3 ρ1 − ρ2)) (ρ1 − ρ2) + 8 p4 (−r + ρ1 + ρ2)

4 (r − ρ1 − ρ2) (2 (r + δ)− ρ1 − ρ2)
.

Note that the denominator is positive since both ρ1 and ρ2 are negative. Hence, the sign of
q∗ is the same as the sign of its numerator:

Num(q∗) = (4 p5 − c2 (2 r − ρ1 − 3ρ2) (2 r − 3 ρ1 − ρ2)) (ρ1 − ρ2)+8 p4 (−r + ρ1 + ρ2) (74)

From the characteristic equation (15) and along with the fact that only its negative roots (18)
and (19) are admissible, we have:

2p4 = −(p3 + p5) + (r + δ − ρ1)(δ + ρ1)c2, (75)

and
− 2p4 = −(p3 + p5) + (r + δ − ρ2)(δ + ρ2)c2. (76)

Plugging (75) and (76) into equation (74) yields two alternative expressions for Num(q∗).
Adding these two expressions and rearranging terms, we obtain

Num(q∗) = −(ρ1 − ρ2)(c2ρ
2
1 + 6c2ρ1ρ2 − 4c2rρ1 + c2ρ

2
2 + 2c2r

2 − 4p5 − 4c2rρ2) (77)

Because ρ1 and ρ2 are negative the term between the second bracket is positive. Thus
the sign of Num(q∗) depends only on the sign of ρ1 − ρ2. To complete the proof, from the
expressions (18) and (19) observe that:

• p4 > 0 implies (ρ1 − ρ2) < 0 and then from (77) q > 0,
• p4 < 0 implies (ρ1 − ρ2) > 0 and then from (77) q < 0.

Finally, from the last two equivalences along with expressions (22) and (23), one can easily
observe that the second part of Proposition 3 holds; i.e., sign (∂êi/∂Kj) = sign (p4).

C.2 Proof of Lemma 1

Observe that:

τ∗i (t)− τ∗j (t) = m∗ + n∗K∗
i (t) + q∗K∗

j (t)− (m∗ + n∗K∗
j (t) + q∗K∗

i (t))

= (n∗ − q∗)
(
K∗

i (t)−K∗
j (t)

)
. (78)

From (32) and (33), one obtains

n∗ − q∗ =
2 (p4 − p5) (r − 2ρ1)

(−2r + 3ρ1 + ρ2) (r + 2δ)
+ q∗

2 (r − 2ρ1) (δ + ρ1)
(−2r + 3ρ1 + ρ2) (r + 2δ)

.

From the above expression it is straightforward to see that

sign (n∗ − q∗) = −sign [(p4 − p5) + q∗ (δ + ρ1)] .

Now observe that sign (n∗ − q∗) < 0 if δ + ρ1 = 0. Using a continuity argument for cases
where δ+ρ1 is different from zero but small (Assumption A1) one also has sign (n∗ − q∗) < 0.
Hence, under Assumption 1 one has

K∗
i (t) > K∗

j (t) ⇐⇒ τ∗i (t) < τ∗j (t) .
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C.3 Proof of Lemma 2

From the proof of Lemma 1, recall that

sign (n∗ − q∗) = −sign [(p4 − p5) + q∗ (δ + ρ1)] .

Note that under Assumption 2 we have q∗ < 0, (δ + ρ1) > 0 and (p4 − p5) < 0. Hence we
have sign (n∗ − q∗) > 0 so that

K∗
i (t) > K∗

j (t) ⇐⇒ τ∗i (t) > τ∗j (t) .
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