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Abstract

This paper deals with the stabilization of the class of continuous-time systems. A state
feedback controller with delayed states is used to stabilize this class of systems. The time
delay is assumed to be time-varying and differentiable with respect to time with finite
bound, not necessary less one, and appear in the state. Delay-dependent sufficient con-
ditions on stabilizability are developed. These conditions use some weighting matrices to
reduce the conservatism. A design algorithm for a state feedback controller which guar-
antees that the closed-loop dynamics will be stable is proposed in terms of the solutions
to linear matrix inequalities.

Key Words: Delayed systems, Linear matrix inequality (LMI), Delayed input, Stabi-
lizability, State feedback.

Résumé

Cet article traite de la stabilisation de la classe des systèmes continus. Un contrôleur
de type retour d’état avec retard est utilisé pour stabiliser cette classe de système. Le
retard est supposé être variant dans le temps et différentiable par rapport au temps, borné
par une valeur non nécessairement égal à 1. Des conditions suffisantes dépendantes du
retard pour la stabilisation sont développées. Ces conditions utilisent certaines matrices
de poids pour réduire le conservatisme. Un algorithme de design du contrôleur de type
retour d’état est proposé sous le formalisme des inégalités matricielles linéaires.
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1 Introduction

Time delays are often encountered in practical systems and it is well known that their exis-

tence in the dynamics is one of the causes of instability and poor performance degradation.

Therefore, analysis and synthesis of systems with time-delay have been and continue to be a

hot subject of research. Systems with time-delay have attracted researchers from mathemat-

ics and control communities. In the literature, we can find different results on deterministic

and stochastic systems with time-delay. For stochastic systems with time-delay, we refer the

reader to Mahmoud et al. [8], Boukas and Liu [1, 3, 2] Boukas et al. [6], Shi and Boukas [10],

Cao and Lam [5] and the references therein. For deterministic systems, we refer reader to He

et al. [7], Chen and Zheng [4] and the references therein.

More recently, we witnessed the development of a new approach for the study of delay-

dependent stability conditions by introducing some free weighting matrices to express the

links between the terms in the Leibnitz-Newton formula (see Chen and Zheng [4], He et al.

[7] and the references therein). This approach has shown less conservatism compared to the

other ones that have been proposed in the past. All the results reported in the literature

dealt with the stability problem and the one of stabilization (using free weighting matrices)

remains an open problem.

More often when controlling linear time-invariant systems delay may occurs which may

cause some problems either in stability or performance degradation if the design phase doesn’t

take care of it. Such problems arise in network control systems which are becoming more used

in industry due to their advantages. They also pose new challenges since the time-delay is

always time-varying and may in some circumstances be random.

This paper deals with the stabilization of the class of continuous-time systems via delayed

states. The time delay is assumed to be time-varying and differentiable with respect to time

with finite bound, not necessary less one, and appear in the state. To the best of our knowledge

this class of systems has not been fully studied. In terms of a set of linear matrix inequalities

(LMIs), we present first a delay-dependent sufficient condition, which guarantees stability of

the closed-loop systems with a fixed controller gain. Then, based on this, a delay-dependent

sufficient condition for the existence of a state feedback controller ensuring stability of the

closed-loop dynamics is proposed. Finally, a numerical example is provided to demonstrate the

effectiveness of the proposed methods. Some appropriate weighting matrices are introduced

in this paper to reduce the conservatism as it will be shown by the proposed example.

The rest of this paper is organized as follows. In Section 2, the problem is stated and

the goal of the paper is clarified. In Section 3, the main results are given and they include

results on stability for a fixed controller gain and stabilizability. A delayed state feedback

controller is used in this paper and a design algorithm in terms of the solutions to linear

matrix inequalities is proposed to synthesize the controller gain we are using.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional

Euclidean space and the set of all n × m real matrices. The superscript “T” denotes matrix

transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric

matrices, means that X − Y is positive semi-definite (respectively, positive definite). I is the

identity matrices with compatible dimensions. L2 is the space of integral vector over [0,∞)
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(L2[−h, 0]
∆
={f(·)|

∫
∞

0 f⊤(t)f(t)dt < ∞}). ‖·‖ will refer to the Euclidean vector norm whereas

‖ · ‖ denotes the L2-norm over [0,∞) defined as ‖f‖2 =
∫
∞

0 fT (t)f(t) dt. We will use ⋆ as an

ellipsis for terms that are introduced by symmetric in the LMIs.

2 Problem statement

Consider a continuous-time system with the following dynamics:

{
ẋ(t) = Ax(t) + Bu(t),

x(0) = x0

(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input system, A and B are

known real matrices with appropriate dimensions,

In this paper we are interested in the design of a stabilizing controller of the following

form:

u(t) = Kx(t − d(t)) (2)

where K is a design parameter that has to be determined and d(t) > 0 represents the system

delay that will be assumed to satisfy 0 ≤ d(t) ≤ h, ḋ(t) ≤ µ < ∞.

Remark 2.1 As it was said in the introduction, this class of systems is of great importance

mainly in network control systems where a linear system is controlled via a network that will

introduce a time-varying delay and therefore, this case can be brought to the case of the class

of systems we are dealing with in this paper.

Plugging the controller expression (2) in (1) we get the following closed-loop dynamics:

{
ẋ(t) = Ax(t) + Adx(t − d(t))

x(s) = φ(s),−h ≤ s ≤ 0
(3)

where Ad = BK and φ(.) is the initial conditions such that x(s) = φ(s) ∈ L2[−h, 0].

This paper studies the stabilizability of the class of systems (1). Our goal is to design a

state feedback controller guaranteing that the closed-loop is stable using some appropriate

weighting matrices to reduce the conservatism. In the rest of this paper, we will assume that

all the required assumptions are satisfied, i.e. the complete access to the system state. The

conditions we will develop here are in terms of the solutions to linear matrix inequalities that

can be easily obtained using LMI control toolbox. These conditions are delay-dependent,

which makes them less conservative. And the fact to use the weighting matrices will reduce

more the conservatism as it was shown in many studies (see He et al. [7, 4] and the references

therein).

Lemma 2.1 For any symmetric and positive-definite matrix P and a time-varying delay

h > d(t) > 0, if there exists a differentiable vector function x(t) with appropriate dimensions
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such that the integrals
∫

t

t−h
ẋ⊤(s)Pẋ(s)ds and

∫
t

t−d(t) ẋ(s)ds are well defined, then we have:

[∫
t

t−d(t)
ẋ(s)ds

]⊤
P

[∫
t

t−d(t)
ẋ(s)ds

]

≤ h

∫
t

t−d(t)
ẋ⊤(s)Pẋ(s)ds ≤ h

∫
t

t−h

ẋ⊤(s)Pẋ(s)ds

3 Main results

The aim of this chapter as it was presented earlier is to design a stabilizing state feedback of

the form (2) for the class of systems (1). To reach this goal, we need firstly to establish the

results that assure that the system (3) is stable for a given gain K. Then, using these results

we will be able to design a controller of the form (2) that guarantees that the closed-loop will

be stable. The following theorem gives the results on the stability of the unforced system (1).

Theorem 3.1 System (3) is stable if there exist a symmetric and positive-definite matrix P ,

matrices W1, W2, W3 and symmetric and positive-definite matrices Q, R and S such that the

following LMI holds:

M =




M11 M12 M13 M14

⋆ M22 M23 M24

⋆ ⋆ M33 M34

⋆ ⋆ ⋆ M44


 < 0. (4)

where

M11 = A⊤P + P⊤A + Q + R − W1 − W⊤

1 + hA⊤SA,

M12 = W⊤

1 − W2 + PAd + hA⊤SAd, M13 = −W3, M14 = W⊤

1 ,

M22 = −(1 − µ)Q + W2 + W⊤

2 + hA⊤

d SAd, M23 = W3, M24 = W⊤

2 ,

M33 = −R, M34 = W⊤

3 , M44 = −
1

h
S.

Proof: To prove this theorem let us consider the following Lyapunov functional:

V (x(t)) = V1(x(t)) + V2(x(t)) + V3(x(t)) + V4(x(t))

where

V1(x(t)) = x⊤(t)Px(t),

V2(x(t)) =

∫
t

t−d(t)
x⊤(s)Qx(s)ds

V3(x(t)) =

∫
t

t−h

x⊤(s)Rx(s)ds,
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V4(x(t)) =

∫ 0

−h

∫
t

t+θ

ẋ⊤(s)Sẋ(s)dsdθ

with P > 0, Q > 0, R > 0 and S > 0.

The derivatives of these Lyapunov functionals with respect to time along the solution of

system (3) are given by:

V̇1(x(t)) = x⊤(t)
[
A⊤P + AP

]
x(t) + 2x⊤(t)PAdx(t − d(t))

V̇2(x(t)) = x⊤(t)Qx(t) − (1 − ḋ(t))x⊤(t − d(t))Qx(t − d(t))

≤ x⊤(t)Qx(t) − (1 − µ)x⊤(t − d(t))Qx(t − d(t))

V̇3(x(t)) = x⊤(t)Rx(t) − x⊤(t − h)Rx(t − h)

V̇4(x(t)) = hẋ⊤(t)Sẋ(t) −

∫
t

t−h

ẋ(s)Sẋ(s)ds

= x⊤(t)hA⊤SAx(t) + x⊤(t)hA⊤SAdx(t − d(t)) + x⊤(t − d(t))hA⊤

d SAx(t)

+x⊤(t − d(t))hA⊤

d SAdx(t − d(t)) −

(∫
t

t−d(t)
ẋ(s)ds

)⊤

S

(∫
t

t−d(t)
ẋ(s)ds

)

Notice that from Leibnitz-Newton formula, we have:

[Ψ(t, s)]⊤

[∫
t

t−d(t)
ẋ(s)ds − x(t) + x(t − d(t))

]
= 0

[∫
t

t−d(t)
ẋ(s)ds − x(t) + x(t − d(t))

]⊤
Ψ(t, s) = 0

with Ψ(t, s) = W1x(t) + W2x(t − d(t)) + W3x(t − h).

Using all these relations, we get:

V̇ (x(t)) ≤ x⊤(t)M11x(t) + x⊤(t)M12x(t − d(t))

+x⊤(t)M13x(t − h) + x⊤(t)M14

(∫
t

t−d(t) ẋ(s)ds
)

+x⊤(t − d(t))M⊤
12x(t) + x⊤(t − d(t))M22x(t − d(t))

+x⊤(t − d(t))M23x(t − h) + x⊤(t − d(t))M24

(∫
t

t−d(t) ẋ(s)ds
)

+x⊤(t − h)M⊤
13x(t) + x⊤(t − h)M⊤

23x(t − d(t))

+x⊤(t − h)M33x(t − h) + x⊤(t − h)M34

(∫
t

t−d(t) ẋ(s)ds
)

+
(∫

t

t−d(t) ẋ(s)ds
)⊤

M⊤
14x(t) +

(∫
t

t−d(t) ẋ(s)ds
)⊤

M⊤
24x(t − d(t))

+
(∫

t

t−d(t) ẋ(s)ds
)⊤

M⊤
34x(t − h) +

(∫
t

t−d(t) ẋ(s)ds
)⊤

M44

(∫
t

t−d(t) ẋ(s)ds
)

which can be rewritten as follows:

V̇ (x(t)) ≤ η⊤(t)Mη(t)
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where

η(t) =


x⊤(t) x⊤(t − d(t)) x⊤(t − h)

(∫
t

t−d(t)
ẋ(s)ds

)⊤


⊤

.

Using (4) and following similar steps as in [3], we can deduce that system (3) is stable.

This completes the proof. 2

Let us now concentrate on the design of a state feedback controller of the form (2) which

guarantees that the closed-loop system will be stable. For this purpose, using the results of

Theorem 3.1, the dynamics (3) will be stable if there exist a symmetric and positive-definite

matrix P , matrices W1, W2, W3 and symmetric and positive-definite matrices Q, R and S

such that the LMI (4) holds with Ad replaced by BK.

Firstly, notice that M̃ can be rewritten as follows:

M̃ =




M̃11 M̃12 M̃13 M̃14

⋆ M̃22 M̃23 M̃24

⋆ ⋆ M̃33 M̃34

⋆ ⋆ ⋆ M̃44


 +




A⊤

(BK)⊤

0
0


 [hS]

[
A BK 0 0

]

with

M̃11 = A⊤P + P⊤A + Q + R − W1 − W⊤

1 ,

M̃12 = W⊤

1 − W2 + PBK, M̃13 = −W3 M̃14 = W⊤

1 ,

M̃22 = −(1 − µ)Q + W2 + W⊤

2 M̃23 = W3, M̃24 = W⊤

2 ,

M̃33 = −R, M̃34 = W⊤

3 , M̃44 = −
1

h
S.

If the following holds:

hS < εP, ε > 0, (5)

M̃ can be rewritten as follows:

M̃ =




M̃11 M̃12 M̃13 M̃14 A⊤

⋆ M̃22 M̃23 M̃24 (BK)⊤

⋆ ⋆ M̃33 M̃34 0

⋆ ⋆ ⋆ M̃44 0
A BK 0 0 −1

ε
P−1




Let X = P−1. Pre- and post-multiply (5) respectively by X, we get:

hS̄ < εX, ε > 0,

where S̄ = XSX.

Let Y = KX, Q̄ = XQX, R̄ = XRX, W̄1 = XW1X, W̄2 = XW2X, W̄3 = XW3X.

Pre- and post-multiply M̃ respectively by diag (X,X,X,X, I), we get the following sufficient

condition for the design of the memoryless state feedback controller of the form (2).
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Theorem 3.2 Let ε be a given positive scalar. There exists a state feedback controller of the

form (2) such that the closed-loop system (1) is stable if there exist a symmetric and positive-

definite matrix X, matrices W̄1, W̄2, W̄3 and symmetric and positive-definite matrices Q̄, R̄

and S̄ such that the following set of coupled LMIs holds:

hS̄ < εX, ε > 0, (6)



M̄11 M̄12 M̄13 M̄14 XA⊤

⋆ M̄22 M̄23 M̄24 Y ⊤B⊤

⋆ ⋆ M̄33 M̄34 0
⋆ ⋆ ⋆ M̄44 0
⋆ ⋆ ⋆ ⋆ −1

ε
X




< 0. (7)

where

M̄11 = XA⊤ + AX + Q̄ + R̄ − W̄1 − W̄⊤

1 ,

M̄12 = W̄⊤

1 − W̄2 + BY, M̄13 = −W̄3, M̄14 = W̄⊤

1 ,

M̄22 = −(1 − µ)Q̄ + W̄2 + W̄⊤

2 M̄23 = W̄3, M̄24 = W̄⊤

2 ,

M̄33 = −R̄, M̄34 = W̄⊤

3 , M̄44 = −
1

h
S̄.

The stabilizing memoryless controller gain is given by K = Y X−1.

4 Numerical examples

To show the validness of our results let us consider linear time-invariant system with the

following data:

A =

[
0.0 1.0
0.0 −0.5

]
, B =

[
0.0
0.1

]
.

First of all notice that the matrix A of the system is stable. Fixing ε = 1, h = 5.25, µ = 0.2

and solving the LMIs (6)-(7), we get:

X =

[
6.3019 −0.9470
−0.9470 0.6258

]
, Y =

[
−0.9264 −0.0161

]
,

which gives K =
[
−0.1953 −0.3212

]
. The other matrices are not of importance to compute

the controller gain and we omit to give them.

Fixing now ε = 1, h = 5.25, µ = 2.2 and solving the LMIs (6)-(7), we get:

X =

[
6.4433 −0.9705
−0.9705 0.6499

]
, Y =

[
−0.9089 −0.0358

]
,

which gives K =
[
−0.1927 −0.3428

]
. The other matrices are not of importance to compute

the controller gain and we omit to give them.
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5 Conclusion

This paper dealt with the class of continuous-time linear systems. Results on stabilizability

with delayed state feedback controller are developed. The LMI framework is used to establish

the different results on stability and stabilizability. The conditions we established are delay-

dependent. The results we developed can easily be solved using any LMI toolbox in the

marketplace.
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