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recherche sur la nature et les technologies.





Controller Design for Discrete-Time Nonlinear

Markovian Jump Systems Using Fuzzy Logic
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Abstract

This paper considers the class of discrete-time nonlinear Markovian jump systems.
The stochastic stability and stabilization problems are tackled. A model-based fuzzy
stabilization design utilizing the concept of the so-called parallel distributed compen-
sation (PDC) is employed to stochastically stabilize the class of systems under consid-
eration. LMI-based sufficient conditions are developed to synthesize the state feedback
controller that stochastically stabilizes the fuzzy stochastic system. Two examples are
worked out to show the validness of the theoretical results.

Key Words: Discrete-time nonlinear Markovian jump system, LMI, state feedback
control, fuzzy control.

Résumé

Ce papier traite de la commande des systèmes non linéaires à sauts markoviens.
Les problèmes de stabilité et de stabilisation stochastique sont considérés. Une ap-
proche floue utilisant le modèle TS est employée. Des conditions en forme d’inégalités
matricielles linéaires sont proposées pour faire le design du contrôleur. Deux exemples
numériques sont traités pour montrer l’efficacité de l’approche utilisée.
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1 Introduction

Discrete-time nonlinear Markovian jump system is a hybrid one with state comprised of
two components: a jumping mode and a state vector. The jumping mode is a discrete-time
Markov chain representing the mode of the system. The state vector evolves according to a
difference equation when the mode is fixed. The control of discrete-time linear Markovian
jump systems has received considerable interests and interesting results have been reported
in the literature. For more information on discrete-time Markovian jump linear systems,
the reader is referred to [7, 9] and the references therein.

The fuzzy control of the continuous-time systems with Markovian jumps has been tack-
led mainly by Nguang and his coauthors. For more details on what it has been done of
this class of systems we refer the reader to Assawinchaichote et al. [1] and the references
therein.

To the best of our knowledge the control of nonlinear discrete-time Markovian jump
systems has not been fully investigated. The goal of this paper is to study the stability
and stabilization of the class of discrete-time nonlinear Markovian jump systems using
the Takagi-Sugeno (T-S) approach. A model-based fuzzy stabilization design utilizing the
concept of the so-called parallel distributed compensation (PDC) is employed to stochas-
tically stabilize the class of systems under consideration. The sufficient conditions we will
establish are all in LMI formalism which makes their resolution easy. The rest of this
paper is organized as follows. Section 2 describes the system model. Section 3 addresses
the stability and stabilization problems. Section 4 provides numerical examples to show
the validness of the proposed results.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimen-
sional Euclidean space and the set of all n×m real matrices. The superscript “T ” denotes
matrix transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are
symmetric matrices, means that X − Y is positive semi-definite (respectively, positive
definite). I is the identity matrices with compatible dimensions. diag{} stands for a block-
diagonal matrix. For a symmetric block matrix, we use “*” as an ellipsis for the terms that
are introduced by symmetry. E{·|·} stands for the conditional mathematical expectation.

2 Model Description

Let {r(t), t ≥ 0} be a Markov chain with state space S = {1, · · · , N} and probability
transition matrix P = [pij ]i,j∈S , i.e. the transition probabilities of {r(t), t ≥ 0} are as
follows:

Prob[r(t + 1) = j|r(t) = i] = pij,∀i, j ∈ S,

with pij ≥ 0,∀i, j ∈ S and
∑N

j=1 pij = 1, for i ∈ S.
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Consider a discrete-time nonlinear hybrid system with N modes and suppose that the
system mode switching is governed by {r(t), t ≥ 0}. Let the system dynamics be described
by the following:

{
x(t + 1) = f(x(t), i) + g(x(t), i)u(t),

x(0) = x0,
(1)

for r(t) = i, where x(t) ∈ R
n and u(t) ∈ R

m are respectively the state and the control input
of the system. The functions f(x(t), i) and g(x(t), i), for any x(t) ∈ R

n and each i ∈ S,
are assumed to satisfy all the appropriate assumptions for the existence and uniqueness of
the solution.

To the best of knowledge the control of the class of systems described by (1) has not been
fully investigated and it remains a very difficult class to control. In this paper we will use
the fuzzy logic approach to study the stochastic stability and the stochastic stabilization.
For this purpose, the approach proposed by Takagi-Sugeno is used (see [12]). This fuzzy
dynamic model is a piecewise interpolation of several linear models through membership
functions. It is described by fuzzy rules of the type IF-THEN that represent local input
output models for a nonlinear system. In the rest of this paper we will assume that the
behavior of the class of stochastic fuzzy systems is described by the following:
Plant rule i: IF z1(t) is Mi1, · · · and zp(t) is Mip

Then
{

x(t + 1) = Ãi(r(t))x(t) + B̃i(r(t))u(t),

x(0) = x0,
(2)

where Mij is the fuzzy set; zj(t) is the premise variable; Ãi(l) and B̃i(l) are real matrices
with appropriate dimensions for each i ∈ Sq = {1, 2, · · · , q} and each l ∈ S and can be
represented as:

Ãi(l) = Ai(l) + ∆Ai(l), B̃i(l) = Bi(l) + ∆Bi(l),

where Ai(l) and Bi(l) are known matrix, ∆Ai(l) and ∆Bi(l) are unknown but can be
decomposed as:

[∆Ai(l) ∆Bi(l)] = Di(l)∆i(l, t)[Ei(l) Fi(l)],

where Di(l), Ei(l) and Fi(l) are known and ∆i(l, t) is unknown but satisfies

∆T
i (l, t)∆i(l, t) ≤ I.

Using the standard fuzzy inference method that uses a singleton fuzzifier, product of
fuzzy inference and weighted average defuzzifier, the stochastic fuzzy systems we are con-
sidering are described by:

{
x(t + 1) =

∑q
i=1 hi(z(t))

[
Ãi(r(t))x(t) + B̃i(r(t))u(t)

]
,

x(0) = x0,
(3)
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where hi(z(t)) = wi(z(t))
Pq

i=1
wi(z(t))

with wi(z(t)) =
∏p

j=1 Mij(zj(t)), where Mij(zj(t)) is the

grade of membership of zj(t) in the set Mij.

Remark 1 Based on the definitions of wi(z(t)) and hi(z(t)), we assume wi(z(t)) ≥ 0,∑q
i=1 wi(z(t)) > 0 and therefore we have hi(z(t)) ≥ 0 and

∑q
i=1 hi(z(t)) = 1.

Remark 2 The premise variable z(t) can be one part of the state variable x(t), or some
combination of different components of x(t). Therefore the terms

∑q
i=1 hi(z(t))Ai(r(t))x(t)

and
∑q

i=1 hi(z(t))Bi(r(t))u(t) can be used to approximate the nonlinear representation
f(x(t), r(t)) + g(x(t), r(t))u(t). In addition, the terms ∆Ai(l) and ∆Bi(l) can be used
to represent the modelling uncertainties effectively. For more details, please refer to [10].

Definition 1 System (3) with u(t) = 0 is said to be robustly stochastically stable if for
any finite initial state xo ∈ R

n and initial mode r0

∞∑

t=0

E[‖x(t)‖2|x0, r0] < ∞. (4)

Definition 2 System (3) is said to be robustly stabilizable in the stochastic sense if there
exists a controller such that the closed-loop system is robustly stochastically stable.

To stabilize the class of nonlinear stochastic system (3) when the state is available
for feedback for each mode l ∈ S, we can use the PDC controller that we assume to be
described by the following:
Controller rule i: IF z1(t) ∈ Mi1 and · · · and zp(t) ∈ Mip, l ∈ S
Then

u(t) = Ki(r(t))x(t),

where Ki(l) is a gain to be determined for each i ∈ Sq and each l ∈ S.

The overall state feedback fuzzy controller is represented by:

u(t) =

q∑

i=1

hi(z(t))Ki(r(t))x(t), (5)

which is also nonlinear since the premise variable z(t) is dependent on the state variable
x(t).

Plugging the controller expression (5) in the system dynamics (3) gives the following
closed-loop system:

x(t + 1) =

q∑

i=1

q∑

j=1

hi(z(t))hj(z(t))
[
Ãi(r(t))x(t) + B̃i(r(t))Kj(r(t))x(t)

]
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=

q∑

i=1

h2
i (z(t))

[
Ãii(r(t))x(t)

]

+ 2

q∑

i=1

q∑

i<j

hi(z(t))hj(z(t))

[
Ãij(r(t)) + Ãji(r(t))

2

]
x(t) (6)

with Ãij(l) = Ãi(l) + B̃i(l)Kj(l).

In this paper we are interested in developing sufficient conditions for the design of a
state feedback controller for the class of stochastic fuzzy systems. LMI-based sufficient
conditions are needed to synthesize the gain of the state feedback controller that stochasti-
cally stabilizes the class of systems we are dealing with. Our methodology is mainly based
on the Lyapunov theory and some algebraic results.

Before closing this section, let us recall some lemmas that we will use in the rest of the
paper.

Lemma 1 ([6]) The linear matrix inequality

[
H S⊤

S R

]
< 0

is equivalent to R < 0 and H − S⊤R−1S < 0, where H = H⊤, R = R⊤ and S is a matrix
with appropriate dimension.

Lemma 2 ([20]) Let U , V , and ∆ be matrices with appropriate dimensions. Suppose
∆T ∆ ≤ I, then we have

U∆V + (U∆V )T ≤ εUUT + ε−1V T V

for any ε > 0.

3 Stability and Stabilization

In this section, we consider the stochastic stability and the stochastic stabilization of system
(3). The following theorem gives the sufficient conditions on stochastic stability.

Theorem 1 The fuzzy stochastic system (3) is robustly stochastically stable if there exists
a set of symmetric and positive-definite matrices P (1), · · · , P (N) such that the following
set of coupled LMIs holds:

Ã⊤
i (l)G(l)Ãi(l) − P (l) < 0, (7)

where G(l) =
∑N

m=1 plmP (m).
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Proof: Define a Lyapunov function candidate V (x(t), r(t)) as follows:

V (x(t), r(t)) = x⊤(t)P (r(t))x(t), (8)

where P (l) is a symmetric and positive-definite matrix for each l ∈ S. Then, simple
computation gives the following

E [V (x(t + 1), r(t + 1))|x0, r0] − V (x(t), r(t) = l)

=

q∑

i=1

q∑

j=1

hi(z(t))hj(z(t))x⊤(t)
[
Ã⊤

i (l)G(l)Ãj(l) − P (l)
]
x(t). (9)

Thus, we have

E[V (x(t + 1), r(t + 1))|x0, r0] − V (x(t), l)

≤ −λmin(−Θ(l))x(t)⊤x(t)

≤ −βx⊤(t)x(t), (10)

where Θ(l) = Ã⊤
i (l)G(l)Ãi(l) − P (l), and λmin(−Θ(l)) denotes the minimal eigenvalue of

−Θ(l) for all i ∈ Sr and β = inf{λmin(−Θ(l)), l ∈ S}, β > 0. From (10), we obtain that
for any T ≥ 1

E[V (x(T + 1), r(T + 1))|x0, r0] − E[V (x0, r0)|x0, r0] ≤ −β

T∑

t=0

E[x⊤(t)x(t)|x0, r0],

This yields the following for any T ≥ 1,

T∑

t=0

E[x⊤(t)x(t)|x0, r0] ≤
1

β

[
E[V (x0, r0)|x0, r0] − E[V (x(T + 1), r(T + 1))|x0, r0]

]

≤ 1

β
E[V (x0, r0)|x0, r0],

which implies

∞∑

t=0

E[x⊤(t)x(t)|x0, r0] ≤
1

β
E[V (x0, r0)|x0, r0] < ∞.

This means that system (3) is robustly stochastically stable and thus completes the
proof of Theorem 1. 2
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Remark 3 Note that the LMI (7) can be rewritten as follows:

[
−P (l) Ã⊤

i (l)W (l)

W⊤(l)Ãi(l) −Γ

]
< 0,

where Γ = diag(P−1(1), · · · , P−1(N)) and W (l) =
[√

pl1I, · · · ,
√

plN I
]
.

Remark 4 When the number of fuzzy rules is limited to 1 (i.e.: the system is linear), the
results of this theorem are the ones already developed for linear discrete-time systems with
Markovian jumps.

Now let us concentrate on the design of a state feedback controller of the following form
(5) that robustly stochastically stabilizes system (3). Using the closed-loop system we get:

∆V (x(t), r(t) = l) = E [V (x(t + 1), r(t + 1))|x0, r0] − V (x(t), r(t) = l)

=

q∑

i=1

q∑

j=1

hi(z(t), l)hj(z(t), l)x⊤(t)Ã⊤
ij(l)G(l)

q∑

α=1

q∑

β=1

hα(z(t), l)hβ(z(t), l)Ãαβ(l)x(t) − x⊤(t)P (l)x(t)

=

q∑

i=1

q∑

j=1

q∑

α=1

q∑

β=1

hi(z(t), l)hj(z(t), l)hα(z(t), l)

hβ(z(t), l)x⊤(t)
[
Ã⊤

ij(l)G(l)Ãαβ(l) − P (l)
]
x(t)

≤
q∑

i=1

q∑

j=1

hi(z(t), l)hj(z(t), l)x⊤(t)
[
Ã⊤

ij(l)G(l)Ãij(l) − P (l)
]
x(t)

=

q∑

i=1

h2
i (z(t), l)x⊤(t)

[
Ã⊤

ii (l)G(l)Ãii(l) − P (l)
]
x(t)

+ 2

q∑

i=1

q∑

i<j

hi(z(t), l)hj(z(t), l)x⊤
t




[
Ãij(l) + Ãji(l)

2

]⊤

G(l)

[
Ãij(l) + Ãji(l)

2

]
− P (l)


 x(t),

Using the results of Kim and Lee [11], if we let

Ã⊤
ii (l)G(l)Ãii(l) − P (l) < −Xii(l), i = 1, · · · , q, l = 1, · · · , N,
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[
Ãij(l) + Ãji(l)

2

]⊤

G(l)

[
Ãij(l) + Ãji(l)

2

]
− P (l) ≤ −Xij(l), i < j, l = 1, · · · , N,

where Xij(l) is a matrix to be determined for each i, j and l; we get:

∆V (x(t), l) < −
[

N∑

i=1

h2
i (z(t), l)x⊤(t)Xii(l)x(t)

+ 2

N∑

i=1

N∑

i<j

hi(z(t), l)hj(z(t), l)x⊤(t)Xij(l)x(t)

]

= −




h1(z(t), l)x(t)
h2(z(t), l)x(t)

...
hq(z(t), l)x(t)




⊤ 


X11(l) X12(l) · · · X1q(l)
X12(l) X22(l) · · · X2q(l)

...
...

...
...

X1q(l) X2q(l) · · · Xqq(l)







h1(z(t), l)x(t)
h2(z(t), l)x(t)

...
hq(z(t), l)x(t)




= H⊤(z(t), l)
[
−X̃(l)

]
H(z(t), l),

with

H(z(t), l) =




h1(z(t), l)x(t)
h2(z(t), l)x(t)

...
hq(z(t), l)x(t)


 , X̃(l) =




X11(l) X12(l) · · · X1q(l)
X12(l) X22(l) · · · X2q(l)

...
...

...
...

X1q(l) X2q(l) · · · Xqq(l)


 .

Finally, we get the following sufficient conditions for robustly stochastic stability of the
closed-loop system:

Ã⊤
ii (l)G(l)Ãii(l) − P (l) < −Xii(l), i = 1, · · · , q, l = 1, · · · , N, (11)

[
Ãij(l) + Ãji(l)

2

]⊤

G(l)

[
Ãij(l) + Ãji(l)

2

]
− P (l) ≤ −Xij(l), i < j, l = 1, · · · , N, (12)




X11(l) X12(l) · · · X1q(l)
X12(l) X22(l) · · · X2q(l)

...
...

...
...

X1q(l) X2q(l) · · · Xqq(l)


 > 0, l = 1, · · · , N. (13)

Letting X(l) = P−1(l), Yi(l) = Ki(l)X(l) and Qij(l) = X(l)Xij(l)X(l) and after
pre- and post-multiply (11)–(12) and (13) respectively by diag(X(l), I) and diag(X(l), · · · ,
X(l)), we get:

[
−X(l) + Qii(l) ⋆

W⊤(l)
[
Ãi(l)X(l) + B̃i(l)Yi(l)

]
−B

]
< 0, i = 1, · · · , q, l = 1, · · · , N, (14)
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


−X(l) + Qij(l) ⋆

1
2W⊤(l)

[
Ãi(l)X(l) + B̃i(l)Yj(l)

+Ãj(l)X(l) + B̃j(l)Yi(l)

]
−B



≤ 0, i < j, l = 1, · · · , N, (15)




Q11(l) Q12(l) · · · Q1q(l)
Q12(l) Q22(l) · · · Q2q(l)

...
...

...
...

Q1q(l) Q2q(l) · · · Qqq(l)


 > 0, l = 1, · · · , N, (16)

where B = diag(X(1), · · · ,X(N)).

Since the conditions (14) and (15) incorporate uncertain matrices Ãi(l) and B̃i(l), they
can not be used to design controller. To tackle this difficulty, we proposed the following
theorem:

Theorem 2 The closed-loop stochastic fuzzy system (3) is robustly stochastically stable
under the state feedback controller of the form (5) if there exist matrices X(l) > 0, Qij(l),
Yi(l), and a set of scalars ǫi(l) > 0, for i, j = 1, 2, · · · , q and l = 1, 2, · · · , N , such that the
set of coupled LMIs (17)–(19) hold. The gains of the controller are given respectively by
Ki(l) = Yi(l)X

−1(l).



−X(l) + Qii(l) ⋆ ⋆ ⋆

W⊤(l) [Ai(l)X(l) + Bi(l)Yi(l)] −B ⋆ ⋆

0 ǫi(l)D
T
i W (l) −ǫi(l) ⋆

Ei(l)X(l) + Fi(l)Yi(l) 0 0 −ǫi(l)


 < 0, (17)

for i = 1, · · · , q, l = 1, · · · , N ,



−X(l) + Qij(l) ⋆ ⋆ ⋆ ⋆ ⋆


1
2W⊤(l)[Ai(l)

X(l) + Bi(l)Yj(l)]
+1

2W⊤(l)[Aj(l)
X(l) + Bj(l)Yi(l)]


 −B ⋆ ⋆ ⋆ ⋆

0
ǫi(l)D

T
i

W (l)
−2ǫi(l) ⋆ ⋆ ⋆

Ei(l)X(l)
+Fi(l)Yj(l)

0 0 −2ǫi(l) ⋆ ⋆

0
ǫj(l)Dj(l)

T

W (l)
0 0 −2ǫj(l) ⋆

Ej(l)X(l)
+Fj(l)Yi(l)

0 0 0 0 −2ǫj(l)




< 0, (18)

for i, j = 1, 2, · · · , q, i < j, and l = 1, · · · , N ,
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


Q11(l) Q12(l) · · · Q1q(l)
Q12(l) Q22(l) · · · Q2q(l)

...
...

...
...

Q1q(l) Q2q(l) · · · Qqq(l)


 > 0, l = 1, · · · , N. (19)

Proof. By using Schur complements, (17) can be converted equivalently to

[
−X(l) + Qii(l) ⋆

W⊤(l) [Ai(l)X(l) + Bi(l)Yi(l)] −B

]
+ ǫi(l)

[
0

W⊤(l)Di(l)

] [
0 D⊤

i (l)W (l)
]

+ ǫ−1
i (l)

[
(Ei(l)X(l) + Fi(l)Y (l))⊤

0

] [
Ei(l)X(l) + Fi(l)Y (l) 0

]
< 0. (20)

By using Lemma 2, we have

[
0

W⊤(l)Di(l)

]
∆i(l, t)

[
Ei(l)X(l) + Fi(l)Y (l) 0

]

+

[
(Ei(l)X(l) + Fi(l)Y (l))⊤

0

]
∆i(l, t)

[
0 D⊤

i (l)W (l)
]

< ǫi(l)

[
0

W⊤(l)Di(l)

] [
0 D⊤

i (l)W (l)
]

+ ǫ−1
i (l)

[
(Ei(l)X(l) + Fi(l)Y (l))⊤

0

] [
Ei(l)X(l) + Fi(l)Y (l) 0

]
.

Therefore, we have
[

−X(l) + Qii(l) ⋆

W⊤(l) [Ai(l)X(l) + Bi(l)Yi(l)] −B

]

+

[
0

W⊤(l)Di(l)

]
∆i(l, t)

[
Ei(l)X(l) + Fi(l)Y (l) 0

]

+

[
(Ei(l)X(l) + Fi(l)Y (l))⊤

0

]
∆i(l, t)

[
0 D⊤

i (l)W (l)
]

< 0,

which is
[

−X(l) + Qii(l) ⋆

W⊤(l)
[
Ãi(l)X(l) + B̃i(l)Yi(l)

]
−B

]
< 0. (21)

Similarly, from (18) we can derive (15), and therefore the expected results are achieved. 2
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Remark 5 When the number of local models is limited to 1 (i.e.: the system is linear), the
results of the stabilization are the ones already developed for linear discrete-time systems
with Markovian jumps.

4 Numerical Examples

To illustrate the effectiveness of the previous theoretical results, this section provides two
numerical examples. The first is an academic one and the second is practical one. All of
the computations are implemented using MATLAB with LMI Toolbox. We will use the
following membership functions for the two examples:

h1(x1(t)) =
0.4

1 + |x1(t)|

h2(x1(t)) =
0.5

1 + |x1(t)|
h(x1(t)) = 1 − h1(x1(t)) − h2(x1(t))

The uncertainties in these examples are assumed to be zero. Notice that the presence
of the uncertainties will be done in a similar way as we did for these two examples.

Example 1: For the academic example, let us consider a system with two states and
three modes. The three local models that approximate the nonlinear dynamics in each
mode are assumed to have the following data:

• mode # 1:

A1(1) =

[
1.0 1.0
0.4 0.2

]
, B1(1) =

[
0.0
0.1

]
,

A2(1) =

[
1.0 0.1

−0.25 0.2

]
, B2(1) =

[
0.0
0.2

]
,

A3(1) =

[
1.0 0.1
−0.3 0.2

]
, B3(1) =

[
0.0
0.5

]
,

• mode # 2:

A1(2) =

[
1.0 1.0
0.4 0.2

]
, B1(2) =

[
0.0
0.1

]
,

A2(2) =

[
1.0 0.1

−0.25 0.2

]
, B2(2) =

[
0.0
0.2

]
,

A3(2) =

[
1.0 0.1
−0.3 0.2

]
, B3(2) =

[
0.0
0.5

]
,
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• mode # 3:

A1(3) =

[
1.0 1.0
−0.4 0.1

]
, B1(3) =

[
0.0
0.11

]
,

A2(3) =

[
1.0 1.0
−0.2 0.2

]
, B2(3) =

[
0.0
0.21

]
,

A3(3) =

[
1.0 0.1
−0.1 0.2

]
, B3(3) =

[
0.0
0.3

]
,

The probability matrix between the different modes is given by:

P =




0.4 0.3 0.3
0.3 0.6 0.1
0.2 0.3 0.5



 .

Solving LMI (7) we can not find a feasible solution and this does not imply that the system is
not stochastically stable since our conditions are only sufficient. Solving now the LMIs (17)–(19),
we get:

X(1) =

»

1.1744 −0.6371
−0.6371 0.9485

–

, X(2) =

»

1.2407 −0.6090
−0.6090 1.0567

–

, X(3) =

»

1.3610 −0.6626
−0.6626 0.9250

–

,

Q11(1) =

»

0.3360 −0.3524
−0.3524 0.3896

–

, Q12(1) =

»

0.0077 −0.0072
−0.0072 0.0010

–

, Q13(1) =

»

0.0061 −0.0114
−0.0114 −0.0154

–

,

Q22(1) =

»

0.0826 −0.0752
−0.0752 0.3541

–

, Q23(1) =

»

−0.0176 0.0014
0.0014 −0.0170

–

, Q33(1) =

»

0.0841 −0.0728
−0.0728 0.3604

–

,

Q11(2) =

»

0.4488 −0.4143
−0.4143 0.4163

–

, Q12(2) =

»

0.0044 −0.0042
−0.0042 −0.0093

–

, Q13(2) =

»

0.0033 −0.0034
−0.0034 −0.0099

–

,

Q22(2) =

»

0.0506 −0.0634
−0.0634 0.4256

–

, Q23(2) =

»

−0.0095 −0.0005
−0.0005 −0.0126

–

, Q33(2) =

»

0.0507 −0.0633
−0.0633 0.4250

–

,

Q11(3) =

»

0.4845 −0.4033
−0.4033 0.4236

–

, Q12(3) =

»

0.0484 −0.0566
−0.0566 0.0307

–

, Q13(3) =

»

0.0429 −0.0508
−0.0508 0.0246

–

,

Q22(3) =

»

0.5654 −0.4637
−0.4637 0.4690

–

, Q23(3) =

»

−0.2786 0.2025
0.2025 −0.1431

–

, Q33(3) =

»

0.5646 −0.4631
−0.4631 0.4686

–

,

Y1(1) =
ˆ

−2.2040 −1.4217
˜

, Y1(2) =
ˆ

0.8340 −2.8534
˜

, Y1(3) =
ˆ

1.4181 −3.4035
˜

,

Y2(1) =
ˆ

−0.6098 −0.3842
˜

, Y2(2) =
ˆ

−1.9786 −0.5816
˜

, Y2(3) =
ˆ

0.1935 −2.1370
˜

,

Y3(1) =
ˆ

−0.1559 −0.0408
˜

, Y3(2) =
ˆ

−4.0178 0.8305
˜

, Y3(3) =
ˆ

−0.3408 −1.2385
˜

,

which gives the following gains:

K1(1) =
ˆ

−4.2322 −4.3418
˜

, K1(2) =
ˆ

−0.9110 −3.2254
˜

, K1(3) =
ˆ

−1.1508 −4.5038
˜

,

K2(1) =
ˆ

−1.1628 −1.1862
˜

, K2(2) =
ˆ

−2.6006 −2.0492
˜

, K2(3) =
ˆ

−1.5089 −3.3911
˜

,

K3(1) =
ˆ

−0.2457 −0.2081
˜

, K3(2) =
ˆ

−3.9778 −1.5066
˜

, K3(3) =
ˆ

−1.3855 −2.3314
˜

.

Figures 1–3 give the simulation results, where the initial state is set to be [1,−1]. In Figure 1,
solid line is for x1(t) and dashed line is for x2(t). Figure 3 and Figure 4 are for control effort and
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jumping mode, respectively. We can see satisfactory results are obtained by this fuzzy jumping
controller.

Example 2: For the second example, let us consider the model for the economic of the USA as
described in [9] which is also known in the literature as Samuelson’s multiplier model. This model
is given by:

x(t + 1) = F (x(t), u(t), s, α), x(0) = x0

where x(t) ∈ R
2 with x2(t) stands for the national income (x1(t) differs from x2(t) only by a one-

step lag), u(t) ∈ R represents the government expenditure, s is the marginal propensity to save (1

s

in the so-called multiplier) and α is an accelerator coefficient.

Based on historical data of the United States Department of Commerce the parameters s and α

were grouped in three states called respectively, normal, boom and slump. In the rest of this paper
we refer to states as the mode of our system. The table 1 gives the signification of these modes.

Table 1: System’s mode
Mode Name Description

1 Normal s and α are in mid-range
2 Boom s is in low range (or α is in high range)
3 Slump s is in high range (or α is in low range)

For this nonlinear system, we will try to represent it by three local models. The three local
models that approximate the nonlinear dynamics in each mode are assumed to have the following
data:

• mode # 1:

A1(1) =

[
0.0 1.0
−2.5 3.2

]
, B1(1) =

[
0.0
1.0

]
,

A2(1) =

[
0.0 1.0
−2.0 2.2

]
, B2(1) =

[
0.0
1.0

]
,

A3(1) =

[
0.0 1.0
−1.5 2.5

]
, B3(1) =

[
0.0
1.0

]
,

• mode # 2:

A1(2) =

[
0.0 1.0

−43.7 45.4

]
, B1(2) =

[
0.0
1.0

]
,

A2(2) =

[
0.0 1.0

−33.7 35.4

]
, B2(2) =

[
0.0
1.0

]
,

A3(2) =

[
0.0 1.0

−40.7 55.4

]
, B3(2) =

[
0.0
1.0

]
,



Les Cahiers du GERAD G–2007–35 13

• mode # 3:

A1(3) =

[
0.0 1.0
5.3 −5.2

]
, B1(3) =

[
0.0
1.0

]
,

A2(3) =

[
0.0 1.0
4.3 −4.2

]
, B2(3) =

[
0.0
1.0

]
,

A3(3) =

[
0.0 1.0
3.3 −3.2

]
, B3(3) =

[
0.0
1.0

]
,

The probability matrix between the different modes is given by:

P =




0.63 0.17 0.2
0.30 0.47 0.23
0.24 0.12 0.64


 .

Solving LMI (7) we can not find a feasible solution and as before, this does not imply that the
system is not stochastically stable. Solving now the LMIs (17)–(19), we get:

X(1) =

»

1.1744 −0.6371
−0.6371 0.9485

–

, X(2) =

»

1.2407 −0.6090
−0.6090 1.0567

–

, X(3) =

»

1.3610 −0.6626
−0.6626 0.9250

–

,

Q11(1) =

»

0.3360 −0.3524
−0.3524 0.3896

–

, Q12(1) =

»

0.0077 −0.0072
−0.0072 0.0010

–

, Q13(1) =

»

0.0061 −0.0114
−0.0114 −0.0154

–

,

Q22(1) =

»

0.0826 −0.0752
−0.0752 0.3541

–

, Q23(1) =

»

−0.0176 0.0014
0.0014 −0.0170

–

, Q33(1) =

»

0.0841 −0.0728
−0.0728 0.3604

–

,

Q11(2) =

»

0.4488 −0.4143
−0.4143 0.4163

–

, Q12(2) =

»

0.0044 −0.0042
−0.0042 −0.0093

–

, Q13(2) =

»

0.0033 −0.0034
−0.0034 −0.0099

–

,

Q22(2) =

»

0.0506 −0.0634
−0.0634 0.4256

–

, Q23(2) =

»

−0.0095 −0.0005
−0.0005 −0.0126

–

, Q33(2) =

»

0.0507 −0.0633
−0.0633 0.4250

–

,

Q11(3) =

»

0.4845 −0.4033
−0.4033 0.4236

–

, Q12(3) =

»

0.0484 −0.0566
−0.0566 0.0307

–

, Q13(3) =

»

0.0429 −0.0508
−0.0508 0.0246

–

,

Q22(3) =

»

0.5654 −0.4637
−0.4637 0.4690

–

, Q23(3) =

»

−0.2786 0.2025
0.2025 −0.1431

–

, Q33(3) =

»

0.5646 −0.4631
−0.4631 0.4686

–

,

Y1(1) =
ˆ

−2.2040 −1.4217
˜

, Y1(2) =
ˆ

0.8340 −2.8534
˜

, Y1(3) =
ˆ

1.4181 −3.4035
˜

,

Y2(1) =
ˆ

−0.6098 −0.3842
˜

, Y2(2) =
ˆ

−1.9786 −0.5816
˜

, Y2(3) =
ˆ

0.1935 −2.1370
˜

,

Y3(1) =
ˆ

−0.1559 −0.0408
˜

, Y3(2) =
ˆ

−4.0178 0.8305
˜

, Y3(3) =
ˆ

−0.3408 −1.2385
˜

,

which gives the following gains:

K1(1) =
ˆ

−4.2322 −4.3418
˜

, K1(2) =
ˆ

−0.9110 −3.2254
˜

, K1(3) =
ˆ

−1.1508 −4.5038
˜

,

K2(1) =
ˆ

−1.1628 −1.1862
˜

, K2(2) =
ˆ

−2.6006 −2.0492
˜

, K2(3) =
ˆ

−1.5089 −3.3911
˜

,

K3(1) =
ˆ

−0.2457 −0.2081
˜

, K3(2) =
ˆ

−3.9778 −1.5066
˜

, K3(3) =
ˆ

−1.3855 −2.3314
˜

.

Also, we give the simulation results in Figures 4–6. The initial state is set to be [1 1]T . In
Figure 4, solid line is for x1(t) and dashed line is for x2(t). Figures 5–6 give the control effort and
the jumping mode.
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Figure 1: State x1(t), x2(t)
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Figure 2: State x1(t), x2(t)
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Figure 3: Control effort u(t)
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Figure 4: Control effort u(t)
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Figure 5: Jumping mode r(t)
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5 Conclusion

This paper dealt with the control of the class of discrete-time nonlinear Markovian jump systems.
The stochastic stability and stochastic stabilizability problems are studied and in each case sufficient
conditions in the LMI setting have been established.
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