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Abstract

In this paper, we consider the problem of constructing confidence intervals for a
population median when the underlying population is discrete. We describe seven
methods of assigning confidence levels to order statistic based confidence intervals, all
of which are easy to implement. An extensive simulation study shows that, with dis-
crete populations, it is possible to obtain consistently more accurate confidence levels
and shorter intervals compared to the ones reported by the classical method which is
implemented in commercial softwares. More precisely, the best results are obtained
by inverting a two-tailed sign test that properly takes into account tied observations.
Some real data examples illustrate the use of these confidence intervals.

Key Words: Sign test; Tied observations; Discrete distribution; Multinomial distri-
bution; Confidence level; Maximum likelihood.

Résumé

Dans cet article, nous considérons le probleme de la construction d’intervalles de
confiance pour une médiane lorsque la population sous-jacente est discrete. Nous
décrivons sept méthodes pour assigner un niveau de confiance a un intervalle formé
par des statistiques d’ordre. Ces méthodes sont toutes faciles & implémenter. Une étude
par simulation démontre que, pour des populations discretes, il est possible d’obtenir
des niveaux de confiance plus précis et des intervalles plus courts comparativement a
ceux obtenus des méthodes classiques qui sont implémentées dans les logiciels usuels.
Plus précisément, les meilleurs résultats sont obtenus en inversant un test du signe bidi-
rectionnel qui traite adéquatement les ex-sequo. Des exemples avec de vraies données
illustrent I'utilisation des intervalles de confiance.
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1 Introduction

Estimation of a population median (M) is an important topic, particularly when the un-
derlying population can not be assumed to be symmetric. The sample median (M ) is a
natural point estimator of M. It minimizes the sum of the distances to the data points.
It also has other desirable properties, including being median unbiased when the under-
lying population is continuous and asymptotically efficient when the population is double
exponential. Order statistic based confidence intervals of the form:

[X(a)s X(nt1-a)] (1)

for some integer 1 < d < n/2 are also used to estimate M, when Xi, X, ..., X,, denotes
a random sample of size n from the underlying population and X(;) < X(g) <--- < Xy
denote the order statistics of the sample.

When the population is continuous, the interval in (1) has a confidence level

l-a=1-2P[B<d-1], (2)
where B is a binomial(n, %) random variable. This confidence interval has a distribution-
free property because

PX@y <M < X(ny1-a)]

is equal to (2) for any continuous population. The expression (2) results because the
confidence interval (1) contains the values M that would not be rejected by the two-tailed
a level sign test. An advantage of this interval is that it requires only a binomial(n, %)
distribution to find 1 — . However, the choices of 1 — « are constrained by the discrete
nature of the binomial(n, %) distribution. To enable construction of, for example, a 95%
confidence interval for any sample size n, Hettmansperger and Sheather (1986) proposed
an interval created by interpolating between [X(4), X(n41-a)] and [X(441), X(n—q)]. The
resulting interval is now only approximately distribution-free, but it performs well over a
variety of continuous distributions. Their method is implemented in MINITAB. A number
of authors have described interpolated intervals for use with continuous populations. See
Papadatos (1995), Hutson (1999) and Ho and Lee (2005a, 2005b) for recent contributions
and additional references. The use of a closed interval in (1) comes from an important
result of Scheffé and Tukey (1945) showing that for a closed interval the probability that
M is included in the interval is greater than or equal to the expression in (2) even when the
population is discrete. Therefore, the confidence level described in (2) extends, possibly
conservatively, to any population.

In many applications the underlying population is discrete and takes only a finite (or
countably infinite) number of values. For example, Ferner, Coleman, Pirmohamed, Con-
stable and Rouse (2005) proposed a scale for measuring whether the SPC’s (Summary of
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Product Characteristics) which come with a nonhaematological drug provide adequate in-
struction to enable pharmacists to monitor haematologically adverse drug reactions. They
called their measurement scale a SIM (Systematic Instructions for Monitoring) score. Five
clinicians recorded SIM scores for each of 84 SPC’s of nonhaematological drugs. The me-
dian score among the five for each of the 84 SPC’s are displayed in the upper plot of
Figure 5. They are naturally integer valued, because SIM scores are integer valued. One of
the researchers’ objectives was to estimate a population median SIM score. The population
is discrete, in fact, integer valued. Thus the population median will be an integer.

This paper addresses the problem of finding a confidence interval for a population
median when the underlying population is discrete. For simplicity of description, assume
that the population is integer valued. The translation to other discrete settings will follow
readily. Since it is a rare discrete population for which there is an integer k satisfying
P(X; < k) = 1/2, we will define the population median M as the unique integer such
that P(X; < M —1) < 1/2 and P(X; < M) > 1/2. In discrete population settings it
is inappropriate to interpolate between possible values. The median must be one of the
possible values. Without particular knowledge about the population, it is still natural to
estimate M with the sample median M. It will be one of the possible values (possibly
two when n is an even integer). It is also appropriate to form a confidence interval for M
using a closed interval like (1) with order statistics as the endpoints. Scheffé and Tukey’s
(1945) result shows that this interval is appropriate in discrete cases, though the coverage
probability stated in (2) may underestimate the actual coverage probability of the interval.
Very little research has been directed toward this setting. Scheffé and Tukey (1945),
Emerson and Simon (1979) and Huang (1991) are papers that consider the estimation of
M in discrete population settings.

Section 2 discusses the assignment of approximate confidence levels to closed intervals
of the form in (1) for discrete populations. Seven different methods of assigning confidence
levels are described. The performances of these methods are compared via simulation
studies in Section 3. Examples and conclusions are given in Section 4. Throughout the
paper the focus is on finding intervals with a confidence level of at least 95%. This is
intended to simplify the presentation. The adaptation to other target confidence levels
easily follows.

2 Assigning Confidence Levels

In continuous population settings, confidence intervals are commonly constructed by spec-
ifying a desired confidence level and then constructing a data based interval that will
contain the desired parameter with probability equal to the desired confidence level. In
discrete population settings, particularly those involving a broad class of discrete popu-
lation models, this construction plan can not be followed. A confidence interval (such as
described in (1)) is , of course, still data based. But in addition, the level of confidence
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associated with that interval is also a function of the observed data. The number of values
tied at the endpoints or at adjacent possible values will alter the level of confidence that
should be associated with the interval. Because of the discrete nature of this setting there
are thus only a finite number of associated confidence levels that are possible. If a target
level of confidence is given, such as .95, then the interval is chosen which has the smallest
associated confidence level exceeding or equal to .95. What follows in this section are
descriptions of seven methods of assigning a level of confidence to an interval of the form
in (1).

Method 1: Based on the Noether (1967) result, the expression in (2) is clearly a legiti-
mate assignment of a confidence level to interval (1). This is implemented in MINITAB, for
example. When n > 50, MINITAB approximates the binomial probability with a normal
distribution.

Method 2: SAS considers intervals like (1) with confidence levels specified by (2)
and compares them with slightly asymmetric (in the order statistics) intervals
[X(d41)s X(nt1-q)] With associated confidence level of 1 —a =1 P[B < d—1]- P[B < d],
where B is binomial(n, %) The chosen interval is the one among all of these that has the
smallest associated confidence level that exceeds or equals 0.95. The level associated with
the chosen interval is reported as the confidence level of the interval.

Method 3: Motivated by the descriptions in Scheffé and Tukey (1945) and Noether
(1967), consider an interval that is determined symmetrically, but with an assigned confi-
dence level that takes into account the tied values. Consider the interval [X (d),X(n+1_d)]
Let 7 be the smallest integer for which X(,) = X(4). Let s be the largest integer for which
X(s) = X(nt1-q)- The interval will be [X 4y, X(n41—-a)], but the confidence level attached
to it will be 1 —a =1— P[B <r —1] — P[B < n — s], where B is binomial(n, 3). The
integer d is chosen to produce the smallest confidence level that exceeds or equals .95.
The confidence levels assigned by this method are those associated with the simultaneous

inversion of two one-tailed sign tests for the respective directional alternatives.

Methods of assigning a confidence level associated with inverting versions of a two-tailed
sign test are considered next. When using an interval [X(d),X (n+1—d)] and the p-value of
a two-tailed test, a confidence level is determined by

1 — a =1— max{p-value(X 4 —), p-value(X ;1 1_q+)}, (3)

where p-value(c), denotes the p-value of a two-tailed test of Hy: M = c. Here Xa)—
denotes the first possible population value below X4 and X(,;1_q)+ denotes the first
possible population value above X, 1_g)-

Method 4: When the underlying population is continuous, the first population value
below X4y can be thought to be X4 — € where € is a very small positive quantity, such
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that Xg_1) < X(q) — €. Likewise, the first possible value above X(,;1_g) is considered to
be X(;41-q) + € < X(42-q)- The p-value of the sign test for continuous data can be used,
namely

p — value(c) = 2P[B < min{nS,nc}], (4)

where n¢ = (number of X/s > ¢) and n® = (number of X/s < ¢). The confidence interval
[X(a)» X(nt1-q)] is then given a confidence level through (3).

When the underlying population is discrete on the integers the first possible value below
X(q) is X(g) — 1. There may be zero, one or more observations on X — 1. Likewise, the
first possible value above X(,11_q) is X(,11-4) + 1 and it also may or may not be an
observed value. So in a discrete population setting (3) becomes:

1 —a =1 - max(p-value(X 4 — 1), p-value(X(,11-q) + 1)) (5)

Consequently, these confidence levels require using p-values of versions of the two-tailed
sign test that properly account for the possibility of zeros. When basing p-value(c) on a
sign test of Hy: M = ¢ versus H,: M # ¢, let:

nS = (number of X/s > ¢), n§ = (number of X;s = ¢) and n® = (number of X;s < ¢).
It is possible that ng > 0.

The literature on the use of zeros in the sign test is extensive. Coakley and Heise (1996)
provide a review of this topic from a testing perspective. Their investigation explored a
null hypothesis that the probability of a positive equals the probability of a negative.
This makes the number of zeros irrelevant. However, ignoring the number of zeros is
not appropriate when the hypothesis concerns the population median. Recent papers by
Randles (2001) and Fong, Kwan, Lam and Lam (2003) describe problem settings which
are relevant to the population median.

Consider two-tailed sign tests that reject for large values of
ng = max(ng,n’).
A p-value could be obtained for such a test via:
p—Value(c) = P[N* = ni‘ﬁ+7ﬁ07ﬁ—]7 (6)

where N, = max(N4, N_) and (N4, Ny, N_) have a multinomial distribution with param-
eters n and (P4, po, p—) satisfying:

0<pr<1/2 and 0<p_<1/2 (7)

which is the null hypothesis condition. We suggest three methods of finding appropriate
values for (p4, po, p—).
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Method 5 — Maximum Likelihood: Assuming the null hypothesis condition (7), the
maximum likelihood estimators of the probabilities are:

ng ng nt
P+mile = 77 Pomie = ;, P—mie = 7,
when ng < 7, and
1 ns n¢
~ ~ 0 ~ p—
Py+mle = 55 Pomle = 57 oo P-mle= 721> (8)
2 2(n —n%) 2(n —nS)

when n$ > 5. In this case, it is seen that the excess of n9 over n/2 is distributed multi-
plicatively between pomie and p_pe. Likewise, when n® > 7, the estimates look like (8)
with the roles of pi e and p_e reversed and the roles of ng and n¢ reversed. The MLE
estimates were used in Fong et al. (2003), but there was a slight error in their description
in that paper. The estimates given by (8) are substituted into (6) which, in turn, produces
a confidence level using (5).

Method 6 — Constrained Quadratic Loss: A second method finds the (p4, po,p—)
that minimizes: . . .
ny 2, (Mo 2, (- 2
— — — — — —p_ 9
(= =p)* + (2 = po)* + (= —p-)7], (9)
under the null hypothesis condition 0 < p; < 1/2 and 0 < p_ < 1/2. The minimizing
probabilities are:

p zz—ni Po lz—n(c) p lz—nc_
+cq n ) cq na —cq n )
when ng < 5, and
. 1 ng 1.nG 1 . n® 1n% 1
= —, —_ — —\— — =), _ = — —\— =), 10
Pcql 2 Pocql n + 2( n 2) P—cql n + 2( n 2) ( )

when n§ > 4. Note that in contrast with the MLE estimates, the excess of ng over n/2
is distributed equally and additively between po.q and p_.q. Likewise, when n¢ > 3, the
estimates look like (10) with the roles of py.q and p_.q reversed and the roles of nG and
n¢ reversed. The estimates given by (10) are substituted into (6) which, in turn, produces
a confidence level using (5).

When n§ = 0, the Maximum Likelihood Method 5 uses (Dmie, Pomies D—mie) = (%, 0, %)
and the MLE p-value produced by (6) is that of the continuous data two-tailed sign test.
The Constrained Quadratic Loss Method 6 does not have this property. In the next section
it is shown that this creates some undesirable performance characteristics when the data
values are sparse (few ties are observed). The following method is constructed to have

improved performance in sparse settings.
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Method 7 — Modified Constrained Quadratic Loss: Use (P4, D0, P—) = (P+cqls Docqls
DP—cqi) as described in Method 6 when n§ > 0 and (P4, po,p-) = (%,07 %) when n§ = 0.
The p-value(c) is then described by (6) and the confidence level by (5).

3 Simulation study

An extensive simulation study was performed in order to compare the seven methods for
constructing confidence intervals defined in the preceding section. The investigation used
the Poisson(\) and the negative binomial(n,p) distributions. For the Poisson distribution,
all integer values of the parameter A between 1 and 40 were considered. For the negative
binomial distribution, twelve different parametrizations were used where (n, p)=(number
of successes, probability of success) with parameter set values (1, 0.1), (1, 0.2), (1, 0.3),
(1, 0.4), (2, 0.1), (2, 0.2), (2, 0.3), (2, 0.4), (3, 0.1), (3, 0.2), (3, 0.3), and (3, 0.4).

For each of the above distributions, all sample sizes between 15 and 40 were considered.
Consequently, there were 1040 configurations for the Poisson distribution (40 df x 26
sample sizes) and 312 (12 parametrizations x 26 sample size) for the negative binomial.
These configurations cover a large spectrum of nearly symmetric (Poisson) and skewed
(negative binomial) distributions and also a broad spectrum of concentrated versus more
sparse distributions.

As explained in the last section, conservative 95% confidence intervals were constructed
by choosing the smallest interval that has an associated confidence level of at least 95%. For
each of the 1352 configurations, the quantities of interest were estimated by generating 5000
samples. The computations were performed with the Ox language version 3.4; Doornik
(2002).

We will examine three crucial aspects of a confidence interval:

1. Is the reported confidence level accurate? That is, is the difference between the
reported confidence and the true coverage small?

2. Does the interval maintain the desired coverage probability (which is 95%)?
3. Is the interval short?

Basically, we are looking for short confidence intervals that maintain the desired coverage
probability and which have associated confidence levels that are accurate. The results
for some specific configurations will be presented later, but first the overall picture of the
performances for both distributions are described in Tables 1 and 2.

The results for the Poisson distribution are summarized in Table 1. The first part of
the table provides the averages (over the 1040 configurations) of the true coverage (em-
pirical coverage of the 5000 samples) minus the average (over the 5000 samples) reported



Les Cahiers du GERAD G-2007-13 7

confidence level. The minimums and maximums (over the 1040 configurations) are also
presented. We see that Method 6 is the most accurate. On average, the confidence re-
ported by this method underestimates the true coverage by only 0.40%. It is followed
by the two other methods based on two-tailed sign tests for tied observations (Method 7
and Method 5) which underestimate the true coverage by 0.67% and 0.81% respectively.
Method 1 and Method 2 perform poorly compared to the others.

The second part of the table provides another view of the accuracy of the methods. The
seven methods were ranked according to the absolute value of true coverage minus reported
confidence levels. The table reports the average ranks (over the 1040 configurations) and
also the minimum and maximum ranks. Method 6 has the smallest average rank (1.38)
among the seven methods. As before, Method 7 and Method 5 come in second and third
place respectively. Once again, Methods 1 and 2 perform very poorly. Indeed, Method 1
was only able to achieve a fifth place during all the 1040 configurations.

The third part of the table gives averages (over the 1040 configurations) of the true
coverage (empirical coverage of the 5000 samples). It also reports the minimum and max-
imum true coverages (over the 1040 configurations). All methods maintained the desired
coverage probability (95%) for all configurations. Indeed, all minimums are above 95%.

The last part of the table provides a comparison of the confidence interval lengths across
methods. Inside and for each of the 1040 configurations, the seven methods were ranked
according to the average length of the confidence interval (over the 5000 samples). The
table then reports the average ranks (over the 1040 configurations) and also the minimum
and maximum ranks. Method 6 is again the best one since its average rank (1.57) was the
smallest among the seven methods. To summarize, Methods 6, 7 and 5 are clearly the best
ones for the Poisson distributions considered.

Table 2 presents the same information as Table 1 but summarizing the 312 configu-
rations of the negative binomial distribution. Method 6 is again the most accurate (first
part of the table) but with this distribution it overestimates the true coverage by 0.21%
on average. Method 7 is almost as accurate by underestimating the true coverage by
0.28%. Methods 7, 3 and 5 are the best ones when we rank the accuracies within config-
urations (second part of the table). The third part of the table shows that, on average,
all seven methods maintain the desired coverage probability over the 312 configurations.
But Method 6 can have a true coverage that falls slightly below 95% as indicated by its
minimum value of 93.66%. The other six methods always maintain the desired coverage
probability since their minimums are all above 95%. Finally, Methods 6, 7 and 5 are
respectively in first, second and third place according to the average lengths of their confi-
dence intervals. To summarize, if a conservative confidence interval is desired (i.e., if it is
not acceptable that the true coverage could be below 95%), then Method 7 would be the
method of choice for the negative binomial distributions considered.
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Table 1: Overall results of the simulation study for the Poisson distribution (1040 config-
urations of df and sample size)

Difference between reported
confidence and true coverage (in %)

Method Minimum Maximum Average
6 -1.16 1.96 0.40
7 -0.35 1.96 0.67
5 -0.05 1.96 0.81
3 0.15 1.79 0.93
4 0.52 2.73 1.37
1 0.71 4.86 2.22
2 1.12 4.86 2.78

Intra-configuration ranking of absolute difference
between reported confidence and true coverage

Method Minimum Maximum Average
6 1.00 6.00 1.38
7 1.00 5.00 2.09
5 1.00 5.00 3.21
3 1.00 5.00 3.68
4 1.00 5.00 4.65
1 5.00 6.50 6.31
2 6.50 7.00 6.69

True coverage (in %)

Method Minimum Maximum Average
6 95.12 100.00 97.97
7 96.34 100.00 98.27
5 96.88 100.00 98.44
3 97.16 100.00 98.60
2 97.02 100.00 98.93
4 97.16 100.00 99.10
1 97.16 100.00 99.10

Intra-configuration ranking
of confidence interval length

Method Minimum Maximum Average
6 1.00 4.00 1.57
7 1.50 4.50 2.58
5 2.00 4.50 2.96
3 3.00 5.00 4.00
2 2.00 6.00 5.13
4 4.00 6.50 5.88
1 4.00 6.50 5.88

Figures 1, 2 and 3 present some typical results for specific distributions. For these fig-
ures, the plot in the upper left corner gives the probability mass function of the underlying
distribution. Only support points with a probability greater than 0.01 are included in the



Les Cahiers du GERAD G-2007-13 9

Table 2: Overall results of the simulation study for the negative binomial distribution (312
configurations of parameters and sample size)

Difference between reported
confidence and true coverage (in %)

Method Minimum Maximum Average
6 -2.19 1.81 -0.21
7 -1.40 1.85 0.28
5 -1.31 1.76 0.43
3 -0.95 1.60 0.51
4 0.17 2.75 1.07
1 0.24 4.66 1.86
2 0.64 4.70 2.31

Intra-configuration ranking of absolute difference
between reported confidence and true coverage

Method Minimum Maximum Average
7 1.00 6.00 2.36
3 1.00 5.00 2.68
5 1.00 5.00 2.84
6 1.00 7.00 3.14
4 1.00 5.00 4.24
1 3.00 6.50 6.15
2 4.50 7.00 6.59

True coverage (in %)

Method Minimum Maximum Average
6 93.66 99.96 97.32
7 95.24 99.96 97.86
5 95.96 99.96 98.03
3 96.28 99.96 98.15
2 96.28 100.00 98.46
4 96.28 100.00 98.74
1 96.28 100.00 98.74

Intra-configuration ranking
of confidence interval length

Method Minimum Maximum Average
6 1.00 4.00 1.55
7 1.50 4.50 2.73
5 2.00 4.50 3.14
3 2.00 5.50 3.75
2 2.00 6.00 5.06
4 4.00 6.50 5.88
1 4.00 6.50 5.88

plot to help visualize the shape of the distribution and give an idea about the number of
non-negligible support points. The plot in the upper right corner gives the true coverage
(empirical coverage of the 5000 samples) minus the average (over the 5000 samples) re-
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ported confidence levels as a function of the sample size. A positive value indicates that
the reported confidence under-estimates (on average) the true coverage. Ideally, this value
should be close to 0 in absolute value. The plot in the lower left corner gives the true
coverage as a function of the sample size. Since we are constructing conservative 95%
confidence intervals, these values should ideally be above (but close) to 95%. Finally, the
plot in the lower right corner gives the average length of the interval as a function of the
sample size. In order to make the figures easier to read, only Methods 1, 5, 6 and 7 are
displayed. To get an idea about the other methods, we can say that Method 3 is close to
Method 5, that Method 2 is even worse than Method 1 and that Method 4 lies somewhere
between Methods 1 and 5.

The results for the Poisson(20) distribution are depicted in Figure 1. Method 6 is clearly
the best method for this distribution followed closely by Method 7. Indeed, looking at plot
b), we see that the reported confidence of Method 6 is closer to the true coverage for almost
all sample sizes. Moreover, all methods are under-estimating the true coverage except for
four sample sizes for the Method 6. We also see in plot ¢) that the true coverage is always
greater than the target 95% but Method 6 is closer to the target. Finally, plot d) shows
that on average, Method 6 produces shorter intervals.

If the accuracy of the reported confidence is the important criterion, an example where
Method 6 is not the best one is the negative binomial(2, 0.1) distribution reported in
Figure 2. Subplot b) shows that Method 6 over-estimates the true coverage. Methods 5
and 7 are better at reporting accurate confidence levels. This type of situation was the
motivation for the introduction of Method 7. However, the true coverage of the Method 6
is closer to 95% and its intervals are shorter as seen in plots ¢) and d).

The negative binomial(3, 0.3) depicted in Figure 3 shows that Method 6 can be the
best one for a skewed distribution. As with the Poisson(20) distribution, Method 6 over-
estimates the true coverage, but the reported confidence levels are more accurate than
those of the other six methods. The true coverage of Method 6 is also closer to the target
and its intervals are shorter.

A potential problem with Method 6 is that it does not adjust to the sparseness of
the distribution. Even for a continuous distribution, the p-value is computed by using a
positive value for py. By defining pg = 0 when ng = 0, Method 7 corrects this, thereby
adapting to the sparseness of the distribution.

Figure 4 illustrates the benefits of doing that by showing the results of a simulation study
for the sparse normal distribution. A sparse normal random variable X with parameter
(round factor) c is generated in the following way:

X =round(cZ)

where Z is a standard normal variate. All integer values between 1 and 40 were considered
for ¢. With ¢ = 1 the distribution is concentrated on a few values and the distribution
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Figure 1: Simulation results for the construction of the conservative 95% confidence interval
for the Poisson(20) distribution. The lines are numbered according to the methods they
are representing. Plot a) is the probability mass function of the distribution. Plot b) is the
empirical true coverage minus the average reported confidence as a function of the sample
size. Plot c¢) is the empirical true coverage. Plot d) is the average length of the confidence
interval.
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Figure 2: Simulation results for the construction of the conservative 95% confidence interval
for the negative binomial(2, 0.1) distribution. The lines are numbered according to the
methods they are representing. Plot a) is the probability mass function of the distribution.
Plot b) is the empirical true coverage minus the average reported confidence as a function
of the sample size. Plot ¢) is the empirical true coverage. Plot d) is the average length of
the confidence interval.
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Figure 3: Simulation results for the construction of the conservative 95% confidence interval
for the negative binomial(3, 0.3) distribution. The lines are numbered according to the
methods they are representing. Plot a) is the probability mass function of the distribution.
Plot b) is the empirical true coverage minus the average reported confidence as a function
of the sample size. Plot ¢) is the empirical true coverage. Plot d) is the average length of
the confidence interval.
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Figure 4: Simulation results for the construction of the conservative 95% confidence interval
for the sparse normal(c) distribution with a sample size of 40. The lines are numbered
according to the methods they are representing. Plot a) is the empirical true coverage
minus the average reported confidence as a function of the round factor ¢. Plot b) is the
empirical true coverage.

becomes more sparse as ¢ increases. With ¢ = 40, we practically have a continuous normal
distribution with standard deviation 40.

Figure 4 displays the results for the sparse normal distribution as a function of the round
factor ¢ when the sample size is 40. As cincreases, i.e. as the distribution becomes more and
more continuous, Method 6 overestimates the true coverage and its true coverage falls below
95%. Method 7 adjusts to the sparseness of the distribution, provides accurate confidence
levels and has a true coverage which is always above 95%. Moreover, as c¢ increases,
all methods (except Method 6) become indistinguishable. It’s clear that in practice, the
analyst could probably judge the appropriateness of using Method 6 depending on the
observed data but Method 7 provides a convenient automatic adjustment.

4 Example and concluding remarks

To illustrate the practical use of the confidence intervals, we first return to the SIM scores
example described in the Section 1. The left part of Table 3 present the confidence intervals
obtained by all seven methods along with their reported confidence levels. As in the rest
of the paper, the goal was to construct intervals with a coverage of at least 95%. We
see that six methods produced the interval [10,18]. Only Method 6 was able to produce
the shorter interval [11,16] with a reported confidence of 96.63%. Among the six other
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intervals, Methods 5 and 7 report the highest confidence levels while Methods 1 and 2
report the lowest. Evidence gathered from the simulation study make us believe that the
larger values are probably better estimates of the actual probability of coverage.

The middle and lower plots of Figure 5 display two classic data sets. The middle plot
displays counts of ticks on 82 sheeps as first reported by Fisher (1941) and included by
Hand, Daly, Lunn, McConway and Ostrowski (1994). The lower plot in Figure 5 displays
reading scores for 116 persons who dropped out of a Job Corp program. They were reported
and analyzed by Taylor (1972) and appear in the text by Daniels (1990). For these two
data sets, the middle and right parts of Table 3 show that Methods 3, 5, 6 and 7 produced
the shortest intervals [10, 18] and [4, 5] respectively. Among these four methods, Methods 6
and 7 report the highest and probably the most accurate confidence levels.

Based on all the findings from the simulation study and the data examples, it is clear
that Methods 1 and 2 (which are respectively implemented in MINITAB and SAS) can
be improved when dealing with a discrete population. The three methods based on ver-
sions of the sign tests that can handle zeros (Methods 5, 6 and 7) gave the best results.
Moreover, these methods do not pose complicated computational challenges compared to
the currently implemented methods, as they are simply based on the trinomial distribu-
tion instead of the binomial distribution. Our recommendation is that, with a discrete
population, Methods 6 and 7 should be the methods of choice. Method 7 could be viewed
as a good all around and conservative method while Method 6 should be used more cau-
tiously especially for distributions with many non-negligible support points since it does
not perform as well as Method 7 does when the underlying distribution is sparse. But if
used appropriately, Method 6 can provide a very accurate analysis in many circumstances
as shown in the simulation study and, indeed, it is the method that generally produces the
shortest confidence intervals.

Table 3: Confidence interval results for the three data sets

SIM scores (n=84) Ticks on sheep (n=82) Reading scores (n=116)
Sample median = 14 Sample median = 5 Sample median = 14
Method | lower upper confidence | lower upper confidence | lower upper confidence

1 10 18 96.25 4 6 96.48 11 16 96.77
2 10 18 96.25 4 6 95.25 11 16 95.85
3 10 18 98.84 4 5 96.02 12 16 95.14
4 10 18 98.84 4 6 98.02 11 16 98.01
5 10 18 99.41 4 5 96.70 12 16 96.05
6 11 16 96.63 4 5 96.99 12 16 96.13
7 10 18 99.42 4 5 96.99 12 16 96.13
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Figure 5: The three data sets used for illustration: SIM scores (upper plot), ticks on sheep
(middle plot) and reading scores (lower plot).
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