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Abstract

We present a model that rapidly finds an approximation of the expected passenger
flow on an airline network, given forecast data concerning 1) the distribution of the
demand for each itinerary, seen as a random variable; 2) the time distribution of book-
ing requests for each itinerary; and 3) the proportion of spill (from an itinerary) that
is attracted to a given alternative itinerary. Solutions are found in a few seconds for a
30 000 itinerary network. Results differ from the expected passenger flow found by a
simulation by about 0.1% for load factors below 80%.

Résumé

Nous décrivons un modèle de flot de passagers pour réseaux aériens qui, étant
données des prévisions concernant 1) la demande pour chaque itinéraire, considérée
comme variable aléatoire, 2) la distribution dans le temps des requêtes de réservations
pour chaque itinéraire, 3) les proportions de débordement de chaque itinéraire vers tout
autre, fournit une approximation de l’espérance du nombre de passagers sur chaque
itinéraire et chaque vol. L’algorithme de résolution traite un réseau de 30 000 itinéraires
en quelques secondes. Pour des taux d’occupation de 80% et moins, l’espérance de flot
ainsi trouvée s’accorde avec celle fournie par une simulation extensive dans une marge
de 0,1%.





Les Cahiers du GERAD G–2007–80 1

1 Introduction

The huge problem of planning airline operations in order to maximize profit is currently
split into several decision problems. The first one, the flight schedule problem, consists in
deciding which flights to offer. The next problem is that of assigning an aircraft type to
each flight of a tentative flight schedule. That is the Fleet Assignment Problem (FAP).
Fleet assignment is subject to constraints arising from the airline’s fleet, flying regula-
tions, maintenance necessity, physical realizability, etc., while the objective of the FAP is
maximizing expected profit.

Airline companies are therefore interested in having a good estimate of the revenue they
may expect if they chose a particular FA for a given flight schedule. Clearly, the part of
this problem that deals with demand forecast and customer behavior belongs to the realm
of economics. We will instead be concerned here with the influence of the FAP decision
variables on the expected revenue, given such demand forecasts and customer behavior
description. That is, we model how the assignment of fleet types affects the placement of
passengers through capacity constraints.

Our model has the following main features:

1. It considers spill and recapture as occurring between itineraries, not flight legs;

2. It is stochastic, meaning that it takes stochastic demand prediction as inputs, and
aims at computing expected numbers of passengers on each itinerary;

3. It is temporal in nature, in the sense that it splits the booking period into time slices
and computes passenger placement one time slice after the other. That allows the
model to take into account the time distribution of the bookings for each itinerary;

4. It doesn’t assume airline control over passengers’ behavior.

To our knowledge, no other publicly available passenger flow model possesses all these
characteristics.

Old FAP models had a flight-based estimation of loss of revenue due to spill (passenger
loss due to capacity constraints) (Abara (1989), Subramanian et al. (1994)). The existence
of multi-flight itineraries causes flight-based spill models to ignore the dependency between
flights inherent to the spill phenomenon. The effects of this dependency are often referred
to as network effects; see Barnhart et al. (2002) for a detailed description.

In Phillips et al. (1991) an algorithm is presented that takes into account the fact that
the booking process leading to the placement of passengers unfolds during a period of
time, and that what happens at the end of it is influenced by what happened before. This
algorithm, however, considers the demand as static.

The Passenger Mix Model (PMM) of Barnhart and Kniker (see Barnhart et al. (2002),
Kniker (1998)) models passenger flow through a linear program whose objective is to find
the most profitable mix of passengers, assuming that the airline company has some control
on where (which itineraries) spilled passengers should be redirected.
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Jacobs, Smith and Johnson (Jacobs et al. (1999), Smith (2004)) integrate an OD revenue
management scheme into a FA solver. The underlying passenger flow model is a linear
program that respects the stochastic nature of the demand and that seeks the RM seat
allocation that maximizes the expected revenue.

Paper Organization. We give a detailed description of our problem in Section 2. We
describe our model in Section 3. Section 4 contains results of a test made on two large
networks. In Section 5, we discuss the flexibility of the model with respect to the demand
distribution, the possibility of integrating reservation levels in the model, and that of
integrating it with a FAP solver.

2 The Problem

In this section, we present our working hypotheses on the nature of the data that should
serve as inputs to the model, and on customers behavior. These do not constitute the
model. Rather, our model aims at computing a good estimation of the expected number of
passengers on each itinerary of a network, assuming that the hypotheses listed below hold.

2.1 Network

Consider a flight schedule that an airline company is planning to operate over a typical
period P (e.g., a week) in a season, and assume that aircraft types, and hence, capacities,
have been assigned to each flight.

We use the term itinerary to denote a physical itinerary, linking an origin to a destina-
tion through one or more flights, together with a fare class. A set I of possible itineraries
is offered to the customers.

We subdivide each flight into cabins corresponding to different fare classes, and call
them arcs. Hence, an itinerary is a set of arcs. We denote by A the set of all arcs, and
write a ∈ i to mean that arc a is part of itinerary i. Each arc a has a capacity capa. For
a given flight, arc capacities sum to the capacity of the aircraft type assigned to it. How
to integrate nested reservation levels in the problem, and in the model, is explained in
Subsection 5.2.

2.2 Demand

We assume that we have forecasts for the unconstrained demand Di for each itinerary
i ∈ I. This demand Di is assumed to follow a normal law, truncated at 0, of expectation
di and coefficient of variation cvi (so that it has variance (dicvi)

2).

It is known that small demands are better modeled by gamma or other non-Gaussian
probability laws (Swan (2002)). We will discuss the relaxation of this hypothesis in Sec-
tion 5.
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2.3 Synthetic booking process

Without loss of generality, the whole booking process may be assumed to unfold during the
time interval [0, 1]. Note that the mapping from the actual period of time to the interval
[0, 1] need not be linear; it may rather be such that the booking rate for low fare classes is
constant.

Time distribution of booking requests. Consider one occurrence of the typical period
P, for which the actual unconstrained demand δi for each itinerary i is determined. That
is, δi is an occurrence of the random variable Di. For each itinerary i, we have a function
bi : [0, 1] → R determining the rate at which the demand for i manifests itself: at time t,
this rate is

δi · bi(t).

We must have
∫ 1
0 bi(t)dt = 1. Moreover, we require the function bi to be piecewise constant

(to accommodate the model). These functions should reflect the typical time distribution
of bookings for the fare class of itinerary i.

Spill. When an arc is booked to its capacity, all itineraries containing this arc are closed
and the remaining demand for them is partly spilled to other itineraries, and partly lost. We
assume that the proportion of customers spilled from a blocked itinerary i to an alternative
itinerary j is a fixed number λj,i. We call it the spill coefficient from i to j. A non null
proportion of customers is lost, so that (

∑

j∈I λj,i) < 1.

If an alternative itinerary j is also closed, the spill is transfered to alternative itineraries
for j that are still open, and different from i. Such an itinerary k receives booking requests
from customers originally attracted to i at a rate of δi · bi(t) · λk,jλj,i. Spill is allowed to
be transfered in that manner no more than three times.

Typically, the spill coefficients will allow passengers to spill from some itinerary to
another one of the same class, or to the corresponding itinerary of a higher class.

Passengers. The total number of passengers (successful booking requests) on a given
itinerary is the integral, from 0 to the time it closed (or to 1 if it did not), of the booking
request rate.

2.4 Statement of the problem

Our problem is:

Given a transportation network (A,I) as described above, assuming customer behav-
ior governed by the synthetic booking process described above, and with given stochas-
tic demand forecasts, find the expected number of passengers on each itinerary.

Simulation. Solving this problem exactly is not feasible: one would have to integrate
large products of density functions over a huge number (on the order of |A|!) of subsets



4 G–2007–80 Les Cahiers du GERAD

of R
|I|. Hence, to evaluate the quality of our model’s solutions, we have implemented

an efficient simulation algorithm that computes the outcome of several occurrences of the
typical period P.

For each occurrence, it first randomly generates the demand for each itinerary, according
to the law it is assumed to follow. It initializes booking rates and finds which arc is due to
be full first, and when. It updates request rates according to the synthetic booking process
hypotheses and finds the next arc due to be full, and so on. Notice that the number of such
request-rate updates is equal to the number of arcs that are full at the end of the booking
period and is hence smaller than the number of arcs. The algorithm also modifies request
rates at points of discontinuity of the functions bi, (i ∈ I). It stores the final number of
passengers on each itinerary. Several occurrences of the period P are simulated, and the
average number of passengers for each itinerary is computed.

Observe that this simulation algorithm is much faster than one that would assign
itineraries to passengers individually. The number of times it computes new passenger
placement rates is the number of arcs that are finally fully booked, which is usually not
more than 10% of the number of arcs.

The drawback of using this simulation as a passenger flow model is the computing time.
For large networks, it took up to 5 days (depending on the network and the load factor)
to make 5,000 simulations on a computer that ran our model in 3 to 7 seconds.

3 The Model

3.1 Overview

The model aims at providing a good approximate solution to the passenger flow problem
stated above.

Time discretization. We split the time interval [0, 1], during which the booking process
unfolds, into smaller time slices [tk, tk+1], (k = 0, . . . ,K), with t0 = 0 and tK+1 = 1.
Typically, the first time slices can be larger than the last ones, because much of the spilling
activity occurs at the end of the booking process.

We want the booking request rate coming from the demand for each itinerary to be
constant on each time slice, so the set {t0, . . . tK} must contain all discontinuity points of
the functions bi, (i ∈ I).

For each time slice, sequentially, we compute good estimates of the expected number of
passengers accepted on each itinerary (and of several other quantities).

The time discretization allows the model to take account of what is by nature temporal
in the booking process; that is:
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1. the non-constant distribution in time of the booking requests coming from the de-
mand (through the functions bi, (i ∈ I));

2. the effect of the order in which itineraries are closed on spill and recapture.

For a particular time slice, we compute the value of various quantities associated with
itineraries and arcs (number of new booking requests, of new passengers, of spilled passen-
gers, etc.) by solving a non-linear system of equations.

A system of equations. The system is described in detail below, in Subsections 3.2
and 3.3.

For now, let us say that its generic equation is based on the following simple observation:
each booking request for an itinerary i either comes from the demand for i, or from a closed
itinerary j that spills on i. Hence, if we let ri be the expected number of booking requests
for i between time t and t + ∆t, and spi be the expected number of unsuccessful booking
requests for i during the same period of time, we have

ri = (di · bi(t))∆t +
∑

j∈I

λi,jspj , (1)

according to the synthetic booking process description (recall that di is the expectation
of the demand for i). Now, if spj is expressed as a function of the variables ri, (i ∈ I),
we obtain a system of |I| equations and |I| unknowns. This approach is inspired by the
equilibrium passenger flow model in Soumis (1978) and Soumis and Nagurney (1993).

It would be neither convenient nor instructive to write down the actual system of
equations. Rather, we will split it into several equalities involving variables whose names
indicate which expected quantity they are meant to be estimates of. That is the subject
of the two next subsections.

3.2 Variables and equalities related to the itineraries

Below is a list of the model’s variables that are attached to the itineraries. Notice that
when we write, for example, that rk

i is the number of booking requests for itinerary i during
[tk, tk+1], what we really mean is that it is the model’s estimate of the expected number of
booking requests for itinerary i during that period.

rk
i : number of booking requests for itinerary i over [tk, tk+1];

totalrk
i : total number of booking requests for itinerary i up to time tk;

spk
i : number of unsuccessful booking requests for itinerary i over [tk, tk+1];

passk
i : number of successful booking requests for itinerary i over [tk, tk+1];

pk
i : probability that itinerary i is closed at time tk (assumed to be constant

over [tk, tk+1]).

Let us now describe how these quantities are tied to one another.
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Firstly,

totalrk
i =

k−1
∑

l=0

rl
i (i ∈ I).

Now, from equation 1, we have

rk
i = dibi(tk) · (tk+1 − tk) +

∑

j∈I

λi,jsp
k
j (i ∈ I). (2)

The actual probability that an itinerary i is closed varies over time. In our model, we
assume that it is constant over the time interval [tk, tk+1], and denote it pk

i . We have

spk
i = rk

i · pk
i (i ∈ I), (3)

and
passk

i = rk
i · (1 − pk

i ) (i ∈ I). (4)

Combining equations 2 and 3, we obtain

rk
i = dibi(tk) · (tk+1 − tk) +

∑

j∈I

λj,ir
k
j · pk

j (i ∈ I). (5)

This would be the generic equation of our system of equations if the variables pk
j were

fixed. Each variable pk
i , however, is tied to corresponding variables on arcs, which are

described in the next subsection.

3.3 Variables and equalities related to the arcs

For further reference, here is the list of variables related to arcs.

Rk
a: number of booking requests for arc a over [tk, tk+1];

SPk
a: number of unsuccessful booking requests for arc a over [tk, tk+1];

totalRk
a: total number of booking requests for arc a up to time tk;

totalSPk
a: total number of unsuccessful booking requests for arc a up to time tk;

V ark
a: the variance of the total number of booking requests for arc a at time tk;

Pk
a: probability that arc a is closed at time tk (assumed to be constant over

[tk, tk+1]).

According to the synthetic booking process hypotheses, an itinerary is closed if and
only if at least one of its arcs is fully booked, so we set

pk
i = 1 −

(

∏

a∈i

(1 − Pk
a)

)

(i ∈ I). (6)

According to our working hypotheses, the events “arc a is closed at time t”, for arcs a ∈ i,
are dependent, since increased flow on any arc of an itinerary implies increased flows on all
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arcs of that itinerary, but this dependency is only caused by itineraries using more than
one arc of i. This corresponds to a small part of the non local traffic on arcs a ∈ i, which
itself is small compared to local traffic. Hence, equation 6, which causes no problem for
single-leg itineraries, is fairly reasonable for multi-leg itineraries.

The value of Pk
a is a function of SPk

a and Rk
a (equation 11); we will first see how these

variables are related to the others.

Let us first consider Rk
a, the number of requests on arc a during [tk, tk+1]. What comes

first to mind is to set it equal to
∑

i:a∈i r
k
i . This, however, has proven to work badly.

The following example illustrates why. Consider a two-arc itinerary i with arcs a and a′,
with a being, on average, 10 times more likely to be full than a′. Unsuccessful bookings
requests for i are much more likely to be due to a being closed than a′ being closed, and in
a sense, a′ “doesn’t see” these unsuccessful booking requests. Hence, in the computation
of the number Rk

a, the contribution of the unsuccessful requests for i should be weighted,
in order to reflect that phenomenon.

We propose to think of a booking request on an arc a as either: 1) a successful booking
request on an itinerary using a; or 2) an unsuccessful booking request on an itinerary
using a, that we attribute to a. Moreover, we want this attribution of the spk

i unsuccessful
booking requests on itinerary i to be such that no unsuccessful request is counted twice.

Consider a two-arc itinerary i consisting of arcs a and a′. We attribute the unsuccessful
booking requests on i in proportion to the numbers

Pk
a(1 − Pk

a′) +
Pk

aP
k
a′

2
and

Pk
a′(1 − Pk

a) +
Pk

a′P
k
a

2

to a and a′ respectively. That is, when only one arc is closed, it is fully responsible,
and when both arcs are closed, the responsibility is evenly split. We let αk

i,a and αk
i,a′ be

the numbers that add up to 1 and that are proportional to those above. For itineraries
consisting of more than two arcs, these weights are computed in a similar fashion. For
single-arc itineraries, they are set to 1.

Our equality linking Rk
a to the other variables is then

Rk
a =

∑

i:a∈i

(passk
i + αk

i,asp
k
i ) (a ∈ A). (7)

We have seen how Rk
a is computed; let us now consider SPk

a. We compute it indirectly.
It is more convenient to compute totalSPk+1

a , the total spill of arc a at time tk+1, and set

SPk
a = totalSPk+1

a − totalSPk
a. (8)



8 G–2007–80 Les Cahiers du GERAD

The computation of the spill must take into account the stochastic nature of the number
of requests. Let Xk+1

a be the random variable “total number of booking requests on arc
a at time tk+1”. This variable is not normally distributed, but we assume, in the current
model, that it follows a normal law.

This choice is justified by the fact that the large majority of requests are originating
from the demand for itineraries using a, which follow normal laws truncated at 0; their
sum is approximately normal with negligible truncation at 0. The other kind of requests
are the recaptured ones. The number of recaptured requests is not normally distributed,
but since recaptured requests originate from several itineraries, it is the sum of several
random variables, and its distribution tends to be normal-like.

Our model’s estimation for the expectation of Xk+1
a is totalRk+1

a , and for its variance,
we use

V ark+1
a =

∑

i:a∈i

(totalrk+1
i · cvi)

2. (9)

Implicitly, this last equation assumes independence between requests on different itineraries,
and assumes that the number of requests for any itinerary i has the same coefficient of
variation as the original demand for i.

We obtain totalSPk+1
a as the expectation of the number of requests on a, at time tk+1,

in excess of its capacity, that is,

totalSPk+1
a =

∫ ∞

capa

(x − capa)fXk+1
a

(x)dx, (10)

where f
Xk+1

a

is the density function of Xk+1
a . Then, we let SPk

a = totalSPk+1
a − totalSPk

a.

Finally, the probability Pk
a that arc a is full during [tk, tk+1] is set to be the ratio of the

spill of a to its number of requests during that time interval:

Pk
a =























0 if Rk
a = 0,

0 if SP
k
a

Rk
a

< 0,

1 if SP
k
a

Rk
a

> 1,
SP

k
a

Rk
a

otherwise.

(11)

Notice that in practice, in the running of an algorithm that seeks an approximate fixed-
point of our system by iteratively assigning to Pk

a its value as a function of the values

of SPk
a and Rk

a at the previous iteration, SP
k
a

Rk
a

will almost always lie in [0, 1], but none

of the cases in equation 11 is impossible. This completes the exposition of our system of
equations.
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3.4 List of the equations

To give the reader a better view of the whole system, here is a list of the equations. We
have combined some of them to make the ensemble more compact. For all i ∈ I and a ∈ A,

rk
i = dibi(tk) · (tk+1 − tk) +

∑

j∈I

λi,jr
k
i · pk

i ,

pk
i = 1 −

(

∏

a∈i

(1 − Pk
a)

)

,

Pk
a =

SPk
a

Rk
a

, (except in some extreme cases)

Rk
a =

∑

i:a∈i

(rk
i · (1 − pk

i ) + αk
i,ar

k
i · pk

i ),

SPk
a =

∫ ∞

capa

(x − capa)fXk+1
a

(x)dx − totalSPk
a,

where:

• αk
i,a is the responsibility coefficient described before equation 7,

• Xk+1
a is a normal random variable of expectation totalRk+1

a =
∑k

l=0 Rl
a and of

variance
∑

i:a∈i(totalrk+1
i · cvi)

2,

• totalSPk
a =

∫∞
capa

(x − capa)fXk
a
(x)dx.

3.5 Resolution and implementation

We use a simple iterative fixed-point method to find approximate solutions to equations 2
to 11.

The algorithm treats time slices sequentially. For time slice [tk, tk+1], variables rk
i are

initialized to dibi(tk) ·(tk+1−tk), the original demand for i for that time slice. Variables Pk
a

are initialized to the value reached by Pk−1
a after convergence. (variables P0

a are initialized
to 0). Remaining variables related to the interval are set to 0.

Then, variables’ values are computed according to the equations of the previous section,
in the following order (for all itineraries i, and all arcs a):

1. Rk
a;

2. V ark+1
a ;

3. SPk
a;

4. Pk
a;
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5. pk
i and αk

i,a,

6. spk
i and passk

i ;

7. rk
i .

This is repeated until a stopping criterion is met that is specified by a desired degree
of stability of the variables. In our implementation, for example, we made the iterative
process stop when the quantity

∑

i∈I |r
k
i − rk−1

i | was less than one thousandth of the total
demand for the time interval. It is an attractive criterion since this value decreases, from
one iteration to the next, in a roughly geometric way. In our tests the number of iterations
needed to meet it rarely exceeded 15.

To test the robustness of our algorithm, we ran it several thousand times over different
networks. We randomly perturbed the networks’ data and modified the stopping criterion.
It always stopped.

When we imposed very stringent stopping criteria like
∑

i∈I |r
k
i − rk−1

i | < 0.0001, the

value of
∑

i∈I |r
k
i − rk−1

i | actually reached 0 for each time slice [tk, tk+1], within about 50
iterations. In other words, the algorithm actually found a fixed point. This is due to the
necessary discretization of the functions related to the normal distribution. We used a
table for the cumulative distribution function of a N(0, 1), and one for

∫∞
c

xf(x)dx, where
f is the density function of a N(0, 1); both have 10,000 entries.

3.6 Existence of a solution to the system of equations

We do not have a proof that the algorithm of the previous section converges. In this section
we prove that there exists a solution to our system of equations. At the end of the section,
we will be better able to explain why, in practice, the algorithm does converge.

Let us write n = |I| and m = |A|. Consider any time slice [tk, tk+1], and let d ∈ R
n
+ be

the vector whose component di is the total original demand for i during [tk, tk+1], that is,

di = di · bi(tk) · (tk+1 − tk).

Now, let ǫ > 0 be a small real number. We write R++ to denote the set of positive real
numbers. Define

X =
∏

i∈I

[ǫ,+∞) ⊆ R
n
++, and

Y =
∏

a∈A

[ǫ, 1] ⊆ R
m
++.

In what follows, ri, the component i of the vector r ∈ R
n, will play the role of rk

i ,
and Pa, the component a of the vector P ∈ R

m, will play the role of the probability Pk
a

of the previous section. The vectors r̃ and P̃ will be the vectors whose components are,
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respectively, the new number of requests and the new probabilities obtained from r and P

by the equations of the previous section.

For all i ∈ I, a ∈ i, let αi,a : Y → [0, 1] be the function that returns the responsibility
weight described before the equation 7 of the previous section, with the entry Pa of P ∈ Y
playing the role of Pk

a. That is, αi,a(P) = 1 if i has a single arc a, and

αi,a(P) =
Pa(1 − Pa′) +

PaP
a′

2

Pa(1 − Pa′) + Pa′(1 −Pa) + Pa′Pa

if i consists of arcs a and a′ only. The reader can easily write down the expressions for αi,a

when i has three or more arcs, and can verify that all these functions are continuous over
Y .

For any (r,P) ∈ X × Y , consider the following mappings :

1. R : X × Y → R
m
++, the new number of arc requests, whose ath component is

Ra(r,P) =
∑

i:a∈i

ri

(

∏

a∈i

(1 − Pa) + αi,a(P) ·

(

1 −
∏

a∈i

(1 − Pa)

))

,

(a ∈ A). One may recognize that Ra(r,P) depends on r and P in the same way that
Rk

a depends on rk and Pk in the previous section. R is continuous.

2. V ar : X → R++,

V ara(r) =
∑

i:a∈i

(ri · cvi)
2, (a ∈ A)

where the cvi, (i ∈ I) are constant. This is a continuous mapping.

3. P̃ : X × Y → Y ,

P̃a(r,P) = min







1,max







ǫ,

(

∫∞
capa

(x − capa)fX(x)dx
)

− totalSPa

Ra(r,P)













,

(a ∈ A), where the totalSPa and capa are constants, X is a normal N(totalRa

+Ra(r,P), V ara(r)), and totalRa is a constant. One may verify that P̃ is continuous.

4. r̃ : X × Y → X,

r̃i(r,P) = max







ǫ, di +
∑

j∈I

λi,jrj



1 −
∏

a∈j

(1 − P̃a(r,P))











,

(i ∈ I), where the λi,j are the spill coefficients described earlier. r̃ is a continuous
mapping.
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Now, let Λ be the n × n matrix with (Λ)ij = λi,j . Recall that there exists ρ ∈ (0, 1)
such that, for all j ∈ I,

∑

i∈I λi,j ≤ ρ. Moreover, the λi,j are non-negative. Hence, the
maximum absolute column sum norm of Λ is smaller than 1, and so is its spectral norm,
that is, ‖Λ‖ < 1.

Let P (r,P) be the diagonal n×n matrix with (P (r,P))ii = 1−
∏

a∈i(1− P̃a(r,P)). If

we denote by max{u,v} the vector whose ith component is max{ui,vi}, then

r̃(r,P) = max{ǫ1n, d + ΛP (r,P)r},

where 1n is the all-one vector in R
n.

Let d∗ = max{ǫ1n,d}, and define Z as

Z = {r ∈ R
n|ǫ1n ≤ r and ‖r‖ ≤

‖d∗‖

1 − ‖Λ‖
}.

We claim that the following continuous mapping

F : Z × Y → R
n × Y

(r,P) 7→ (r̃(r,P), P̃(r,P))

maps Z × Y into itself.

Pick (r,P) ∈ Z × Y . By construction, P̃(r,P) ∈ Y . Also,

‖r̃(r,P)‖ ≤ ‖d∗‖ + ‖Λ‖ · ‖P (r,P)‖ · ‖r‖

≤ ‖d∗‖ +
(

‖Λ‖ · 1 · ‖d∗‖
1−‖Λ‖

)

= ‖d∗‖
1−‖Λ‖ ,

which is a first condition r̃ must satisfy to belong to Z. The second condition is r̃(r,P) ≥
ǫ1n, and that is satisfied by construction of r̃. Hence, F (Z × Y ) ⊆ (Z × Y ). This set
is homeomorphic to a closed ball in R

n+m, so by Brouwer’s fixed-point theorem, F has a
fixed point.

The utility of ǫ. In the preceding proof, we have imposed the conditions ri ≥ ǫ and
Pa ≥ ǫ for some ǫ > 0 to make P̃ a continuous function, but we haven’t found it necessary
to do that in our resolution algorithm. In fact, these conditions are de facto satisfied after
a certain number of iterations. For any time interval, every itinerary i of lower class has
a non-zero pi at the second iteration, which makes it spill onto other itineraries. If all
itineraries have a non-zero proportion of their spill that is destined to the corresponding
itinerary of higher class, all arcs have a positive probability of being closed after several
iterations, and each ri is positive.
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Convergence of the algorithm in practice. We can now describe what our resolution
algorithm essentially does more synthetically. For a fixed time slice [tk, tk+1], let r(n) be the
booking requests vector it computes at iteration n. Let P (n) be the diagonal n× n matrix
containing the probabilities that each itinerary be closed, as computed by the algorithm at
iteration n, as a function of r(n−1) and P (n−1). Notice that ‖P (n)‖ < 1 for all n. We have

r(n+1) = d + ΛP (n+1)r(n).

Consequently,

‖r(n+1) − r(n)‖ = ‖ΛP (n+1)r(n) − ΛP (n)r(n−1)‖

≤ ‖Λ‖ · ‖P (n+1)r(n) − P (n)r(n−1)‖.

Given the nice behavior of the P (n)s and the fact that ‖Λ‖ < 1, it is not surprising that, in
practice, we see the quantity ‖r(n+1)−r(n)‖ decreasing roughly geometrically as n increases.
Over all our tests with unperturbed spill coefficients (see the next section), we have seen
no violation of the inequality

‖r(n+1) − r(n)‖ < 0.75 · ‖r(n) − r(n−1)‖.

4 Results

In this section we analyze the performance of our model on two large networks. They
have been constructed using data from Air Canada. Spill coefficients and time distribution
functions bi of the demand do not come from real life data. We assert that this does not
affect the validity of our experiment, since its point is to measure the accuracy of our model
by comparing its passenger flow estimation with that of our simulation, run on exactly the
same network, with the same spill coefficients and the same functions bi.

4.1 Input description

Networks. Network 1 is made from a part of the Air Canada forecast weekly network
for summer 2005. It has 29,715 itineraries and 14,731 arcs (in the sense of Section 2). Its
arcs have on average 24.1% of their initial demand that comes from multi-arc itineraries.
Its average spill coefficient is 0.125, and the average over all its itineraries i of

∑

j∈I λj,i is
0.627.

Network 2 is made from a part of an Air Canada weekly network of 2002. It has 23,948
itineraries and 5,180 arcs. Its arcs have on average 42.0% of their initial demand that
comes from multi-arc itineraries. Its average spill coefficient is 0.077, and the average over
all its itineraries i of

∑

j∈I λj,i is 0.697.

We used Air Canada forecasts for the average demands di. We used three aggregated
fare classes, say A, B and C, with C being the lowest one. Coefficients of variation cvi of
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the demand for itinerary i have been set to 0.3 when di ≥ 5 and to 0.5 otherwise. The
functions bi controlling the time distribution of booking requests are one-step functions.
For itineraries in class C, the booking request rate from the demand is constant over [0, 1].
For itineraries in classes B and A, requests from the demand are assumed to start at time
0.7 and 0.85 respectively, and then arrive at a constant rate. We have computed spill
coefficients λi,j that take into account the departure and arrival times of i and j, their
number of legs, and their classes.

∑

j∈I λj,i ≤ 0.75 for any itinerary i.

Algorithm. The time discretization used was 0, 0.3, 0.55, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.
Our stopping criterion for the iterative process described in Section 3.5 was that the dif-
ference, from one iteration to the next, in the total number of booking requests be smaller
than one thousandth of the total demand for the time interval.

Simulation. For each test, we have made 5,000 simulations of the synthetic booking
process (the simulation is described at the end of Section 2).

Computation time. It took our algorithm between 3 seconds and 7 seconds to terminate,
depending on the test. For all tests and all time intervals, the stopping criterion has
been met in at most 16 iterations. The simulation algorithm, more sensitive to increased
demand, took between 7 hours and 5 days.

4.2 Analysis

We have made two series of tests for each of our networks: one in which the demand is
incrementally modified, one in which the spill coefficients are modified, for a fixed demand.

For a given test, let passsim
i and passmod

i be the expected number of passengers on
itinerary i, as estimated by the simulation and the model, respectively. In the following
table, the signed error is

(
∑

i∈I passmod
i − passsim

i

)

/
∑

i∈I passsim
i , and the average de-

viation is
(
∑

i∈I

∣

∣passmod
i − passsim

i

∣

∣

)

/
∑

i∈I passsim
i . In the column titled Spill demand,

we give the proportion of the initial demand that was spilled, according to the simulation
(regardless of whether the passengers were lost or recaptured). The column titled (Spilled
requests)/demand contains the total number of unsuccessful requests divided by the total
demand, according to the simulation.

Bearing in mind that the goal is to estimate the expected revenue associated with the
network, the most important statistic regarding the accuracy of the model is the signed
error, and the values in Table 1 and Table 2 indicate that the model is remarkably accurate.

The two last columns in Table 1 and Table 2 indicate that there was in fact some
important spilling activity in the booking processes associated with the networks. Notice
also that the simulation results, being averages of 5,000 simulations for each network, are
imperfect. The average initial demands generated in the simulations consistently show an
average deviation of about 0.36% when compared to the expected values di. It is reasonable
to infer that the simulation’s passenger estimations similarly differ from the actual expected
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Table 1: Effect of demand variation. Model passenger flow compared to simulation pas-
senger flow, network 1.

Demand Demand/ Load Signed error (%) Average Spilled (Spilled requests)/
factor cap. (%) factor(%) overall 1-arc it. 2-arc it. dev. (%) dem. (%) dem. (%)

0.80 56.7 55.7 0.008 0.05 -0.24 0.49 3.2 4.4
0.90 63.8 61.9 0.008 0.07 -0.40 0.53 5.1 7.3
0.95 67.3 64.8 0.007 0.08 -0.49 0.57 6.3 9.1
1.00 71.6 68.2 0.002 0.09 -0.60 0.61 7.8 11.5
1.05 75.1 70.8 −0.02 0.09 -0.68 0.66 9.2 13.8
1.10 78.0 72.8 −0.02 0.10 -0.84 0.71 10.4 15.8
1.15 81.5 75.2 −0.03 0.10 -1.00 0.76 12.0 18.4
1.20 85.1 77.4 −0.05 0.10 -1.13 0.81 13.6 21.3
1.25 88.6 79.4 −0.08 0.09 -1.30 0.86 15.3 24.3
1.30 92.2 81.3 −0.11 0.07 -1.45 0.91 17.0 27.4
1.35 95.7 82.9 −0.16 0.03 -1.54 0.97 18.7 30.7
1.40 99.3 84.5 −0.20 0.006 -1.74 1.03 20.5 34.0

Table 2: Effect of demand variation. Model passenger flow compared to simulation pas-
senger flow, network 2.

Demand Demand/ Load Signed error (%) Average Spilled (Spilled requests)/
factor cap. (%) factor(%) overall 1-arc it. 2-arc it. dev. (%) dem. (%) dem. (%)

0.73 60.1 59.2 0.04 0.06 -0.01 0.42 2.3 3.5
0.80 65.6 64.0 0.08 0.10 -0.01 0.48 3.8 5.6
0.87 71.1 68.4 0.09 0.14 -0.04 0.55 5.6 8.7
0.93 76.5 72.2 0.07 0.13 -0.12 0.61 7.8 12.4
1.00 82.0 75.8 0.01 0.09 -0.23 0.67 10.1 16.8
1.07 87.5 79.0 −0.07 0.02 -0.33 0.75 12.6 21.4
1.13 92.9 81.7 −0.16 -0.07 -0.44 0.85 15.2 26.4
1.20 98.4 84.2 −0.27 -0.17 -0.60 0.95 17.8 31.5
1.27 103.9 86.4 −0.39 -0.28 -0.77 1.07 20.3 36.7

passenger flows, according to the synthetic booking process. Hence, a non negligible part
of the average deviations is due to the imperfection of the simulation’s results.

Table 3 and Table 4 show the results of tests made to exhibit the effect of the magnitude
of the spill coefficients on the accuracy of the model. For each test, the original spill
coefficients have been multiplied by the number in the column Spill factor.

All four series of tests show that the model overestimates the number of passengers on
one-arc itineraries and underestimates it on two-arc itineraries. This is particularly clear
when spill coefficients are small. We believe that one major cause for the underestimation
of passengers on two-arc itineraries is the equation 6, which overestimates their probability
of being closed by assuming independence of events that are not independent.

The underestimation of passengers on two-arc itineraries entails an underestimation of
arc requests, which lowers the probabilities Pk

a, by lowering both the expectation and the
variance of the random variables Xk+1

a used to compute them. That is consistent with the
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Table 3: Effect of spill variation. Model passenger flow compared to simulation passenger
flow, network 1, demand factor 1.1.

Spill Load Signed error (%) Average Spilled (Spilled requests)/
factor factor(%) overall 1-arc it. 2-arc it. dev. (%) dem. (%) dem. (%)

1.2 73.6 0.19 0.26 -0.32 1.01 10.7 18.4
1.1 73.3 0.07 0.17 -0.60 0.80 10.6 17.0
1.0 72.8 −0.02 0.10 -0.84 0.71 10.4 15.8
0.9 72.5 −0.07 0.07 -1.02 0.69 10.3 14.7
0.8 72.1 −0.12 0.04 -1.20 0.67 10.1 13.7
0.6 71.5 −0.15 0.04 -1.44 0.65 9.9 12.2
0.4 71.0 −0.13 0.08 -1.62 0.65 9.7 11.0
0.2 70.5 −0.09 0.15 -1.74 0.69 9.4 10.0
0 70.1 −0.03 0.23 -1.82 0.84 9.2 9.2

Table 4: Effect of spill variation. Model passenger flow compared to simulation passenger
flow, network 2. demand factor 1.0.

Spill Load Signed error (%) Average Spilled (Spilled requests)/
factor factor(%) overall 1-arc it. 2-arc it. dev. (%) dem. (%) dem. (%)

1.2 76.5 0.15 0.11 0.26 0.83 10.4 19.8
1.1 76.1 0.07 0.10 -0.02 0.73 10.2 18.1
1.0 75.8 0.01 0.09 -0.23 0.67 10.1 16.8
0.9 75.5 −0.03 0.09 -0.41 0.61 10.0 15.5
0.8 75.2 −0.06 0.10 -0.55 0.59 9.8 14.4
0.6 74.8 −0.10 0.13 -0.76 0.59 9.6 12.5
0.4 74.4 −0.10 0.17 -0.90 0.61 9.3 11.0
0.2 74.1 −0.07 0.23 -0.97 0.64 9.1 9.8
0 73.7 −0.03 0.29 -1.01 0.81 8.8 8.8

model’s overestimation of passengers on one-arc itineraries. There is more to it than that,
however, as a close examination of the trends of those two biases, in the lower parts of
Table 3 and Table 4, show.

In the upper parts of these tables, we see the model’s signed error increasing as the
spill factor increases from 0.6 to 1.2. We attribute this phenomenon to the equilibrium
equation for booking requests, equation 2. Recall that, in our synthetic booking process as
well as in the simulation, unsuccessful requests do not spill more than three times, nor do
they rebound to the original itinerary when the alternative is closed. The model ignores
this. We therefore expect it to overestimate the passenger flow when there is a sizable
spilling activity, and when spill coefficients are high enough that the spill of second and
higher orders becomes significant. For both networks, when the spill factor is 1.2, some
itineraries i are such that

∑

j∈I λj,i = 0.9. The average of
∑

j∈I λj,i is 0.752 for Network
1 and 0.836 for Network 2.

It may be argued, however, that it is the simulation that underestimates the recapture
in high spill conditions. After all, the main reason why we limited the number of simu-
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lation recapturing waves at three instead of four or more was to keep its computing time
reasonable.

Let us return to the first two series of tests, with constant spill coefficients and varying
demand. For both networks, the signed error, while staying in the ±0.1% range for load
factors below 80%, becomes markedly more negative for very high demands. The explana-
tion we advance for this is quite simple: if an arc is expected to be almost full, the model
cannot get it very wrong, and certainly cannot overestimate its passenger flow by much.
Because the model’s expected flow respects the network’s capacity constraints, some of
its overestimations are censored. In a normally loaded network, overestimations roughly
balance underestimations (see the histograms below, showing data from the test made on
network 1, with demand multiplied by 1.25). When, however, the initial demand for arcs
is on average close to 100% of their capacity, as is the case for the higher demand tests on
each network, this censoring effect is quite perceptible.
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Figure 1: Passenger estimation difference between model and simulation.
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5 Further discussion

5.1 Demand distribution

In the description of the problem (Section 2), the demand distribution for itineraries are
required to be normal. It is, however, possible to do without this requirement.

Equation 10, determining the model’s estimation of the expected spill attributed to an
arc, is the only one relying on the properties of the normal law. Hence, even if demands
for itineraries are assumed to follow laws other than the normal, if one deems the normal
law appropriate to model the distribution of requests on arcs, (because requests on arcs
are the aggregation of requests on several itineraries), then one can use the model as it is.

Moreover, one is free to model the distribution of requests on arcs according to the laws
followed by the demands for itineraries using them, by simulating beforehand the densities
of the sum of several such random variables, or to use analytic approximation, as it is done
in Thom (1968) for gamma distributions, in the context of rain precipitation.

5.2 Revenue management

Reservation level revenue management strategy could be modeled within our framework.
Suppose, for example, that arc a is physically suited to accommodate fare classes A and
B, and that a number resA < capa is reserved for fare class A. Consider an itinerary
i of class B using arc a, whose probability of being closed during the period [tk, tk+1] is
pk

i = 1 −
(
∏

a∈i(1 −Pk
a)
)

in our model, without revenue management. Arc a may cause
itinerary i to be closed because:

1. the number of arc requests of class B on arc a is greater than capa − resA,

2. the number of arc requests of class B on arc a is less than capa − resA, but the total
number of arc requests on a is greater than capa.

The probability P
k,res
a,B of the first event occurring can be estimated the same way Pk

a is,
provided that one carries the required new variables “number of requests of class B on arc

a”, (a ∈ A). The probability of the second event occurring is estimated by (1−P
k,res
a,B ) ·Pk

a.
Writing

Pk
a,i = P

k,res
a,B + (1 − P

k,res
a,B ) ·Pk

a,

we use pk
i = 1 −

(

∏

a∈i(1 − Pk
a,i)
)

as the estimation of the probability that i is closed

during the period [tk, tk+1]. Several nested reservation levels can be handled similarly.

Notice that no hypothesis on the order in which the booking requests for the various
fare classes occur is necessary.
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5.3 Applications

Our model, like any other passenger flow model, can be used for fleet assignment rev-
enue estimation and various scenario analyzes involving modification of the demand or
perturbations in the network.

One obvious motivation for the conception of a computationally simple and structurally
sound passenger flow model is its integration to a fleet assignment model, with the aim
of improving its revenue estimation (see Barnhart et al. (2002), Kniker (1998) and Jacobs
et al. (1999), Smith (2004)). We believe that our model is promising in this regard.

It would be interesting to see, for example, if the model could be efficiently used to
recompute costs assigned to each fleet type on each leg, within an iterative algorithm that
alternately solves a FAP and recomputes its objective function. At first sight, this would
require several thousand calls of our resolution algorithm (one for each possible fleet type
for each leg), but one could surely take advantage of the fact that the perturbation of one
leg only does not greatly affect the passenger flow on the entire network.

One may also try to use our model directly in a branch and bound resolution algorithm
for the FAP, readjusting the objective function as new sets of FAP variables are fixed.

5.4 Simulation and reality

We have measured our model against a simulation based on the synthetic booking pro-
cess hypotheses listed in Section 2. Our results should not be taken out of this context.
Evaluating the performance of our model in the real world would effectively amount to
evaluating the quality of forecasts and the correspondence of the synthetic booking process
hypotheses with reality. These hypotheses, although reasonable, could surely be improved
and made more consistent with actual customer behavior.

6 Conclusion

We have presented a model whose objective is to find, for middle- and long-term plan-
ning purposes, approximation for expected passenger flow under the hypotheses listed in
Section 2. These are, essentially, that we have:

1. forecasts of the demand distributions for the airline network’s itineraries;

2. forecasts for the time distribution of the booking requests for these itineraries;

3. estimates of the proportion of customers who will settle for some given itinerary when
their preferred itinerary happens to be unavailable.

Our model provides passenger flow estimations for a weekly network that differ from those
of a simulation by about 0.1% on a normally loaded network, in a computation time of less
than 10 seconds on a computer that requires about 3 days to run 5,000 simulations.
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Clearly, the uncertainty in the forecast data enumerated above is much larger than
0.1%. It seems to us, however, that none of the three points above can be ignored by
whoever tackles the problem of passenger flow forecasting. Hence, we present our model
as an efficient tool for planning and demand scenario analysis, a tool that can only be as
good as the input it receives.
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Canada.

Soumis, F., A. Nagurney. 1993. A Stochastic, Multiclass Airline Network Equilibrium Model.
Operations Research 41(4) 721–730.

Subramanian, R., R. P. Scheff Jr., J. D. Quillinan, D. S. Wiper, R. E. Marsten. 1994. Coldstart:
Fleet Assignment at Delta Air Lines. Interfaces 24 104–120.

Swan, W. M. 2002. Airline Demand Distributions: Passenger Revenue Management and Spill.
Transportation Research Part E 38 253–263.

Thom, H. C. S. 1968. Approximate Convolution of the Gamma and Mixed Gamma Distributions.
Monthly Weather Review 96(12) 883–886.


