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Abstract

This paper deals with the class of linear discrete-time systems with random abrupt
changes also known as class of Markovian jump singular systems. The problems of
stochastic stability and the stochastic stabilization (using state-feedback control and
static output feedback control) are tackled. Conditions in the LMI setting to design the
appropriate gains of the controllers are developed. It is shown that all the addressed
problems can be solved if the corresponding developed linear matrix inequalities (LMIs)
are feasible. Numerical examples are employed to show the usefulness of the proposed
results.

Key Words: singular systems, descriptor systems, systems with random abrupt
changes, discrete-time linear systems, linear matrix inequality, stochastic stability,
stochastic stabilizability, state feedback control, static output feedback control.

Résumé

Cet article traite de la classe des systèmes disctets singuliers et à sauts markoviens.
Les problèmes de stabilité et de stabilisation (avec retour d’état et retour de sortie sta-
tique) sont considérés. Des conditions en forme de LMI pour le design de ces contrôleurs
sont développées dont la solution dépend de la faisabilité des LMIs developpées. Des
exemples numériques sont utilisés pour montrer l’utilité des résultats dv́eloppés.
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1 Introduction

In the last decades Markovian jump systems have attracted a lot of researchers from control
and operations research communities. This is due to the fact that this class of systems
is more appropriate to model some practical systems that we can found in manufacturing
systems, power systems, network control systems, etc. More efforts have been done on
different subjects related to this class of systems. Almost all the control problems for these
systems have been tackled and interesting results have been reported in the literature. For
more details on subject we refer the reader to Boukas (2005) for the continuous-time case
and Costa et al. (2005) for the discrete-time case and the references in these volumes.

In parallel, the class of descriptor systems has also attracted a lot of researchers from
mathematics and control communities and interesting results on different control problems
have been reported in the literature. Both continuous-time and discrete-time systems have
been considered. For more details on what has been done on the subject, we refer the
reader to Xu and Lam (2006) and the references.

Recently, the class of descriptor systems with random abrupt changes has also been
tackled and few problems has been considered. For more details on what has been done on
the subject, we refer the reader to Boukas (2007), Boukas et al. (2005) and the references
therein.

All the results reported in the literature on the class of Markovian jump systems or
even on singular system with Markovian jumps assumed the complete knowledge of the
dynamics of the Markov process that describes the switching between the system modes.
But practically this is not valid since it is very hard and more expensive to get all the jump
rates for the continuous-time case or all the transition probabilities for the discrete-time
case, and therefore the results developed earlier can not be applied to practical systems.

More often in the discrete-time case for instance, we have partial knowledge of the
transition probabilities with some bounds for few transitions of the system that we can
get by doing some experiment on the practical system that we would like to study the
stabilization. In this paper we will assume that we have partial knowledge of the transitions
and since that all the transition probabilities for a practical system are bounded with finite
values which is the case in practice, we will require only the knowledge of an upper bound for
the transition probabilities in each mode. The aim of this paper is to revise the stochastic
stabilization of the class of singular systems with random abrupt changes and develop
new conditions for such problems that require only partial knowledge of the transition
probabilities of the Markov chain that describes the switching modes of the systems.

The rest of this paper is organized as follows. In Section 2, the problem is stated and
the goal of the paper is presented. In Section 3, the main results are given and they include
results on stochastic stability and stochastic stabilizability. A state feedback controller and
a static output feedback controller are used in this paper and a design algorithms in terms
of the solutions to linear matrix inequalities are proposed to synthesize the controllers
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gains we are using. Section 4 presents numerical examples to show the usefulness of the
proposed results.

Notation: Throughout this paper, R
n and R

n×m denote, respectively, the n dimensional
Euclidean space and the set of all n×m real matrices. The superscript “T” denotes matrix
transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are symmetric
matrices, means that X − Y is positive semi-definite (respectively, positive definite). I is
the identity matrices with compatible dimensions.

2 Problem statement

The goal of this paper is to revise the stochastic stability and stochastic stabilizability of
the class of descriptor discrete-time linear systems with random abrupt changes.

Let {rk, k ≥ 0} be a Markov chain with state space S = {1, · · · , N} and state transition
matrix P = [pij ]i,j∈S

, i.e. the transition probabilities of {rk, k ≥ 0} are as follows:

P[rk+1 = j|rk = i] = pij,∀i, j ∈ S . (1)

with 0 ≤ pij ≤ 1 and
∑N

j=1
pij = 1,∀i ∈ S .

Consider a discrete-time descriptor Markovian jump system with N modes and suppose
that the system mode switching is governed by {rt, t ≥ 0}. The system is described by:

{

E(rt+1)xt+1 = A(rt)xt + B(rt)ut, xs=0 = x0

yt = C(rt)xt

(2)

where xt is the state and ut is the control input, A(i), B(i) and C(i), for all i ∈ S are
known real matrices with appropriate dimensions; and E(i) ∈ R

n×n is a known singular
matrix with rank (E(i)) = nr ≤ n for all i ∈ S .

In the rest of the paper we will denote by x(t;x0, r0), shortened to xt, the solution of
system (2) when the initial conditions are respectively x0 and r0.

For the continuous-time Markovian jump systems for instance, the jump rates are in
general hard to measure for practical systems and therefore the results developed on sta-
bility or stabilization in the literature are in some sense useless. Some alternates that
consider uncertainties on the jump rates have been proposed. Among them we quote the
work done by Benjelloun and Boukas (1998) where uncertainties on the jump rates are
considered and El-Ghaoui and Ait-Rami (1994) where they consider polytopic uncertain-
ties on the transition matrix. In this paper we will assume that we have partial knowledge
of the transitions and all the probability transitions are bounded with finite values which
is a practical assumption. The following assumption is made in the rest of the paper.

Assumption 2.1 The transition probabilities are assumed to satisfy the following:

0 < p
i
≤ pij ≤ p̄i ≤ 1,∀i, j ∈ S , j 6= i (3)
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where p
i
and p̄i are known parameters for each mode or may represent the lower and upper

bounds when all the jump rates are known, i.e.:

0 < p
i
= min (pi1, · · · , piN )

0 < p̄i = max (pi1, · · · , piN )

with p
i
≤ p̄i.

Remark 2.1 Notice that the assumption is realistic and it is always true that the transi-
tions probabilities, pij ∀i, j ∈ S satisfy the assumption for any practical system.

Remark 2.2 The results we are planning to develop in this paper do not require the knowl-
edge of the transition probabilities of the discrete-time system but only an upper bound, p̄i,
representing the maximum upper bound for all the transition probabilities in each mode.
The results can be developed for only an unique upper bound that represents the maximum
upper bound for all the modes. The corresponding results will be restrictive compared to
the one we are planning to develop here.

Assumption 2.2 The matrix C(i), ∀i ∈ S is assumed to be full row rank.

Remark 2.3 The fact that the matrix C(i), ∀i ∈ S is full row rank, this means that there
exists a matrix D(i), ∀i ∈ S such that the following holds:

C(i)D(i) =
[

I 0
]

where I is the identity matrix with appropriate dimension.

The following definitions will be used in the rest of this paper. For more details on the
class of systems with random abrupt changes properties, we refer the reader to Boukas
(2007) and the references therein.

Definition 2.1 System (2) is regular if for any i ∈ S , det [zE(i) − A(i)] is not identically
zero.

Definition 2.2 System (2) is causal if for any i ∈ S , deg [det [zE(i) − A(i)]] = rank [E(i)].

Definition 2.3 System (2) is said to be stochastically stable (SS) if the following holds:

E

[

∞
∑

k=0

‖xk‖2|x0, r0

]

≤ Γ(x0, r0),

where Γ(x0, r0) is a non-negative function of the system initial values.

Definition 2.4 System (2) is said to be stochastically stabilizable if there exists a control
law with one of the following forms:











u(t) = K(rt)x(t), state feedback controller,

or

u(t) = K(rt)y(t), static output feedback controller

(4)
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with K(i) ∈ R
m×n, i ∈ S is a constant matrix such that the closed-loop system is stochas-

tically stable.

Combining the systems dynamics and the controller expression, we get the following
closed-loop dynamics:

E(rt+1)xt+1 = Acl(rt)x(t), (5)

where Acl(rt) = A(tt) + B(rt)K(rt) for the state feedback control and Acl(rt) = A(tt) +
B(rt)K(rt)C(rt) for the static output feedback control with K(rt) is the controller gain
that we have to compute.

The goal of this paper is to develop new conditions to check the stochastic stability
and to design a state feedback controller or a static output feedback controller that makes
the closed-loop system regular, causal and stochastically stable. In the rest of this paper,
we will assume the complete access to the system state and mode for feedback. Our
methodology in this paper will be mainly based on the Lyapunov theory and some algebraic
results. The conditions we will develop here will be in terms of the solutions to linear matrix
inequalities that can be easily obtained using LMI control toolbox.

Before closing this section, let us give some lemmas that we will use in our development.
The proofs of these lemmas can be found in the cited references.

Lemma 2.1 Let H, F and G be real matrices of appropriate dimensions with F symmetric
and definite-positive then, for any scalar ε we have:

− H⊤G⊤F−1GH ≤ εGH + εH⊤G⊤ + ε2F (6)

Proof: Notice that:
[

H⊤G⊤ + εF
]

F−1 [GH + εF ] ≥ 0

After expanding this expression we get:

H⊤G⊤F−1GH + εGH + εH⊤G⊤ + ε2F ≥ 0

which gives the relation of the Lemma 2.1. This ends the proof of the lemma. 2

Lemma 2.2 (Boukas and Liu, 2002) The linear matrix inequality

[

H S⊤

S R

]

> 0

is equivalent to

R > 0,H − S⊤R−1S > 0

where H = H⊤, R = R⊤ and S is a constant matrix.
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3 Main results

In this section, we will firstly develop results that assure that the free system (i.e. ut = 0
for all t ≥ 0) is regular, causal and stochastically stable. Then using these results, we will
design a state feedback controller and a static output feedback controller of the form (4)
that guarantees the same goal.

3.1 Stochastic stability

Based on the results for this class of systems, the free system (2) will be regular, causal
and stochastically stable if there exists a set of symmetric and nonsingular matrices P =
(P (1), · · · , P (N)) such that the following hold:

A⊤(i)

N
∑

j=1

pijP (j)A(i) − E⊤(i)P (i)E(i) < 0,∀i ∈ S

with the following constraints:

E⊤(i)P (i)E(i) ≥ 0 (7)

To remove the last non strict inequality constraints, let us introduce a new matrices
R(i) ∈ R

n×n that satisfies the following condition:

E⊤(i)R⊤(i) = 0, or R(i)E(i) = 0.

Using this, the conditions for our system to be regular, causal and stochastic stability
become:

A⊤(i)





N
∑

j=1

pijP (j) − R⊤(i)S(i)R(i)



 A(i) − E⊤(i)P (i)E(i) < 0

for any symmetric and nonsingular matrix S(i), ∀i ∈ S .

From the other side since the matrix
[

I A⊤(i)
]

has full row rank, for any nonsingular
matrix Q(i), this inequality can be rewritten as follows:

A⊤(i)





N
∑

j=1

pijP (j) − R⊤(i)S(i)R(i)



 A(i) − E⊤(i)P (i)E(i)

=
[

I A⊤(i)
]

[

J1(i) A⊤(i)Q(i) − Q⊤(i)

Q⊤(i)A(i) − Q(i)
∑N

j=1
pijP (j) − Q(i) − Q⊤(i)

] [

I

A(i)

]

< 0

with

J1(i) = A⊤(i)Q(i) + Q⊤(i)A(i) − A⊤(i)R⊤(i)S(i)R(i)A(i) − E⊤(i)P (i)E(i)
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Using now the Assumption 2.1, the system will be regular, causal and stochastically
stable if the following holds:

[

J1(i) A⊤(i)Q(i) − Q⊤(i)

Q⊤(i)A(i) − Q(i)
∑N

j=1
p̄iP (j) − Q(i) − Q⊤(i)

]

< 0

Let P̄ and Wi be defined as follows:

P̄ = diag [P (1), · · · , P (N)] ,

Wi =
[√

p̄iI, · · · ,
√

p̄iI
]

we get the following set of coupled matrix inequalities:





J1(i) A⊤(i)Q(i) − Q⊤(i) 0
Q⊤(i)A(i) − Q(i) −Q(i) − Q⊤(i) Wi

0 W ⊤
i −P̄−1



 < 0,∀i ∈ S .

Let Z(i) = Q−1(i), X(i) = P−1(i), and W (i) = S−1(i) and pre- and post-multiplying
the previous inequality respectively by diag

[

Z⊤(i), Z⊤(i), I
]

and its transpose we get:





J2(i) Z⊤(i)A⊤(i) − Z(i) 0
A(i)Z(i) − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)



 < 0,∀i ∈ S .

with

J2(i) = Z⊤(i)A⊤(i) + A(i)Z(i) − Z⊤(i)A⊤(i)R⊤(i)W−1(i)R(i)A(i)Z(i)

−Z⊤(i)E⊤(i)X−1(i)E(i)Z(i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]

Using now Lemma 2.1, we get for any ε(i) and any β(i):

− Z⊤(i)E⊤(i)X−1(i)E(i)Z(i) ≤ ε(i)E(i)Z(i) + ε(i)Z⊤(i)E⊤(i) + ε2(i)X(i),

− Z⊤(i)A⊤(i)R⊤(i)W−1(i)R(i)A(i)Z(i)

≤ β(i)R(i)A(i)Z(i) + β(i)Z⊤(i)A⊤(i)R⊤(i) + β2(i)W (i).

Using these inequalities, we get the results of the following theorem that gives the
conditions to guarantee that system (2) is regular, causal and stochastically stable.
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Theorem 3.1 The free System (2) (i.e.: ut = 0,∀t ≥ 0) is regular, causal and stochasti-
cally stable if there exist a set of symmetric and positive-definite matrices X = (X(1), · · · ,

X(N)) and a set of symmetric and nonsingular matrices W = (W (1), · · · ,W (N)), and a
set of nonsingular matrices Z = (Z(1), · · · , Z(N)) such that the following set of coupled
LMIs holds:





J3(i) Z⊤(i)A⊤(i) − Z(i) 0
A(i)Z(i) − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)



 < 0,∀i ∈ S . (8)

with

J3(i) = Z⊤(i)A⊤(i) + A(i)Z(i) + ε(i)E(i)Z(i) + ε(i)Z⊤(i)E⊤(i) + ε2(i)X(i)

+β(i)Z⊤(i)A⊤(i)R⊤(i) + β(i)R(i)A(i)Z(i) + β2(i)W (i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]

3.2 State feedback stabilization

Let us now design a state feedback controller with the following form:

ut = K(rt)xt (9)

where K(i) is a gain to be determined.

Combining the system’s dynamics (2) with the controller (9) expression and using The-
orem 3.1, the closed-loop system is regular, causal and stochastically stable if there exist
a set of symmetric and positive-definite matrices X = (X(1), · · · ,X(N)) and a set of
symmetric and nonsingular matrices W = (W (1), · · · ,W (N)), and a set of nonsingular
matrices Z = (Z(1), · · · , Z(N)) such that the following set of coupled matrix inequalities
holds:





J3(i) Z⊤(i)A⊤
cl(i) − Z(i) 0

Acl(i)Z(i) − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)



 < 0,∀i ∈ S , (10)

with

Acl(i) = A(i) + B(i)K(i)

J3(i) = Z⊤(i)A⊤
cl(i) + Acl(i)Z(i) + ε(i)E(i)Z(i) + ε(i)Z⊤(i)E⊤(i) + ε2(i)X(i)

+β(i)Z⊤(i)A⊤
cl(i)R

⊤(i) + β(i)R(i)Acl(i)Z(i) + β2(i)W (i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]
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Notice that:

Acl(i)Z(i) = [A(i) + B(i)K(i)] Z(i) = A(i)Z(i) + B(i)K(i)Z(i)

Letting Y (i) = K(i)Z(i) we get the results of the following theorem that allows us to
design the state feedback controller gains.

Theorem 3.2 There exists a state feedback controller of the form (9) such that the closed-
loop system is regular, causal and stochastically stable if there exist a set of symmetric and
positive-definite matrices X = (X(1), · · · ,X(N)), a set of symmetric and nonsingular
matrices W = (W (1), · · · ,W (N)), a set of nonsingular matrices Z = (Z(1), · · · , Z(N))
and a set of matrices Y = (Y (1), · · · , Y (N)) such that the following set of coupled matrix
inequalities holds:





J4(i) [A(i)Z(i) + B(i)Y (i)]⊤ − Z(i) 0
[A(i)Z(i) + B(i)Y (i)] − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)





< 0,∀i ∈ S , (11)

with

J4(i) = Z⊤(i)A⊤(i) + A(i)Z(i) + B(i)Y (i) + Y ⊤(i)B⊤(i) + ε(i)E(i)Z(i)

+ε(i)Z⊤(i)E⊤(i) + ε2(i)X(i) + β(i) [A(i)Z(i) + B(i)Y (i)]⊤ R⊤(i)

+β(i)R(i) [A(i)Z(i) + B(i)Y (i)] + β2(i)W (i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]

3.3 Static output feedback stabilization

Let us now design a static output feedback controller with the following form:

ut = K(rt)yt = K(rt)C(rt)xt (12)

where K(i) is a gain to be determined.

Using the fact that the matrix C(i) is full row rank, we have:

C(i)D(i) =
[

I 0
]

which implies that:

[A(i) + B(i)K(i)C(i)] D(i) = A(i)D(i) + B(i)
[

K(i) 0
]
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Combining the system’s dynamics (2) with the controller (12) expression the closed-
loop system is regular, causal and stochastically stable if the following condition (obtained
after pre- and post-multiply respectively by D⊤(i) and D(i) the corresponding inequality)
holds:

[

A(i)D(i) + B(i)
[

K(i) 0
]]⊤





N
∑

j=1

p̄iP (j) − R⊤(i)S(i)R(i)





[

A(i)D(i) + B(i)
[

K(i) 0
]]

< 0

Notice that the presence of the term
[

K(i) 0
]

in the condition requires a special
choice for the form of the matrix Z(i) to allow us to determine uniquely the gain K(i).
One of the form that may help in this matter is given by the following expression:

Z(i) =

[

Z1(i) 0
Z2(i) Z3(i)

]

(13)

Using this expression for Z(i) and based Theorem 3.1, the closed-loop system is regu-
lar, causal and stochastically stable if there exist a set of symmetric and positive-definite
matrices X = (X(1), · · · ,X(N)), a set of symmetric and nonsingular matrices W =
(W (1), · · · ,W (N)), and a set of nonsingular matrices Z = (Z(1), · · · , Z(N)) such that
the following set of coupled matrix inequalities holds:





J3(i) V ⊤(i) − Z(i) 0
V (i) − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)



 < 0,∀i ∈ S , (14)

with

V (i) = A(i)D(i)Z(i) + B(i)K(i)
[

I 0
]

Z(i)

J3(i) = V (i) + V ⊤(i) + ε(i)E(i)D(i)Z(i)

+ε(i)Z⊤(i)D⊤(i)E⊤(i) + ε2(i)X(i) + β(i)V ⊤(i)R⊤(i)

+β(i)R(i)V (i) + β2(i)W (i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]

Notice that:

V (i) = A(i)D(i)Z(i) + B(i)K(i)
[

I 0
]

Z(i)

= A(i)D(i)Z(i) + B(i)
[

K(i)Z1(i) 0
]

Letting Y (i) = K(i)Z1(i) we get the results of the following theorem that allows us to
design the static output feedback controller gains.
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Theorem 3.3 There exists a static output feedback controller of the form (9) such that
the closed-loop system is regular, causal and stochastically stable if there exist a set of
symmetric and positive-definite matrices X = (X(1), · · · ,X(N)), a set of symmetric and
nonsingular of matrices W = (W (1), · · · ,W (N)), a set of nonsingular matrices Z =
(Z(1), · · · , Z(N)) and a set of matrices Y = (Y (1), · · · , Y (N)) such that the following
set of coupled LMIs holds:





J4(i) V ⊤(i) − Z(i) 0
V (i) − Z⊤(i) −Z(i) − Z⊤(i) Z⊤(i)Wi

0 W ⊤
i Z(i) −Xi(X)



 < 0,∀i ∈ S , (15)

with

V (i) = A(i)D(i)Z(i) + B(i)
[

Y (i) 0
]

J4(i) = V (i) + V ⊤(i) + ε(i)E(i)D(i)Z(i)

+ε(i)Z⊤(i)D⊤(i)E⊤(i) + ε2(i)X(i) + β(i)V ⊤(i)R⊤(i)

+β(i)R(i)V (i) + β2(i)W (i)

Wi =
[ √

p̄iI · · ·
√

p̄iI
]

,

Xi(X) = diag [X(1), · · · ,X(N)]

The stabilizing controller gain is given by K(i) = Y (i)Z−1
1

(i).

Remark 3.1 Previously we have developed results on stochastic stability and stochastic
stabilization via state feedback and static output feedback controllers when the transitions
probabilities are partially known. The developed results are mainly based on the knowledge
of the upper bound probability in each mode. This assumption can be relaxed and new results
can be obtained by assuming only the knowledge only of an unique upper bound for the all
the transitions probabilities. The results obtained based on this assumption present some
conservatism compared to those established in this paper. But they remain an alternate
when the transitions probabilities are not available.

4 Numerical examples

In this section, we will give some numerical examples to show that the results we developed
either on stochastic stability or stochastic stabilizability are valid. As it was stated in the
theory we will assume that we have partial knowledge of the Markov chain {rt, t ≥ 0} that
describes the switching between the different modes of the systems.

Example 4.1 To show the validness of stability results, let us consider a two modes Marko-
vian system with states in R

2. The data of this system are as follows:

• mode 1:

E(1) =

[

1.0 0.0
0.0 0.0

]

, A(1) =

[

0.0 1.0
0.1 −0.2

]
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• mode 2:

E(2) =

[

1.0 0.0
0.0 0.0

]

, A(2) =

[

0.0 1.0
−0.2 0.1

]

.

The switching between the two modes is described by the following:

Λ =

[

0.3 0.7
0.8 0.2

]

,

From Λ, we get p̄1 = 0.7 and p̄2 = 0.8.

Based on the expressions of E(1) and E(2) we get the following possible values for R(1)
and R(2):

R(1) =

[

0 0
1 2

]

, R(2) =

[

0 0
2 1

]

such that E⊤(1)R⊤(1) = 0 and E⊤(2)R⊤(2) = 0. Solving the coupled set of LMIs (8) with
ε(1) = 2, ε(1) = 2, β(1) = −2 and β(2) = −2, we get:

X(1) =

[

1.1097 0.0108
0.0108 1.0837

]

, X(2) =

[

1.1097 0.0108
0.0108 1.0837

]

,

Z(1) =

[

0.3076 −0.0334
0.1181 0.2363

]

, Z(2) =

[

0.2984 −0.0652
0.1239 0.2522

]

,

W (1) =

[

−1.7502 0.0405
0.0405 −1.2491

]

, W (2) =

[

−1.7391 0.0901
0.0901 −0.8542

]

.

Based on Theorem 3.1, we conclude that the system is regular, causal and stochastically
stable.

Example 4.2 To show the validness of the stabilizability results via a state feedback con-
troller, let us consider a two modes Markovian system with states in R

2. The data of this
system are as follows:

• mode 1:

A(1) =

[

0.0 1.0
1.0 2.0

]

, B(1) =

[

0.0
1.0

]

, E(1) =

[

1 0
0 0

]

• mode 2:

A(2) =

[

0.0 1.0
2.0 1.0

]

, B(2) =

[

0.0
2.0

]

, E(2) =

[

1 0
0 0

]

.
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The switching between the two modes is described by the following:

Λ =

[

0.4 0.6
0.5 0.5

]

,

First of all notice that the system in each mode is not stable since the eigenvalues of
A(1) and A(2) are all outside the unit circle. It can be checked even that the all system is
stochastically unstable. From Λ, we get p̄1 = 0.6 and p̄2 = 0.5.

Solving the coupled set of LMIs (11) with ε(1) = 2, ε(1) = 2, β(1) = −2 and β(2) = −2,
and the same values for R(1) and R(2) as in the previous example, we get:

X(1) =

[

1.0938 0.0215
0.0215 1.0871

]

, X(2) =

[

1.0938 0.0215
0.0215 1.0871

]

,

Y (1) =
[

−0.7983 −0.2383
]

, Y (2) =
[

−0.5202 0.1031
]

,

Z(1) =

[

0.3410 −0.0711
0.1827 0.3283

]

, Z(2) =

[

0.3599 −0.0940
0.2070 0.3482

]

,

W (1) =

[

−1.7884 −0.0346
−0.0346 −0.4977

]

, W (2) =

[

−1.8172 0.1261
0.1261 −0.4656

]

,

which gives the following gains for the state-feedback controller:

K(1) =
[

−1.7488 −1.1046
]

,

K(2) =
[

−1.3987 −0.0814
]

.

Based on Theorem 3.2, we conclude that the closed-loop system is regular, causal and
stochastically stable under the state-feedback controller with the set of computed gains.

Example 4.3 To show the validness of the stabilizability results for the discrete-time case
via static output feedback controller, let us consider the two modes Markovian system with
states in R

2 of the previous example with the following extra data C(1) =
[

1 0.1
]

and

C(2) =
[

1 0.1
]

.

Solving the coupled set of LMIs (15) with ε(1) = 2, ε(1) = 2, β(1) = −2 and β(2) = −2,
and the same values for R(1) and R(2) as in the previous example, we get:

X(1) =

[

1.0428 0.0127
0.0127 1.0372

]

, X(2) =

[

1.0428 0.0127
0.0127 1.0372

]

,

Y (1) =
[

−0.9801
]

, Y (2) =
[

−0.4708
]

,

Z(1) =

[

0.4570 0.0
0.2308 0.4138

]

, Z(2) =

[

0.3620 0.0
0.1788 0.3421

]

,

W (1) =

[

−1.8781 −0.0373
−0.0373 0.3164

]

, W (2) =

[

−1.7595 0.0843
0.0843 −0.4445

]

,
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which gives the following gains for the state-feedback controller:

K(1) =
[

−2.1444
]

,

K(2) =
[

−1.3006
]

.

Based on Theorem 3.3, we conclude that the closed-loop system is regular, causal and
stochastically stable under the static output feedback controller with the set of computed
gains.

5 Conclusions

This paper dealt with the stochastic stability and stochastic stabilization of the class of
linear systems with random abrupt changes. Under partial knowledge of the transitions
between the system’s modes, LMI conditions for stochastic stability and stochastic stabi-
lization have been developed. It is shown that all the addressed problems can be solved if
the corresponding developed linear matrix inequalities (LMIs) are feasible. The results we
developed can be extended easily for other classes of systems like systems with time-delay
and for other type of controllers.
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