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Abstract

The AutoGraphiX system (AGX 1 and AGX 2) for interactive, and for several func-
tions automated, graph theory, discovers conjectures of algebraic or structural form.
In this paper, we focus on the later, i.e. families of extremal graphs for a series of
relations between pairs of graph invariants chosen among 20 selected ones. The form
of these relations generalizes that one of Nordhaus-Gaddum relations. There are 1520
cases, leading to 47 families of extremal graphs. They include many classical fami-
lies but also some apparently new ones (bags, bugs, . . . ). Five ways to exploit these
families of extremal graphs in order to enhance the performance of AutoGraphiX are
studied and illustrated by examples.

Key Words: AutoGraphiX, AGX, Graph invariant, Extremal graph, Conjecture,
VNS, Heuristic.

Résumé

Le système AutoGraphiX (AGX 1 et AGX 2) pour la théorie des graphes, interac-
tif et automatisé pour plusieurs de ses fonctions, découvre des conjectures algébriques
ou structurales. Dans cet article, on s’intéresse à ces dernières, c-à-d, aux familles
de graphes extrêmes pour une série de relations entre paires d’invariants graphiques
choisis parmi une sélection de 20 invariants. La forme de ces relations généralise
celle des relations de Nordhaus-Gaddum. Il y a 1520 cas, menant à 47 familles de
graphes extrêmes. On y trouve plusieurs familles classiques mais aussi quelques nou-
velles familles (paniers, bestioles, . . . ). Cinq façons d’exploiter ces familles de graphes
extrêmes dans le but d’accrôıtre les performances d’AutoGraphiX sont étudiées et il-
lustrées par des exemples.

Mots clés : AutoGraphiX, AGX, invariant graphique, graphe extrême, conjecture,
VNS, heuristique.
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1 Introduction

In the last section of a survey on Variable Neighborhood Search (VNS) [20], a list of desir-
able properties of metaheuristics is provided, spurred by a stimulating correspondence with
Fred Glover. The seventh and last property listed is Innovation: the metaheuristic should
suggest new types of applications, not merely new ways to solve well-known problems. The
possibility of such innovation in the domain of graph theory became clear in 1997, very
soon after the VNS metaheuristic was initiated [25]. Metaheuristics have long been used
to solve a variety of optimization problems on graphs e.g. find the clique or chromatic
numbers, maximum flows or multiflows and many others. Operations research problems
defined on graphs have also been extensively solved using various metaheuristics. However,
applications of metaheuristics to solve problems in graph theory itself, i.e. find conjectures,
refutations and proofs (or ideas of proofs) in that field had not yet been explored (although
man-machine theorem-proving and a priori generation of conjectures in graph theory to
be tested on potential counter-examples had attracted some attention, see e.g. [17, 18]).

The basic idea to do so was to consider extremal problems in graph theory as possibly
parametric mathematical programming problems of the form

min
G∈Gn

f(G) or max
G∈Gn

f(G)

where f(G) is some formula depending on one or more invariants of G (or quantities which
do not depend on the labeling of the vertices or edges of G), and Gn is the set of all graphs
on n vertices (the sets of all graphs with m edges, or with n vertices and m edges, and
others, can be considered also). Then these problems are solved by a generic heuristic
fitting in the VNS framework. Five types of problems were considered in order to evaluate
the potential of VNS in graph theory:

(a) Find a graph satisfying given constraints. Let i1(G), i2(G), . . . il(G) denote l invari-
ants of G and p1, p2, . . . pl values given to them. Consider the problem

min
G∈Gn

f(G) =

l
∑

k=1

|ik(G) − pk|.

Any graph such that f(G) = 0 satisfies these constraints. Note that constraints
involving formulae on several invariants can be treated in a similar way. Note also
that using min and max operators, lower and upper bounds on individual invariants
as well as formulae on several invariants can be treated in a similar way.

(b) Find optimal or near-optimal values for an invariant possibly subject to constraints.
Let i0(G) denote the objective function invariant and assume constraints expressed
as above. Consider the problem

min
G∈Gn

f(G) = i0(G) + M

k=l
∑

k=1

|ik(G) − pk|
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where M is a constant sufficiently large to ensure that for any pair of graphs G,G′ ∈
Gn such that

∑k=l
k=1 |ik(G) − pk| = 0 and

∑k=l
k=1 |ik(G′) − pk| > 0, f(G) < f(G′).

Maximum values are tackled in a similar way.

(c) Refute a conjecture: Consider a conjecture h(G) ≤ g(G) where h(G) and g(G) are
formulae depending on one or more invariants of G. Then solve the problem

min
G∈Gn

f(G) = g(G) − h(G).

If a graph G for which f(G) < 0 is found, the conjecture is refuted.

(d) Suggest a conjecture (or sharpen one, or repair a refuted one): This can be done
in various ways, which usually use parameterization on n or other invariants i1(G),
i2(G), . . . il(G). For instance, consider

min
G∈Gn

f(G) = i2(G) − i1(G).

If no graph G with f(G) < 0 is found this suggests i1(G) ≤ i2(G). If the extremal
graphs found belong to a recognizable class, it may be possible to deduce a more
precise inequality in i1(G), i2(G) and n. This can be done in several ways, see below.

(e) Suggest a proof: Depending on the way the extremal graphs are obtained, i.e., what
transformations of G are used, may suggest ways to prove conjectures by showing
that all graphs admit such transformations which improve the objective function
value.

As explained below, automated proofs of many simple relations between graph invariants
can also be found by exploiting the fact that certain families of graphs are simultaneously
extremal for several invariants.

These problems were addressed with two successive versions of the system AutoGraphiX
(AGX): AXG 1 [12, 13] and AGX 2 [3].

The generic heuristic, central to AGX 1 and AGX 2, fits in the standard VNS framework
[20, 25]. It first uses a variable neighborhood descent component to find a local optimum;
to that effect a series of graph transformations, e.g. rotation, addition or removal of an
edge, as well as more complex moves such as detour, short-cut, 2–opt move and the like
are used in AGX 1 [12]; systematic consideration of all moves on subgraphs with up to
four vertices, together with reinforcement of beneficial ones is performed in AGX 2 [3].
Once a local optimum is attained a series of nested neighborhoods is defined by removal,
addition or move of k = 1, 2, 3, . . . edges. Following the VNS framework, a graph is drawn
at random in the first neighborhood and a descent performed from there; the search is
recentered around the new local optimum attained if it is better than the current best
graph and otherwise a point is drawn from the next neighborhood (see [3, 12] for details).
Over thirty papers have been written since 1998 on AGX 1, AGX 2 and their applications.
Most of them, including the present one, belong to a series with the common title ”Variable
Neighborhood Search for Extremal Graphs”.
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When studying conjectures, once AGX has generated a series of (presumably) extremal
graphs for the objective under study, the invariant values obtained are analyzed following
one or several of three ways [13]:

(a) a numerical method, which exploits the mathematics of principal component analysis
to find a basis of affine relations between graph invariants;

(b) a geometric method, which determines the convex hull of extremal graphs viewed as
points in invariant space; facets of this convex hull correspond to inequalities between
invariants;

(c) an algebraic method, which first recognizes the family of extremal graphs then substi-
tutes to the invariants in the objective, their expression in function of one parameter
(or more), usually the order n of the graph considered.

The first two approaches gives algebraic conjectures in the form of equality or inequality
relations among invariants respectively. Note that these relations may be nonlinear if well-
chosen expressions of invariants (e.g. square, square root, product . . . ) are added as new
invariants. The third approach first gives a structural conjecture on the family of extremal
graphs, then an algebraic conjecture after substitution of invariants and simplification.

All three methods can be completely automated. However, this implies, for the third
one a database of parametric expressions for invariants on relevant families of graphs. If
such a database is not available, these expressions can be computed by hand, usually in a
straightforward way. References can be found in a short recent survey paper [5].

Recognizing families of graphs, and generating them (possibly in function of some param-
eter(s)) are tasks required in various places of the AGX system, for several purposes. This
is the subject matter of the present paper. Recognition of extremal graphs and five ways
to use them are described in the next section and illustrated by examples. They bear upon
initialization of the optimization, automated proof of simple results, algebraic generation
of conjectures, refutation of conjectures and reparation of conjectures. Moreover, some
new families of graphs, which appear to be of interest, are presented. In Section 3, an atlas
of families of extremal graphs, generated in a large scale experimental study, is provided.
Brief conclusions are given in Section 4. In the appendix a table is given specifying for
each family of graphs considered the list of invariants for which it is extremal.

Recent applications of AGX focus upon relations of the form

bn(G) ≤ i1(G) ⊕ i2(G) ≤ bn(G) (1)

where G = (V,E) is a connected graph with vertex set V and edge set E, i1(G) and i2(G)
are graph invariants, ⊕ denotes one of the four operations +, −, × and /, f1(G) and f2(G)
are functions of n = |V | which are best possible, i.e., such that for each n (except possibly
for very small values for which there are border effects) there exist a graph G′ (respectively
G”) such that the lower (respectively upper) bound is attained. We call this form AGX
Form 1.
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Observe that it generalizes the well-known form of Nordhaus-Gaddum relations [26] in
two ways: first, different invariants i1(G) and i2(G) are considered instead of the same
invariant in the graph G and its complement Ḡ; second, in addition to the operations +
and ×, one considers − and /.

AGX Form 1 has several advantages:

(i) the relations obtained are sufficiently simple to be of interest;

(ii) the easiest of them can be proved automatically, either by observing that the relevant
families of extremal graphs for i1(G) and i2(G) have non-empty intersection, or by
simple algebraic manipulations;

(iii) they comprise some well-known results which are automatically rediscovered e.g. the
theorem, l̄(G) ≤ α(G) where l̄(G) denotes average distance between pairs of vertices
of G and α(G) the stability number, conjectured in WOW 2 [29] and proved by
Chung [14];

(iv) they improve upon some well-known conjectures e.g. WOW 127 [29], δ(G)l̄(G) ≤ n
where δ(G) denotes the minimum degree of G, now strengthened to δ(G)l̄(G) ≤ n−1
which is best possible and follows from a result of Beezer, Riegsecker and Smith [10];

(v) the difficulty of proving these relations goes all the way from the very easy to the
difficult and some apparently hard conjectures remain open.

In the thesis [1], AGX Form 1 has been studied for a series of 20 graph invariants. They
are defined in Table 1 and listed in Table 2 together with lower and upper bound on their
values as functions of n and the corresponding extremal graphs. This gives rise to 1520
cases. Results are presented in the 210 pages long Appendix to [1]. Quantitative results,
i.e., number of cases in which a bound is found and proved automatically, or proved by
hand, or found interactively, etc. . . . is briefly presented in [4]. This paper complement this
last one by presenting structural results, i.e., results one the families of extremal graphs
obtained.

2 Extremal Graphs in AGX

AGX 1 and AGX 2 do not only find extremal graphs, but also takes advantage of them in
various ways, including the five discussed in this section.

2.1 Initialization of the optimization

A study on the optimization process sensitivity, in AGX 1 and AGX 2, showed that, in
many cases, the choice of the initial graph influences considerably the results obtained. This
phenomenon appears, mainly, when the invariants considered in the objective functions
are integers, such as the minimum and maximum degree, the radius, the diameter and
the chromatic number. When the variation of some or all of the invariants under study
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is sensitive to any change in the graph, as in the case of average degree, average distance
and index, the choice of the initial graph influences less the optimization process.

Among strategies adopted to circumvent this difficulty, the two following ones exploit the
extremal graphs:

• The first strategy is interactive. The user chooses a graph among those defined in
AGX as an initial graph in the optimization process.

• The second strategy is automated. The system evaluates the objective function for
each graph in the list of extremal graphs available in AGX and selects as an initial
graph the best one.

A graph is defined in AutoGraphiX, if a routine to generate it is implemented. Presently,
about forty families, most of which are known or defined in Table 6, can be generated.
Some of them, such as a path, a star, a cycle and a complete graph, use one parameter

Table 1: Definitions of the 20 selected invariants

∆ The maximum degree. The degree of a vertex is the number of its neighbors.
δ The minimum degree.

d The average degree.

l The average distance between all pairs of vertices. The distance between two vertices is the length of a
shortest path between them.

D The diameter, the largest distance between pairs of vertices.
r The radius, the minimum eccentricity. The eccentricity of a vertex is the maximum distance from this

vertex to another one.
g The girth, the length of the smallest cycle in a graph.

ecc The average eccentricity.
π The proximity is the minimum normalized transmission. The transmission of a vertex in a graph, is the

sum of all distances between the vertex and other ones. It is said to be normalized if divided by n − 1,
where n is the order of the graph.

ρ The remoteness is the maximum normalized transmission.
λ1 The index (the spectral radius) is the largest eigenvalue of the adjacency matrix of a graph.

R The Randić index is defined by R =
P

1/
p

didj where the summation is on the set of all edges ij and
di denotes the degree of the vertex i.

a The algebraic connectivity, the second smallest eigenvalue of the Laplacian matrix L, that is defined by:
Lii = −di and Lij = aij(i 6= j) where di is the degree of the vertex i and A = (aij ) is the adjacency
matrix of the graph.

ν The vertex connectivity, minimum number of vertices of a connected graph the removal of which discon-
nects the graph or reduces it to a single vertex.

κ The edge connectivity, minimum number of vertices of a connected graph the removal of which discon-
nects the graph.

α The independence number, maximum cardinality of an independent set, i.e., a set of pairwise non
adjacent vertices.

β The domination number, minimum cardinality of a dominant set, i.e., a set of vertices such that each
vertex is in the set or adjacent to a vertex of the set.

ω The number of vertices in the largest clique in the graph.
χ The chromatic number, minimum number of colors to assign to the vertices such that two adjacent

vertices have different colors.
µ The matching number, the maximum number of disjoint edges.
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Table 2: Selected invariants together with lower and upper bounds for all connected graphs
with at least 3 vertices

Inv. Name Lower bound Extremal graphs Upper bound Extremal graphs

b(n) for b(n) b(n) for b(n)
∆ Maximum

degree
2 Pn, Cn n − 1 G with a dominat-

ing vertex (Kn, Sn,
. . .)

δ Minimum
degree

1 G with a pending
vertex (Tree, Pn,
Sn, . . .)

n − 1 Kn

d Average degree 2 − 2
n

Tree (Pn, Sn, . . .) n − 1 Kn

l Average
distance

1 Kn
n+1

3
Pn

D Diameter 1 Kn n − 1 Pn

r Radius 1 G with a dominat-
ing vertex (Kn, Sn,
. . .)

¨

n
2

˝

Pn, Cn, . . .

g Girth 3 G with a triangle
(Kn, . . .)

n Cn

ecc Average
eccentricity

1 Kn

3n+1
4

· n−1
n

if n is odd
3n−2

4
if n is even

Pn

π Proximity 1 G with a dominat-
ing vertex (Kn, Sn,
. . .)

n+1
4

if n is odd
n
4

+ n
4n−4

if n is even
Pn and Cn

ρ Remoteness 1 Kn
n
2

Pn

λ1 Index 2cos π
n+1

Pn n − 1 Kn

R Randić index
√

n − 1 Sn
n
2

G regular (Kn, Cn,
. . .)

a Algebraic
connectivity

2 − 2cos π
n

Pn n Kn

ν Node
connectivity

1 G with a cut vertex n − 1 Kn

κ Edge
connectivity

1 G with a cut edge n − 1 Kn

α Independence
number

1 Kn n − 1 Sn

β Domination
number

1 G with a dominat-
ing vertex (Kn, Sn,
. . .)

¨

n
2

˝

K⌈n
2
⌉ + ⌊n

2
⌋ dis-

joint pending edges

ω Clique number 2 Cn, Pn, Tree, . . . n Kn

χ Chromatic
number

2 G bipartite, (Tree,
Pn, . . .)

n Kn

µ Matching
number

1 Sn

¨

n
2

˝

Kn, Pn, Cn, . . .

(the order); others, such as a complete bipartite, double-star, a comet, a path-complete
graph and a bag, use two parameters (order and another invariant; size, maximum clique
number, independence number, maximum degree . . . ); still others, such as a double-comet
and a bug, use three parameters. Some routines generate random graphs such as bipartite
ones, trees and graphs with given density.
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Sorting graphs, by the value they give to the objective function, enables to start the
optimization with a graph near to the optimum. Moreover, as the number of observed
families of extremal graphs is moderate (at least for AGX Form 1), it is fairly frequent
that the selected graph is optimal for the chosen objective.

Example 1 When solving the problem of finding the upper bound and the extremal
graphs for the sum of average distance and average degree, l̄+ d̄, the selected initial graph,
for any value of the parameter n, is the complete graph. AGX 2 never improves this initial
solution and automatically states the conjecture.

Conjecture 1 For any connected graph on n ≥ 3 vertices we have

l̄ + d̄ ≤ n

with equality if and only if the graph is complete.

This is proved in [8].

Example 2 The complete graph was also found to be extremal for the upper bounds on
ω/R and χ/R, where ω, χ and R denote the clique number, the chromatic number and
the Randić index respectively. The corresponding results are as follows.

Conjecture 2 For any connected graph G on n ≥ 2 with chromatic number χ and Randić
index R,

χ ≤ 2R

with equality if and only if G is the complete graph Kn.

This conjecture is proved in [22]. The proof is five pages long and relies on the following
preliminary result: if v is a vertex of minimum degree in a graph G,

R(G) − R(G − v) ≥ 1

2

√

δ

∆

which appears to be of interest in its own right.

Conjecture 3 For any connected graph G on n ≥ 2 vertices with clique number ω and
Randić index R,

ω ≤ 2R

with equality if and only if G is the complete graph Kn.

Since ω ≤ χ for any graph, this conjecture is a corollary of Conjecture 2.
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Example 3 In a similar way, AutoGraphiX found that the star Sn is the extremal graph
for the upper bound on R/µ, where R and µ denote the Randić index and the matching
number respectively. The corresponding result is the following.

Conjecture 4 For any connected graph on n ≥ 2 vertices with Randić index R and match-
ing number µ,

R ≤ µ
√

n − 1

with equality if and only if G is the star Sn.

This conjecture is proved in [9].

2.2 Automated proof of simple results

AGX 2 contains a knowledge base of invariants. Each of its items represents a graph
invariant and contains the invariant name in the system, its name in the (graph theory)
literature, the upper and the lower bounding functions in terms of the order of the graph,
and a list of families of extremal graphs relevant to each bound. For example the objects
that represent the average degree and the diameter are summarized in Table 3 and Table 4,
respectively. The first three rows in each of these tables contain, respectively, the name, the
invariant symbol in AGX system and the most used notation of the invariant in the graph
theory literature. The fourth row contains, respectively the lower and upper bounds on
the invariant (average degree and diameter), functions of the order n of a graph. The last
row contains list of extremal graphs for which the (lower and upper) bounds are reached,
respectively.

Table 3: The average degree in the knowledge base

The average degree
AVDEG

d

2 − 2
n

. n − 1.

Tree: path, star, comet,. . . Complete graph, pineapple . . .

Table 4: The diameter in the knowledge base

The diameter
DIAMETER

D
1. n − 1.

Complete graph Path
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Let i1(G) and i2(G) denote two graph invariants, ⊕ (resp. ⊖) be one of the two operations
+ and × (resp.− and /). It is easy to see that

(i) Max (Min) i1(G) ⊕ i2(G) = Max (Min) i1(G) ⊕ Max (Min) i2(G) if and only if
both i1(G) and i2(G) are maximum (minimum) for a same (extremal) graph.

(ii) Max (Min) i1(G) ⊖ i2(G) = Max (Min) i1(G) ⊖ Min (Max) i2(G) if and only
if both i1(G) is maximum (minimum) and i2(G) is minimum (maximum) for a same
(extremal) graph.

Using (i) and (ii) as rules and taking two graph invariants chosen by the user, AGX 2 op-
erates on the knowledge base and tests if the intersection of the respective sets of families
of extremal graphs is empty or not. If it is empty, the optimization component is auto-
matically called to find the ”extremal” graphs. If the intersection is not empty, AGX 2
generates the corresponding result together with its proof. The result take the form of an
algebraic formula, that is a combination of the corresponding bounds, together with the
associated extremal graphs.

Example 4 Consider the invariants given in tables 3 and 4. The diameter reaches its
minimum for a complete graph with D = 1, and its maximum for a path with D = n − 1;
the average degree reaches its minimum for a tree with d̄ = 2 − 2

n , and its maximum for
a complete graph. In this case, AGX 2 applies the rule (ii) and generates the following
results together with their proofs.

Observation 1 For all connected graphs with at least 2 vertices with diameter D and
average degree d̄,

3 − n − 2

n
≤ d̄ − D ≤ n − 2.

Moreover, the lower (resp. upper) bound is reached if and only if the graph is a path (resp.
complete graph).

Observation 2 For all connected graphs with at least 2 vertices with diameter D and
average degree d̄,

(2 − 2

n
)/(n − 1) ≤ d̄/D ≤ n − 1.

Moreover, the lower (resp. upper) bound is reached if and only if the graph is a path (resp.
a complete graph).

For the pair of chosen invariants (D and d̄), the intersections of the sets of families of
extremal graphs for the sum and the product are empty. Thus AGX 2 uses its optimiza-
tion component (based on the VNS heuristic), and after recognizing the extremal graphs
generates automatically the following conjectures:
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Conjecture 5 For all connected graphs with at least 2 vertices with diameter D and av-
erage degree d̄,

4 − 2

n
≤ d̄ + D ≤ n + 1 − 2

n
Moreover, the lower (resp. upper) bound is reached if and only if the graph is a star (resp.
a path or a complete graph minus an edge, Kn − e).

Conjecture 6 For all connected graphs with at least n ≥ 2 vertices with diameter D and
average degree d̄,

D · d̄ ≥ 4 − 4

n
with equality if and only if the graph is a star. Moreover, the upper bound is reached if and
only if the graph is a bug.

Both Conjecture 5 and Conjecture 6 are true.

Proof of Conjecture 5

For the lower bound, if D = 1 the graph is complete and D + d̄ = n. If not, we have D ≥ 2
and d̄ ≥ 2− 2

n . Thus D + d̄ ≥ 4− 2
n with equality if and only if D = 2 and d̄ = 2− 2

n , i.e.,
the graph is a star.

For the upper bound, according to Harary [23], if the order n and the size m are fixed, the
diameter D is maximum for, among others, a path-complete graph PKn,m, composed of a
clique a disjoint path and one or more additional edges joining one endpoint of the path
each to a distinct vertex of the clique. We denote the diameter of PKn,m by Dn,m. So for
any graph of order n, size m and diameter D, we have

D + d̄ = D +
2m

n
≤ Dn,m +

2m

n
.

For PKn,m, let k denotes the number of edges between the path and the clique. Then

D + d̄ ≤ Dn,m + 2m
n

≤ Dn,m + 2
n(Dn,m − 2 + k + 1

2(n + 1 − Dn,m)(n − Dn,m))
≤ n + 1 + (D2

n,m − (n − 1)Dn,m + 2(k − 2))/n

This last expression is an increasing function in k, so it reaches its maximum for k = n−D.
Thus

D + d̄ ≤ n + 1 + 1
n(D2

n,m − (n − 1)Dn,m + 2(n − Dn,m − 2))

≤ n + 1 + 1
n(D2

n,m − (n + 1)Dn,m + 2(n − 2)).

This bound, as a function in D, reaches its maximum for D = 2 or D = n − 1. For both
these values, the expression is equal to n + 1− 2

n . It is then easy to see that this bound is
attained only for two graphs:

• a path Pn which corresponds to the case D = n − 1;

• a complete graph minus an edge Kn − e which corresponds to the case D = 2. 2
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Proof of Conjecture 6

The lower bound, as well as the characterization of the associated extremal graphs, on
D + d̄ is proved exactly like the lower bound of Conjecture 5. The structural part of the
conjecture follows from Theorem 4 of [23]. 2

2.3 Algebraic generation of conjectures

The first step in generating conjectures with AGX is to find extremal graphs, using the
VNS metaheuristic, and then try to find the algebraic relation (formula), between selected
invariants, that is satisfied by all graphs obtained. AutoGraphiX can find easily the for-
mula if it is linear, using algebraic properties of Principal Component Analysis [12, 13].
Sometimes we can get a relation even in the frequent case where it is not an affine one, by
using some device such as introducing a function of n (square, square root, inverse, . . . ).
Another way to circumvent this difficulty is to use the properties of the extremal graphs,
after their recognition by AGX 2. Usually, when a family of extremal graphs is well-defined
in function of some parameters, we can compute the relevant expressions for several in-
variants as functions of n. By substitution of the invariants in the objective function, we
can get the algebraic formula. To illustrate, consider the following conjecture.

Conjecture 7 For all connected graphs with at least n ≥ 3 vertices with index λ1 and
average degree d̄,

1 ≤ λ1/d̄ ≤ n

2
√

n − 1
.

The lower bound is attained if and only if the graph is regular, and the upper bound if and
only if the graph is a star.

The lower bound is obtained automatically by AGX 2; it is true and well-known [16]. The
upper bound is obtained interactively. After the optimization, one can easily see that the
extremal graphs for the upper bound are stars. Thus, using the fact that for a star of order
n, λ1 =

√
n − 1 and d̄ = 2− 2

n , we can get the formula of the upper bound. It is also true.

Proof of Conjecture 7

The lower bound is known [16].
The upper bound: In [24], Hong showed that λ1 ≤

√
2m − n + 1, therefore

λ1/d̄ = nλ1/(2m) ≤ n
√

2m − n + 1/(2m) = f(m)

Considering the last expression as a function of m we have ḟ(m) = n(n − 1 − m)/
(2m2

√
2m − n + 1) < 0 for m > n − 1. Then maxm≥n−1f(m) = f(n − 1) = n/(2

√
n − 1)

and this maximum is attained if and only if m = n− 1, i.e., if the graph is a tree. Finally
it is easy to see that among all trees λ1/d̄ = n/(2

√
n − 1) if and only if λ1 =

√
n − 1. It

is well known [16] that, for any tree T , λ1(T ) ≤
√

n − 1 with equality if and only if T is
the star Sn. Thus the result follows. 2
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Conjecture 8 For any connected graph with at least n ≥ 3 vertices with algebraic connec-
tivity a and clique number ω,

2 − n ≤ a − ω ≤ ⌊(1 − 1

⌊√n⌋ )n⌋ − ⌊
√

n⌋

The lower bound is attained if and only if the graph is a short kite Kiten,n−1. The upper
bound is attained if and only the graph is a complement of a Turan graph in which (the
complement) the size of each clique is almost the same and almost equal to the number of
cliques.

The lower bound is obtained automatically while the upper one is obtained by observing
the extremal graphs (multipartite graphs) and then using their properties to compute the
algebraic expression. This conjecture is proved in [27].

In order to render the algebraic method efficient three tasks have to be addressed:

(i) Recognize the family or families of extremal graphs to which the extremal graphs
belong.

(ii) Substitute formulae for the value of the invariants in the objective function on those
families.

(iii) Simplify.

The first task is easy and automated in AGX 2 for most families of extremal graphs. Indeed,
characterization of these families in terms of graph invariants, which AGX 2 computes very
rapidly, are readily available. To illustrate, D = 1 characterizes complete graphs; m = n−1
and D ≤ n characterizes trees; these last conditions and r = 1 characterizes stars; etc. . . .

The second task is also easy provided a database giving formulae for invariant values
on various families of graphs as functions of n are available. Such a database is partly
constructed and used in AGX 2. More precisely, formulae for almost all of the selected
invariants have been computed for the best known families of graphs such as complete
ones, paths, stars, cycles, etc. . . . Similar tables for new families of graphs (see below)
have also been obtained. AGX 2 itself can be used for that purpose as it computes very
quickly the numerical values of the selected invariants. However, for some invariants, such
as the index or the algebraic connectivity, no formulae can be obtained. Table 5 presents
formulae for the 20 selected invariants and several families of graphs.

The third task, i.e. simplification of algebraic formulae can be done by or with the help of
computer systems such as Matlab or Mathematica.

2.4 Refutation of conjectures

As explained in the introduction, a conjecture of the form h(G) ≤ g(G) can be refuted by
minimizing the function f(G) = g(G) − h(G), if a graph G such that f(G) < 0 is found.
AGX 2 can often find a counter-example provided there is one with a moderate number of
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vertices (say n ≤ 20). Otherwise one can test if the conjecture is refuted or not by one of
the families of graphs for which formulae giving the values of its invariants are available.
There is no need in this case to build these graphs explicitly. One only needs to check for
all values of n up to some large limit (say n=10000) if the conjecture holds or not. The
first procedure is illustrated by the following reformulation of Conjecture 834 of Graffiti
[29].

Conjecture 9 For any connected graph on n ≥ 2 vertices with minimum degree δ and
average distance l

(1 + δ) · l ≤ n.

This conjecture was refuted [11] using the AutoGraphiX system. The smallest counter-
example found is a graph composed by two triangles linked by a path with seven edges.
This graph belongs to a family of extremal graphs presented below.

The second procedure is illustrated by the study of the upper bound on the product of the
index λ1 and the girth g, using AutoGraphiX led to the following conjecture.

Conjecture 10 For any connected graph on n ≥ 3 vertices with index λ1 and finite girth g

λ1 · g ≤ 3(n − 1)

with equality if and only if G is the complete graph Kn.

Using a series of graph families to test the above conjecture, it turned out that it is refuted
by the turnips (graphs composed of a cycle and one or more pendent edges all incident
with the same vertex of the cycle) with large order. The smallest counter-example is the
turnip Tn,g on n = 52 vertices and girth g = 36. This conjecture is discussed in [1, 7].

2.5 Reparation of conjectures

In the previous subsection, the use of graph families for conjecture refutation was discussed.
At the end of this process and if the best counter-examples belong to a well defined family of
graphs one can often state a new conjecture. This is what is called conjecture reparation.
Note that the new conjecture, so obtained, may be structural as it is in the following
example.

The AutoGraphiX system generated the following conjecture.

Conjecture 11 For any connected graph G on n ≥ 3 vertices with average distance l and
finite girth g,

l

g
≥

{ n
4(n−1) if n is even,

n+1
4n if n is odd

with equality if and only if G is the cycle Cn.
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The optimization was over graphs of order from 3 to 20. Using a series of graph families
to test this conjecture for graphs of order n ≥ 21, counter-examples were found for n ≥ 31
and the corresponding graphs are again turnips. Using these new results Conjecture is
adjusted to

Conjecture 11’ Let G = (V,E) be a connected graph on n ≥ 3 vertices with average
distance l and finite girth g.

(i) If n ≤ 30, then
l

g
≥

{ n
4(n−1) if n is even,

n+1
4n if n is odd

with equality if and only if G is the cycle Cn.

(ii) If n ≥ 31, then l/g is minimum for some turnip Tn,g.

The above conjecture is discussed (but remains open) in [6]. The following table gives
some presumably optimal values for the girth g for 31 ≤ n ≤ 190.

n [31, 38] [39, 56] [57, 74] [75, 93] [94, 115] [116, 138] [139, 163] [164, 190]
g 15 17 19 21 23 25 27 29

The next conjecture was also tested using the families of extremal graphs.

Conjecture 12 For any connected graph on n ≥ 3 vertices with clique number ω and
minimum degree δ,

ω − δ ≥ 2 −
⌊n

2

⌋

with equality if and only if G is the balanced complete bipartite graph K⌊n
2 ⌋,⌈n

2 ⌉.

This conjecture was refuted and then repaired giving the following one, which is proved in
[27].

Conjecture 12’ For any connected graph on n ≥ 3 vertices with clique number ω and
minimum degree δ,

ω − δ ≥
⌊√

n
⌋

−
⌊(

1 − 1

⌊√n⌋

)

n

⌋

=
⌈√

n
⌉

−
⌊(

1 − 1

⌈√n⌉

)

n

⌋

The lower bound is best possible as shown by balanced complete multipartite graph T⌊√n⌋(n)

or T⌈√n⌉(n). The upper bound is attained if and only if G is the short kite KTn,n−1 or

K3.



16 G–2007–87 Les Cahiers du GERAD

2.6 Finding new families of graphs

As a by-product of the study of relations of AGX Form 1 between the 20 selected graph
invariants, several apparently new families of extremal graphs were obtained (It is likely
however that some graphs belonging to these families have appeared somewhere in the
vaste graph theory literature. We will be glad to learn about the first occurrences of any
of them).

Example 5 The difference between the index of a graph G and its average degree λ1−d,
introduced in [15], is known as the irregularity of G (so called as λ1 − d = 0 if and only
if G is a regular graph). The upper bound on the irregularity is studied using AGX 2.
Extremal graphs, i.e the most irregular ones, are those composed of a clique together
with some pending edges all incident to the same vertex from the clique. They are now
called pineapples and their family is added to the AGX 2 database of extremal graphs.
The associated conjecture, discussed in [2] and which remains open, is the following.

Conjecture 13 The most irregular connected graph on n (n ≥ 10) vertices is a pineapple
PA(n, q) in which the clique number was ω = q = ⌈n/2⌉ + 1.

Example 6 A bag Bagn,q is a graph obtained from a complete graph Kn−q by replacing
an edge uv by a path Pq. A bag is odd if q is odd, otherwise it is even. The bags, which
are now available in the system’s database, were obtained by AutoGraphiX as extremal
graphs for the lower bound on the ratio l/r and for the upper bounds on d · r and λ1 · r,
where l, r, d and λ1 denote respectively the average distance, the radius, the average degree
and the index of a graph. Note that these bounds remain open conjectures. Besides these
conjectures, the following theorem is proved in [21].

Theorem 1 Among all connected graphs on n vertices with radius r ≥ 3, the odd bag
Bagn,2r+3 maximizes the index λ1.

3 Some Families of Extremal Graphs

The families of extremal graphs issued of the automated comparison of graph invariants [1]
are listed in Table 6 below. The first column contains the notation (used in the literature
or suggested in this paper) for the graph, the second is for the name of the graph if any, and
in the last column the definition of the corresponding graph is given. Finally, in the last
column, the absolute frequency with which the graphs considered among the 1520 cases
studied are extremal is given. Note that the sum of values exceeds 1520 as for many cases
extremal graphs are not unique.

We observe that:

(i) The number of families is moderate, i.e. only 47.

(ii) Frequencies vary largely from 599 for the complete graph to 2 for graphs that contain
a triangle and with maximum degree 3.
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(iii) By far the most frequent families appear to be the classical simplest ones of graph
theory: complete graph (frequency = 599), path (324), star (281), cycle (148).

(iv) Some such graphs to which an edge has been added also appear to be frequent: short
kite (157), star with an additional edge (108).

(v) Another simple graph to which several pending edges are added is also frequent:
pineapple (100).

Table 6: The list of the extremal graphs

Symbol Name Definition Freq.

Kn Complete graph A graph on n vertices that contains all possible edges 599

Pn Path A graph with vertex set {v1, v2, · · · vn} and edge set
{vivi+1, i = 1, · · ·n − 1}

324

Cn Cycle A graph with vertex set {v1, v2, · · · vn} and edge set
{v1vn, vivi+1, i = 1, · · ·n − 1}

148

Sn Star A graph with vertex set {v1, v2, · · · vn} and edge set
{v1vi, i = 2, · · ·n}

281

Kp,q Complete bipartite
graph

A graph with vertex set {u1, u2, · · · up, v1, v2, · · · vq}
and edge set {uivj , 1 ≤ i ≤ p, 1 ≤ j ≤ q}

51

Kp1,···pk
Complete k-partite
graph

12

SKn,α Complete split graph A graph with vertex set
{u1, u2, · · · uα, v1, v2, · · · vn−α} and edge set
{uivj , 1 ≤ i ≤ p, 1 ≤ j ≤ q} ∪ {vivj : 1 ≤ i, j ≤ n −α}

46

PKn,m Path complete or
Soltes graph

For fixed integers n and m such that

n − 1 ≤ m ≤ n(n−1)
2

, let k and l the only integers

such that m = n − k + l +
k(k−1)

2
and 0 ≤ l ≤ k − 2.

PKn,m is obtained from a clique Kk and a path
Pn−k by adding l + 1 edges between Kk and one end
point of Pn−k

58

PKn,n Long lollipop A path complete graph with m = n 57

Kn − e Complete graph from which we delete an edge 46

Kn−1 + e Short kite A clique on n − 1 vertices with an additional pending
vertex

157

Sn + e A star to which we add an edge 108

Cn−1 + e Short lollipop A cycle on n − 1 vertices together with a pending
edge

36

TCn Triangulated cycle A cycle on n vertices plus an edge between two
vertices that have a common neighbor

17

COn,∆ Comet A star S∆ together with a path joined to a pending
vertex from the star

56

DCn,∆1,∆2
Double-comet Two stars S∆1

and S∆2
joined by a path 48

PCn,g Path cycle or lollipop A cycle Cg together with an appended path 12

UTn Triangulated unicyclic
graph

A connected graph that contains a triangle as its
unique cycle

21

RG Regular graph A graph where all the vertices have the same degree 12

TPT A graph composed of two triangles joined by a path 9

LC Long claw A graph composed of three paths with a common
extremity

39

G(n, n − 1) Graph with at least a dominating vertex (i.e. a
vertex which is adjacent to all other vertices

17



18 G–2007–87 Les Cahiers du GERAD

G(n, n − 1, 1) Graph with exactly one dominating vertex 22

G(n, n − 1, 1, 1) Graph with at least a dominating and a pending
vertex

76

TG(n, n − 1) Graph with at least a dominating vertex and
contains at least a triangle

28

TG3 Graph that contains a triangle and with maximum
degree 3

2

Tnpn,g Turnip A graph composed of a cycle Cg and n − g pending
edges all incident to the same vertex of Cg

14

Urn Urchin A clique on
˚

n
2

ˇ

vertices and
¨

n
2

˝

vertices adjacent
to the clique’s ones in a one-to-one mapping

47

PG A graph that contains at least one pending vertex 12

PTG A triangulated graph containing at least one pending
vertex

14

KeKn,p A graph composed of two cliques of almost equal size
joined by an edge

19

KKn,p A graph composed of two cliques of almost equal size
with a common vertex

66

KPKn,p,q A graph composed of two cliques joined by a path 14

Bagp,q Bag Graph obtained from a complete graph Kp by
replacing an edge uv with a path Pq (n = p + q − 2)

13

Bugp,q1,q2 Bug A graph obtained from a complete graph Kp by
deleting an edge uv and attaching paths Pq1 and Pq2

at u and v, respectively (n = p + q1 + q2)

26

RG Regular graph A regular bipartite graph 20

TRG Triangulated regular
graph

A triangulated regular graph 13

ComEn,p A complement of a set of disjoint edges 12

ComE
n,⌊n

2
⌋ A complement of a matching with

¨

n
2

˝

edges 23

ComMC A complement of a minimum (edge-vertex) covering 13

CTnn,n1,···np Connected Turan
graph

A set of p disjoint cliques, on n1, · · ·np vertices
respectively, together with p − 1 disjoint edges
joining between the cliques making the graph
connected, also known as a connected Turan graph

5

KTn,p A clique on n − p vertices together with p − 1 edges
connecting the p vertices that not belong to the clique

18

Catn Caterpillar A path with additional pending edges 56

Drn Dragon The graph obtained from a bag Bag4,3 and a path
Pn−5 by adding an edge between an end point of
Pn−5 and the vertex of degree 2 in Bag4,3

18

PAn,q Pineapple The graph obtained from a clique Kq by attaching
n − q vertices to one vertex in the clique

100

T Tree Connected graph without cycle 38

Kiten,q Kite The graph obtained from a clique Kq and a path
Pn−q by adding an edge between an endpoint of the
path and a vertex from the clique

43

Figure 1 contains the extremal graphs obtained when the automated comparison of graph
invariants was done, and which can be defined in terms of their order (number of vertices)
only. Figure 2 contains those can be defined using the order and one other parameter,
such as clique number (e.g. the kite), the size (e.g. the path complete graph or maximum
degree (e.g. the comet).
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K10 K10 − e K10 − M K10 − Cv

Tu10 K9 + e Ur10 C10

TC10 C9 + e S10 S+
10

P10 LC10 PK10,10 TPT10 Dr10

Figure 1: Graphs defined using only their order
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KK6,5 KeK5,5 ComE10,3 SK10,4

PK10,21 Kite10,7 Bag10 K5,5

Pine10,6 Tnp10,5 LLol10,7 Co10,7

Figure 2: Graphs defined using two parameters
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Bug10,2,2 KPK10,5,3 DC10,4,4

Figure 3: Graphs defined using more three parameters

Figure 3 contains the extremal graphs that need 3 parameters to be defined: the order
together with 2 other invariants. The bagn,p1,p2 is defined by its order n and the lengths
of its pending paths p1 and p2 respectively.

4 Conclusion

The AutoGraphiX system (AGX 1 and AGX 2) is a sophisticated tool for interactive graph
theory, many functions of which are already fully automated. In particular, it can be used
to obtain conjectures. These take the form of algebraic conjectures, i.e. algebraic inequal-
ity or sometimes equality relations between graph invariants, and structural conjectures,
i.e. conjectures about which families of graphs are extremal. Families of graphs which
happen to be extremal for various relations of graph invariants are of great interest. In
this paper, we report on families of extremal graphs obtained when studying relations of
AGX Form 1 between 20 selected invariants. We show how the use of these families can
enhance in 5 different ways the performance of AutoGraphiX system: initialization of the
optimization, automated proof of simple results, algebraic generation of conjectures, refu-
tation of conjectures, and reparation of conjectures. Finally, we describe several apparently
new families of graphs.

Appendix

In the following tables, which represent the interaction between the extremal graphs and
the invariants, we put m (resp. M) when the graph minimizes (resp. maximizes) the
invariant and s (resp. S) when the value of the invariant for the graph is at the second
smallest (resp. largest) possible value. The symbol s/m (resp. S/M) means that for the
corresponding graph the value of the invariant is the second smallest or the smallest (resp.
second largest or largest) value.
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∆ = n − 1 ∆ = n − 1, fr(∆) = 1 ∆ = n − 1, δ = 1 ∆ = n − 1, g = 3

δ = 1 δ = 1, g = 3 ∆ = δ, χ = 2 ∆ = δ, g = 3

∆ = δ m = n g = 3 ∆ = 3 g = 3 Cater

Kq + q × v CTu Tree

Figure 4: Graphs defined using their properties



Les Cahiers du GERAD G–2007–87 23

T
ab

le
7:

In
teraction

b
etw

een
ex

trem
al

grap
h
s

an
d

in
varian

ts

∆
δ

d
l

D
r

g
ecc

π
ρ

λ
1

R
a

ν
κ

α
β

ω
χ

µ

K
n

M
M

M
m

m
m

m
m

m
m

M
M

M
M

M
m

m
M

M
M

P
n

m
m

m
M

M
M

M
M

M
m

m
m

m
m

m
M

C
n

m
s

s
M

M
M

M
s

s
m

m
/
s

M
S

n
M

m
m

s
m

m
m

m
m

M
m

m
m

m
K

p
,q

s
s

s
m

m
K

p
1
,···p

k
s

s
m

S
K

n
,α

M
s

m
m

m
m

M
P

K
n

,m
M

P
K

n
,n

s
m

s
S

S
/
M

m
m

m
s

s
M

K
n
−

e
M

S
S

s
s

m
m

s
m

s
S

S
S

S
s

m
S

S
M

K
n
−

1
+

e
M

m
s

m
m

m
m

m
s

m
S

S
M

S
n

+
e

M
m

s
s

m
m

m
m

m
S

m
s

s
s

C
n
−

1
+

e
s

m
s

M
S

m
m

m
s/

m
M

T
C

n
s

s
S
/
M

m
s

s
s

s
M

C
O

n
,∆

m
m

m
m

m
m

D
C

n
,∆

1
,∆

2
m

m
m

m
m

m
P

C
n

,g
s

m
s

m
m

m
/
s

m
/
s

M
U

T
n

m
s

m
m

m
s

s
R

G
M

T
P

T
s

s
m

m
m

s
s

L
C

s
m

m
m

m
m

m
S
/
M

∆
=

n
−

1
M

s
m

m
m

!∆
=

n
−

1
M

s
m

m
m

∆
=

n
−

1
,δ

=
1

M
m

s
m

m
m

m
m



24 G–2007–87 Les Cahiers du GERAD

T
ab

le
8:

In
teraction

b
etw

een
ex

trem
al

grap
h
s

an
d

in
varian

ts

∆
δ

d
l

D
r

g
ecc

π
ρ

λ
1

R
a

ν
κ

α
β

ω
χ

µ

∆
=

n
−

1
,g

=
3

M
s

m
m

m
m

∆
=

g
=

3
s

m
T

n
p

n
,g

m
s

m
m

U
r
n

m
s

m
m

m
M

δ
=

1
m

m
m

δ
=

1
,g

=
3

m
m

m
m

K
p
eK

q
m

m
m

M
K

p
K

q
M

m
m

m
m

M
K

p
P

k
q

m
m

m
M

B
a
g

m
M

B
u
g

m
M

∆
=

δ,χ
=

2
M

m
m

∆
=

δ,g
=

3
m

M
Ē
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Extrémaux 26. Nouveaux Résultats sur la Maille. (French) Submitted.

[7] M. Aouchiche and P. Hansen, Recherche à Voisinage Variable de Graphes
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