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Abstract

A popular approach for modeling dependence in a finite-dimensional random vector
X with given univariate marginals is via a normal copula that fits the rank or linear
correlations for the bivariate marginals of X. In this approach, known as the NORTA
method, the normal distribution function is applied to each coordinate of a vector Z

of correlated standard normals to produce a vector U of correlated uniforms random
variables over (0, 1); then X is obtained by applying the inverse of the target marginal
distribution function for each coordinate of U. The fitting requires finding the ap-
propriate correlation ρ between any two given coordinates of Z that would yield the
target rank or linear correlation r between the corresponding coordinates of X. This
root-finding problem is easy to solve when the marginals are continuous, but not when
they are discrete. In this paper, we provide a detailed analysis of the NORTA method
for discrete marginals. We prove key properties of r and of its derivative as a function
of ρ. It turns out that the derivative is easier to evaluate than the function itself.
Based on that, we propose and compare alternative methods for finding or approxi-
mating the appropriate ρ. The case of discrete distributions with unbounded support
is covered as well. In our numerical experiments, a derivative-supported method is
faster and more accurate than a state-of-the-art, non-derivative-based method. We
also characterize the asymptotic convergence rate of the function r (as a function of ρ)
to the continuous-marginals limiting function, when the discrete marginals converge
to continuous distributions.

Key Words: Statistics; distribution; estimation; correlation; mathematics; simula-
tion.
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Résumé

Une approche populaire pour modéliser la dépendance dans un vecteur aléatoire
de dimension finie X, dont on connâıt ses distributions marginales, consiste à utiliser
une copule normale qui ajuste la corrélation de rang ou la corrélation linéaire. Dans
cette approche, connue sous le nom NORTA, la fonction de distribution de la loi nor-
male standard est appliquée à chaque composante du vecteur Z de variables aléatoires
normales standards corrélées pour obtenir un vecteur U de variables aléatoires uni-
formes corrélées sur (0, 1); par la suite X est obtenu en appliquant l’inverse de chaque
distribution marginale associée à chaque composante de U. Pour faire l’ajustement,
il est nécessaire de trouver chaque corrélation ρ appropriée à chaque couple de com-
posantes de Z qui donne la corrélation de rang ou la corrélation linéaire désirée dans
le couple correspondant de X. Le problème de recherche de la racine est très facile
dans le cas où les distributions marginales sont continues, contrairement au cas où elles
sont discrètes. Dans cet article, nous fournissons une analyse détaillée de la méthode
NORTA pour des distributions discrètes. Nous démontrons les propriétés clés de r
en tant que fonction de ρ et de sa fonction dérivée. Il s’avère que la fonction dérivée
est plus facile à évaluer que la fonction elle-même. Sur cette base, nous proposons
et nous comparons différentes méthodes pour trouver ou approximer le ρ approprié.
Le cas des distributions marginales avec support infini est aussi étudié. Dans nos ex-
emples numériques, la méthode basée sur la fonction dérivée est plus rapide et plus
précise que la méthode standard, qui fait l’état-de-l’art, basée sur la fonction et non sa
dérivée. Nous spécifions aussi le taux de convergence asymptotique de r (comme func-
tion de ρ) vers la distribution marginale continue limite, dans le cas où les distributions
marginales discrètes convergent vers des distributions continues.
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1 Introduction

This paper develops methods that support the estimation (fitting) of discrete multivariate

distributions. A powerful scheme for modeling multivariate distributions in general is based

on the concept of copula; it permits one to specify separately the marginal distributions and

the stochastic dependence. To put our work in the proper perspective, we start by recalling

basic facts from copula theory. For a concise introduction to copulas, see Embrechts et al.

(2002) or Joe (1997); for a more complete treatment, see Nelsen (1999).

A function C : [0, 1]d → [0, 1] is called a copula if it is the distribution function of a

random vector in R
d with U(0, 1) marginals (uniform over the interval (0,1)). Consider a

random vector X = (X1, . . . ,Xd) with joint distribution F and write Fj for the marginal

distribution of Xj. A copula associated with F (equivalently, X) is a copula C that satisfies

F (x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ R
d. (1)

Given an arbitrary F , a copula C satisfying (1) always exists. If each Xj is a continuous

random variable, then C is unique, and this uniqueness means that we have separated the

marginals from the dependence structure, which is captured by C. (Otherwise, there may

be more than one C satisfying (1), so the dependence cannot be uniquely characterized.)

We will shortly specify a class of distributions F via (1) by specifying the dependence via

a d-variate copula C that is selected after the marginals have been selected. For given

marginals, the choice of copula can have a dramatic impact; see Embrechts et al. (2003,

Sec. 7.1) for an example.

In this paper, we nevertheless restrict our attention to normal copulas; these are the

copulas defined by taking F as a multivariate distribution in (1). This family of copulas

has been suggested by several authors, dating back to Mardia (1970). Attractive features

of normal copulas are that they facilitate estimation (as will be explained) and simulation.

They are sufficient and very convenient for a wide range of applications where fitting only

the marginals and the correlations is a reasonable compromise. In more than two or three

dimensions, estimating the entire copula in a complicated real-life situation is often an

insurmountable challenge.

Other models of discrete multivariate distributions can be found, e.g., in Joe (1997,

sec. 7.2). A limitation of several of these models is that the same parameters affect the

marginal distributions and the dependence. For example, in Model (7.27) of Joe (1997) the

Xi’s are conditionally independent Poisson with mean Ai, where the Ai, i = 1, . . . , d, obey

some multivariate continuous distribution; but the upper limit Corr(Xi,Xj) = 1 is only

possible in the limit where Xi and Xj have identical marginals and Var(Xi)/E(Xi) → ∞;

a further limitation is that if one wanted negative binomial marginals for the Xi, then one

would need the Ai to obey a multivariate distribution with gamma marginals, which is not

convenient to use (Joe, 1997, p. 236).
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Returning to the normal copula, if we write NR for the normal distribution with mean

the zero vector and d × d correlation matrix R, and CR for the associated copula defined

via (1) with F = NR, we have the representation

Z = (Z1, . . . Zd) ∼ NR

X = (X1, . . . ,Xd) =
(

F−1
1 [Φ(Z1)], . . . , F

−1
d ([Φ(Zd)])

)

,
(2)

where Φ is the standard normal distribution function (with mean 0 and variance 1) and

F−1
i , defined by F−1

i (u) = inf{x : Fi(x) ≥ u} for 0 ≤ u ≤ 1, is the quantile function of

the marginal distribution Fi. It is easily seen that CR is a copula associated with X in

(2). This CR is a normal copula. Model (2) is also known under the name NORTA (Cario

and Nelson, 1996, 1998; Chen, 2001), an acronym for NORmal To Anything, since normal

variates are transformed to variates with general nonuniform marginals.

The main issue here is how to find a matrix R such that the vector X has the desired

rank or linear correlation matrix, either exactly or approximately. The natural way of

doing this is element-wise, so we start by discussing the bivariate case (d = 2). Later, we

will discuss the extension to d > 2.

Suppose that d = 2 and that the marginals F1 and F2 have been specified. Selecting

R in (2) reduces to selecting the scalar correlation ρ = Corr(Z1, Z2). The rank correlation

between X1 and X2 is

rX(ρ) = rX(ρ;F1, F2) = Corr(F1(X1), F2(X2))

= Corr
(

F1 ◦ F−1
1 ◦ Φ(Z1), F2 ◦ F−1

2 ◦ Φ(Z2)
)

where ρ = Corr(Z1, Z2) and “◦” denotes function composition. We will explain shortly

that rX may depend on the marginals only if at least one of them is not continuous. One

approach to specifying ρ is to require that rX(ρ;F1, F2) equals a given target value r̃,

which may be the sample rank correlation computed from data, (observations of X), or

determined otherwise. This leads to the NORTA rank-correlation matching problem of

solving

rX(ρ;F1, F2) = r̃. (3)

The dependence of rX on the marginals disappears when F1 and F2 are both continuous:

Fl ◦ F−1
l , l = 1, 2 are the identity map, and thus

rX(ρ;F1, F2) = Corr(Φ(Z1),Φ(Z2)) = (6/π) arcsin(ρ/2),

where the second equality is a well-known property of the bivariate normal distribution.

Thus, solving (3) poses a problem only when at least one of the marginals is not continuous.

Another possibility would be to work analogously with the linear correlation

ρX(ρ;F1, F2) = Corr(X1,X2) = Corr(F−1
1 ◦ Φ(Z1), F

−1
2 ◦ Φ(Z2)),
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which leads to the NORTA linear-correlation matching equality:

ρX(ρ;F1, F2) = ρ̃, (4)

where ρ̃ is the sample linear correlation computed from data. Embrechts et al. (2002)

give a detailed account of measures of dependence and strong arguments that rank cor-

relation is a more appropriate measure than linear correlation. We review their Exam-

ple 5, which illuminates this issue. Consider the marginals X1 ∼ Lognormal(0, 1) and

X2 ∼ Lognormal(0, σ2) for σ > 0. Under several measures of dependence discussed there,

extreme positive and negative dependence occur when X2 is an increasing (decreasing)

function of X1, i.e., in the stochastic representations (X1,X2) = (eZ , eσZ) and (X1,X2) =

(eZ , e−σZ), respectively, where Z ∼ Normal(0, 1). Then the rank correlation of the pair

(X1,X2) equals 1 and −1, respectively. On the other hand, we have: Corr(eZ , eσZ) =

(eσ − 1)/
√

(e − 1)(eσ2 − 1) and Corr(eZ , e−σZ) = (e−σ − 1)/
√

(e − 1)(eσ2 − 1); these con-

tinuous functions of σ are far from 1 and −1 over most of their domain, and they converge

to zero as σ → ∞. Here, linear correlation fails to capture well the dependence, and the

failure is dramatic in the limit. Hörmann et al. (2004, Section 12.5) give additional exam-

ples of this phenomenon and strongly recommend matching the rank correlations instead

of the linear correlations.

When d > 2, (2) is specified by constructing R elementwise; that is, for each pair (i, j),

one has a target value r̃i,j (or ρ̃i,j) and one sets the (i, j)-th element of R to the solution of

(3) with r̃ = r̃i,j (or the solution of (4) with ρ̃ = ρ̃i,j). Thus, one needs to solve d(d− 1)/2

such independent equations. In case the resulting matrix R is not positive semidefinite,

various authors suggest replacing it by another matrix that is positive semidefinite and

minimizes some measure of distance from R (Mardia, 1970; Lurie and Goldberg, 1998;

Ghosh and Henderson, 2003). According to Ghosh and Henderson (2003), this appears to

work well, in the sense that the minimized distance was very small in their tests.

Another related setting is the VARTA class of multivariate stationary time series (Biller

and Nelson, 2003), {Xt = (X1,t, . . . ,Xk,t), t = 1, 2, . . .}, where one specifies the marginals

Fl for l = 1, . . . , k and dependence via the normal copula, i.e., via correlations between Xi,t

and Xj,t−h for h = 0, 1, . . . , p and i, j ∈ {1, 2, . . . , k}; the univariate case k = 1 is known

as ARTA (Cario and Nelson, 1996). That is, the i-th component time series is obtained

by the transformation Xi,t = F−1
i (Φ(Zi,t)), where {Zt} = (Z1,t, . . . , Zk,t) is a k-variate

vector autoregressive process of order p and whose noise vectors are Gaussian; see Biller

and Nelson (2003, Section 3.1.1). Here, the number of equations that must be solved is

pk2 + k(k − 1)/2. (The complications and remedies mentioned earlier have analogs in the

time-series setting). Because the number of equations to be solved can be considerable,

efficient methods for solving equations of the form (3) and (4) are of interest.

We now review past work on NORTA correlation matching. This literature has empha-

sized linear-correlation matching (Cario and Nelson, 1998; Chen, 2001; Biller and Nelson,
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2003), despite the existing arguments in favor of rank correlation, and in principle applies

to both continuous and discrete marginals, unless otherwise said. Cario and Nelson (1998)

employ root bracketing combined with approximating ρX(ρ;F1, F2) (a function of ρ) via

two-dimensional numerical integration (Gauss and Kronrod quadrature rules). With dis-

crete marginals, the integrand has a discontinuity at every support point, so these general-

purpose quadrature rules are not well-suited. Chen (2001) proposed a simulation-based

approach. Biller and Nelson (2003) restricted the marginals to the Johnson family and

thus simplified the solution. For the case of discrete marginals, we were unable to find a

published or unpublished example of NORTA rank- or linear-correlation matching.

The main contributions of this paper are a detailed study of the NORTA correlation

matching problems (3) and (4) and the development of efficient methods for solving these

problems when the marginal distributions are discrete. We express rX(ρ;F1, F2) as an

infinite series, where each term involves a bivariate normal integral to the northeast of a

bivariate support point. We obtain the derivative of rX with respect to ρ as a series of terms

that only involve the exponential function. For finite support, it turns out that the deriva-

tive is considerably faster to evaluate than rX , even if one uses state-of-the-art methods

to compute the bivariate normal integrals. We then develop solution methods that exploit

the derivative. In particular, we propose a simple Newton-type method, which in numer-

ical experiments is faster and more accurate than a state-of-the-art, non-derivative-based

method. For unbounded marginals, we propose a method that does not require evaluating

rX and that substitutes an approximation of the derivative (obtained by truncating the

series); and we provide bounds on the resulting error.

Another contribution is a convergence result on the L∞ distance (i.e., the supre-

mum over ρ ∈ [−1, 1] of the absolute difference) between the rank-correlation function

rX(ρ;F1, F2) for given discrete marginals F1 and F2 and the explicitly known analog for

continuous marginals, in terms of the maximum probability masses of F1 and F2, as these

masses go to zero.

Our results and methods for the rank-correlation problem extend immediately to the

linear-correlation problem, under mild uniform convergence conditions. For reasons given

earlier, we emphasize the rank-correlation problem and discuss only briefly the extension

to the linear-correlation problem.

The remainder is organized as follows. Section 2.1 summarizes relevant background.

In Section 2.2, we prove key properties of the rank and linear correlations as a function

of ρ, we obtain expressions for their derivatives, and we discuss implications. Section 2.3

proposes an approximation to the derivative, with error bounds, for the infinite-support

case. The convergence rate result to the continuous case is proved in Section 2.4. Section 3

specifies the benchmark and the new methods for bivariate NORTA correlation matching,

for either finite or infinite support. In Section 4 we give numerical examples.
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2 Mathematical properties

2.1 Background

Theorem 1 below summarizes useful known results that hold for arbitrary marginals. Let

φρ(x, y) =
1

2π
√

1 − ρ2
exp

{

−(x2 − 2ρxy + y2)/[2(1 − ρ2)]
}

, (5)

the bivariate standard normal density function with correlation ρ.

Theorem 1 Assume F1 and F2 are arbitrary c.d.f.’s and define rX(ρ) = Corr(F1(X1),

F2(X2)) and ρX(ρ) = Corr(X1,X2) with (X1,X2) defined as in (2) with ρ = Corr(Z1, Z2).

1 The functions rX and ρX are nondecreasing on [−1, 1]. We have rX(0) = 0 and

ρX(0) = 0.

2 Assume there exists δ > 0 such that E[|X1X2|1+δ] < ∞ for all ρ ∈ [−1, 1]. Then rX

and ρX are continuous on [−1, 1].

3 If the marginals Fl are continuous, then

Corr(F1(X1), F2(X2)) = 12gC(ρ) − 3 =
6

π
arcsin(ρ/2) =: rC(ρ), (6)

where

gC(ρ) =

∫ ∞

−∞

∫ ∞

−∞
Φ(x1)Φ(x2)φρ(x1, x2)dx1dx2.

Proof. For the linear correlation ρX , parts 1 and 2 are Theorems 1 and 2 of Cario and

Nelson (1996), respectively. To prove the analogous results for rX , it suffices to replace

the nondecreasing functions F−1
l ◦Φ in the proofs of Theorems 1 and 2 of Cario and Nelson

(1996), respectively, by the nondecreasing functions Fl ◦ F−1
l ◦ Φ for l = 1, 2. According

to Kurowicka and Cooke (2001), part 3 was obtained by Karl Pearson in 1907. A more

recent reference is Kruskal (1958). 2

Parts 1 and 2 provide the basis for solving (3) and (4) via root-bracketing; see method

NI1 in Section 3. In Section 2.4 we provide a theoretical result that establishes rC(ρ) as a

natural approximation of rX(ρ;F1, F2). The derivative-based solution methods of Section 3

can work without this approximation, but the approximation usually helps increase their

speed.

2.2 Derivatives and further properties

This section develops the basis for the proposed solution methods. We assume that

marginals are discrete and satisfy weak conditions and we develop explicit formulæ for

the derivatives of the functions rX and ρX .
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For l = 1, 2, we assume that the positive support can be (and is) enumerated in increas-

ing order as 0 ≤ xl,0 < xl,1 < xl,2 < ... and that the negative support is enumerated as

0 > xl,−1 > xl,−2 > .... An example where this condition fails is a support having a finite

x0 > 0 as an accumulation point from the left, combined with Fl(x0) < 1. The condition

holds for most discrete distributions usually encountered in applications, e.g., discrete uni-

form, binomial, geometric, Poisson, negative binomial, and certainly for many more, e.g.,

any finite mixture of any of these. From this practical standpoint, the assumption does

not appear restrictive.

Denote the probability mass of xl,j as pl,j. For any integer k, the cumulative probability

mass is fl,k =
∑k

j=−∞ pl,j. For l = 1, 2, limk→∞ pl,k = limk→∞ pl,−k = 0. Write zl,k =

Φ−1(fl,k), and note that limk→∞ zl,k = − limk→∞ zl,−k = ∞. If the probability mass

above zero is concentrated on a finite number of points, then an increasing sequence of

artificial points xl,j with probability pl,j = 0 can be added as needed, and similarly for the

probability mass below zero.

Derivative of the rank correlation. The rank correlation between X1 and X2 is

rX(ρ) = Corr(F1(X1), F2(X2)) =
g(ρ) − µ1µ2

σ1σ2
, (7)

where:

g(ρ) = E [F1(X1)F2(X2)]

=

∫ ∞

−∞

∫ ∞

−∞
F1{F−1

1 [Φ(x1)]}F2{F−1
2 [Φ(x2)]}φρ(x1, x2)dx1dx2, (8)

where µk and σk are the known mean and standard deviation of Fk(Xk), respectively. Note

that rX involves only shifting and scaling of g by known constants. We rewrite the double

integral in (8) as

g(ρ) =

∞
∑

i=−∞

∞
∑

j=−∞

f1,if2,j

(

∫ z1,i

z1,i−1

∫ z2,j

z2,j−1

φρ(x1, x2)dx1dx2

)

(9)

=

∞
∑

i=−∞

∞
∑

j=−∞

f1,if2,j

[

Φ̄ρ(z1,i−1, z2,j−1) − Φ̄ρ(z1,i−1, z2,j)

−Φ̄ρ(z1,i, z2,j−1) + Φ̄ρ(z1,i, z2,j)
]

=

∞
∑

i=−∞

∞
∑

j=−∞

(f1,i+1 − f1,i)(f2,j+1 − f2,j)Φ̄ρ(z1,i, z2,j)

=
∞
∑

i=−∞

p1,i+1

∞
∑

j=−∞

p2,j+1Φ̄ρ(z1,i, z2,j) (10)
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which involves the bivariate normal integral Φ̄ρ(x, y) =
∫∞
x

∫∞
y φρ(z1, z2)dz1dz2. In the

derivation above, (9) follows directly from the definition (2); the second step rewrites each

double integral over a square as the signed summation of four terms involving four related

integrals at the square’s corners; the third step is a simple rearrangement of the summation.

Observe that in (10), the weight p1,i+1 p2,j+1 multiplies the value of Φ̄ρ at (z1,i, z2,j), not

at (z1,i+1, z2,j+1). If x1,i+1 and x2,j+1 are the smallest values with positive probabilities for

X1 and X2, respectively, then z1,i = z2,j = −∞, so Φ̄ρ(z1,i, z2,j) = 1 and the corresponding

term in (10) is p1,i+1 p2,j+1. As a special case, suppose X1 is degenerate to a single value,

say p1,i+1 = 1. Then, (10) yields

g(ρ) =

∞
∑

j=−∞

p2,j+1Φ̄ρ(−∞, z2,j) =

∞
∑

j=−∞

p2,j+1Φ̄(Φ−1(f2,j))

=
∞
∑

j=−∞

p2,j+1(1 − f2,j) = E[F̄2(X2)]

(a constant), where F̄2(x) := P [X2 ≥ x]. If both X1 and X2 are degenerate, this gives

g(ρ) ≡ 1.

Proposition 1 The function g(ρ) is infinitely differentiable on the interval (−1, 1), with

first derivative

g′(ρ) =
∞
∑

i=−∞

p1,i+1

∞
∑

j=−∞

p2,j+1φρ(z1,i, z2,j). (11)

Proof. We start with the first derivative. We will exploit the property of the bivariate

standard normal density that for −1 < ρ < 1,

d

dρ
φρ(x, y) =

∂2

∂x∂y
φρ(x, y) for any x, y (12)

(Kendall and Stuart, 1977, p. 393, exercise 15.4). We have

d

dρ
Φ̄ρ(x, y) =

∫ ∞

x

∫ ∞

y

d

dρ
φρ(z1, z2)dz2dz1

=

∫ ∞

x

d

dz1

[
∫ ∞

y

∂

∂z2
φρ(z1, z2)dz2

]

dz1

=

∫ ∞

x

d

dz1
[−φρ(z1, y)] dz1

= φρ(x, y). (13)

In steps one and two, the interchange of differentiation and integration is valid because of

the existence and boundedness of the derivatives over the integration domain; in step two,

we used (12); steps three and four use the fundamental theorem of calculus.
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Equation (13) shows that the derivative of each term in the series (10) is the correspond-

ing term in the series (11). It remains to show the validity of interchanging the order of

differentiation and summation. A sufficient condition for this is that for each ρ0 ∈ (−1, 1),

there is a neighborhood of ρ0, Nǫ(ρ0) = (ρ0 − ǫ, ρ0 + ǫ) ⊂ (−1, 1), such that the series

on the right side of (11) converges uniformly for ρ ∈ Nǫ(ρ0) (Rudin, 1976, Theorem 7.17).

This uniform convergence holds in particular if there is an increasing sequence of finite sets

Sk ⊂ Z
2, k ≥ 0, such that

lim
k→∞

sup
ρ∈Nǫ(ρ0)

∑

(i,j)∈Z2\Sk

p1,j+1 p2,j+1φρ(z1,i, z2,j) = 0. (14)

(Since all the terms in (11) are non-negative, this condition is actually a special case of

the well-known Cauchy criterion for uniform convergence (Rudin, 1976, Theorem 7.8).)

The latter condition is easily verified if we take Sk as the bounded rectangle {(i, j) :

max(|i|, |j|) ≤ k}:

sup
ρ∈Nǫ(ρ0)

∑

(i,j):max(|i|,|j|)>k

p1,i+1 p2,j+1φρ(z1,i, z2,j)

≤ 1

2π
√

1 − (ρ0 + ǫ)2





∑

i:|i|>k

p1,i+1 +
∑

j:|j|>k

p2,j+1



→ 0 as k → ∞. (15)

To study the higher-order derivatives, we note that φρ(x, y) = (1 − ρ2)−1/2φ(x)φ[(y −
ρx)(1 − ρ2)−1/2]/(2π) and we change from coordinates (x, y) to polar coordinates (r, θ),

i.e., set x = r cos θ, y = r sin θ, where r ≥ 0 and θ ∈ [0, 2π]. Let δ > 0 and write φ
(d)
ρ for

the d-th derivative of φρ with respect to ρ for |ρ| ≤ 1 − δ. Differentiation gives

φ(1)
ρ (r, θ) = φ(r cos θ)φ(ra(θ, ρ)/

√

1 − ρ2)
(1 − ρ2)[2r2a(θ, ρ) − 1] cos θ + r2a2(θ, ρ)

4π(1 − ρ2)5/2

≤ K1r
2 exp

(

−r2b(θ, ρ)/2
)

for all r, θ, and |ρ| ≤ 1 − δ, (16)

where a(θ, ρ) = sin θ − ρ cos θ, b(θ, ρ) = (1 − 2ρ sin θ cos θ)/(1 − ρ2), and K1 is a pos-

itive constant. First, observe that for any α > 0 and positive integer d, rd exp(−αr2)

is a bounded function of r for r ≥ 0. Second, for any θ, simple calculus shows that

infρ∈[−1,1] b(θ, ρ) ≥ 1/2. This shows that

sup
|ρ|≤1−δ,r≥0,θ∈[0,2π]

φ(d)
ρ (r, θ) < ∞ (17)

for d = 1. Thus, the analog of (15) holds when we substitute φ
(1)
ρ for φρ; this proves that g

has a second derivative on (−1, 1) and that this derivative is an infinite series analogous to

(11) (in each term, one replaces φρ by the intermediate quantity in (16), in the preferred
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coordinate system). The existence of higher-order derivatives of g follows along similar

lines, which we only sketch: φ
(d)
ρ obeys a generalized expression as in (16), where the φ

terms remain intact (the multiplying fraction becomes more complicated); a bound as in

the right of (16) applies with the exponential term intact, a power no larger than r2d outside

the exponential, and a different constant K1; Thus, (17) holds for any integer d > 1, and

the remaining argument is as before. 2

Proposition 1, combined with the strict positivity of φρ(z1,i, z2,i) when z1,i > −∞ and

z2,i > −∞, and part 2 of Theorem 1, yield:

Corollary 1 If both F1 and F2 are non-degenerate distributions, then the function rX is

strictly increasing on [−1, 1], and has therefore an inverse, i.e., there exists a mapping

r−1
X : [rX(−1), rX(1)] → [−1, 1] such that rX ◦ r−1

X is the identity map.

Corollary 1 guarantees the existence and uniqueness of a solution to equation (3), under

the condition that r̃ ∈ [rX(−1), rX(1)].

Derivative of the linear correlation. Analogous properties can be derived for the linear

correlation between X1 and X2, defined as

ρX(ρ) = Corr(X1,X2) =
gL(ρ) − λ1λ2

τ1τ2
,

where

gL(ρ) = E [X1X2] =

∫ ∞

−∞

∫ ∞

−∞
F−1

1 [Φ(x1)]F
−1
2 [Φ(x2)]φρ(x1, x2)dx1dx2, (18)

and λi and τ2
i < ∞ are the known mean and variance of Fi, respectively. Paralleling the

development that led to (10), we obtain the analogous series representation

gL(ρ) =
∞
∑

i=−∞

(x1,i+1 − x1,i)
∞
∑

j=−∞

(x2,j+1 − x2,j)Φ̄ρ(z1,i, z2,j). (19)

Cario and Nelson (1998, eq. (5)) have stated an expression analogous to (9) for the function

gL, where they heuristically truncate both summations to a finite number of terms; they

do not provide an estimate of the truncation error.

To obtain an analogue of Proposition 1, we must justify the interchange of deriva-

tive with summation when we differentiate (19) with respect to ρ. A sufficient uniform

convergence condition in this case is

Condition 1 For each ρ0 ∈ (0, 1), there is a neighborhood Nǫ(ρ0) = (ρ0−ǫ, ρ0+ǫ) ⊂ (0, 1)

such that

lim
k→∞

sup
ρ∈Nǫ(ρ0)

∑

(i,j):max(|i|,|j|)>k

(x1,i+1 − x1,i)(x2,j+1 − x2,j)φρ(z1,i, z2,j) = 0. (20)
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Proposition 2 If Condition 1 holds, then the function gL(ρ) is differentiable on (−1, 1)

with first derivative

g′L(ρ) =

∞
∑

i=−∞

(x1,i+1 − x1,i)

∞
∑

j=−∞

(x2,j+1 − x2,j)φρ(z1,i, z2,j). (21)

Moreover, if Condition 1 holds with φρ(z1,i, z2,j) replaced by its nth derivative with respect

to ρ for n = 1, . . . , d, then gL(ρ) is d times continuously differentiable over (−1, 1).

Proof. The proof parallels that of Proposition 1 and we omit the details. 2

Condition 1 is clearly verified if both F1 and F2 have finite support. A bounded support

(i.e., if all the probability mass of the joint distribution is contained in a bounded rectangle)

is also a (weaker) sufficient condition. For discrete distributions with unbounded support,

the condition will hold if the tail probabilities 1 − Fl(x) converge to zero at a fast enough

rate when x → ∞. If the support is the set of non-negative integers (this is the case for most

popular discrete distributions with infinite support), it is natural to take xl,i = i for all i.

We then have (x1,i+1 − x1,i)(x2,j+1 − x2,j) = 1 so all we need is that |zl,i| = |Φ−1(Fl(xl,i))|
increases quickly enough with i, for l = 1, 2.

Suppose for example that xl,i = i and that the tail of Fl decreases at an exponential

rate: 1−Fl(x) ≤ exp[−γxα] for l = 1, 2 when x is large enough, for some positive constants

α and γ. Several common distributions such as the geometric, negative binomial, Poisson,

etc., satisfy this condition. Using the fact that Φ−1(y) ∼
√

−2 ln(1 − y) when y → 1, we

have that for large i,

zl,i = Φ−1(Fl(i)) ≥ Φ−1 (1 − exp[−γiα]) ≥ (1 − δ)
√

2γiα

for some small constant δ > 0. Putting this in (5) yields (for i and j large enough)

φρ(z1,i, z2,j) ≤ φρ((1 − δ)
√

2γiα, (1 − δ)
√

2γjα)

≤ 1

2π
√

1 − ρ2
exp

[

− 2(1 − δ)2γ(iα + jα − 2ρ(ij)α/2)

2(1 − ρ2)

]

.

But observe that iα+jα−2ρ(ij)α/2 = (iα/2−ρjα/2)2+(1−ρ2)jα = (jα/2−ρiα/2)2+(1−ρ2)iα.

Using this, we can easily show that for j large enough,

∞
∑

i=0

sup
ρ∈Nǫ(ρ0)

φρ(z1,i, z2,j) ≤ K0 exp[−K1j
α]

for some positive constants K0 and K1 that may depend on ρ0 but not on j. Summing

this over j > k, for k large enough, we obtain that
∑

(i,j):j>k

sup
ρ∈Nǫ(ρ0)

φρ(z1,i, z2,j) ≤ K0

∑

j>k

exp[−K1j
α] → 0 when k → ∞.
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The same property obviously holds if we permute i and j, which means that the sum over

{(i, j) : i > k} also vanishes when k → ∞. This implies (20).

As another example, let xl,i = i and pl,i = O(i−3/2). Then each Xl has infinite variance

and Condition 1 does not hold.

Corollary 2 If both F1 and F2 are non-degenerate distributions and Condition 1 holds,

then ρX is strictly increasing on [−1, 1], so it has an inverse ρ−1
X : [ρX(−1), ρX(1)] →

[−1, 1], and (4) possesses a unique solution in [−1, 1] if ρ̃ ∈ [ρX(−1), ρX(1)].

We conclude this section by studying the limit when |ρ| → 1. The behavior of g′(ρ) as

ρ → 1 depends on whether

there exist i and j such that 0 < f1,i = f2,j < 1; (22)

the behavior as ρ → −1 depends on whether

there exist i and j such that 0 < f1,i = 1 − f2,j < 1. (23)

In words, (22) says that F1 and F2 are non-degenerate discrete distributions whose c.d.f.

values meet at least once at a value that is strictly between 0 and 1. The interpretation of

(23) is analogous.

Proposition 3

(a) (22) implies limρ→1 g′(ρ) = ∞. (23) implies limρ→−1 g′(ρ) = ∞.

(b) Assume F1 and F2 have finite support. If (22) fails, then limρ→1 g′(ρ) = 0. If (23)

fails, then limρ→−1 g′(ρ) = 0.

(c) Analogs of (a) and (b), obtained by replacing g′ by g′L, hold.

Proof. We use well-known properties of φρ as |ρ| → 1. If y = x, then limρ→1 φρ(x, y) = ∞.

Analogously, if y = −x, then limρ→−1 φρ(x, y) = ∞. For all (x, y) that lie outside the

lines y = x and y = −x, we have limρ→±1 φρ(x, y) = 0. Condition (22) implies that

there exist i and j with finite z1,i = z2,j and with p1,i+1 p2,j+1 > 0. Then g′(ρ) ≥
p1,i+1 p2,j+1 φρ(z1,i, z2,j) → ∞ as ρ → 1. Similarly, (23) implies that there exist i and j

with finite z1,i = −z2,j and with p1,i+1 p2,j+1 > 0, which gives g′(ρ) → ∞ as ρ → −1. This

completes the proof of part (a). For part (b), there are only finitely many terms, so the

failure of (22) implies that all finite pairs (z1,i, z2,j) lie outside the line y = x; as ρ → 1,

each of the finitely many terms in (11) converges to zero, yielding g′(ρ) → 0. The result

as ρ → −1 follows analogously. The above arguments remain intact if we replace g′ by g′L;

this proves part (c). 2
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2.3 Approximating g
′ when the support is unbounded

For the case where one or both marginals have unbounded support, we propose approx-

imate computation of the derivative g′ via truncation of (11), provide a bound on the

truncation error, and outline the computation. This supports the approximate method de-

tailed in Section 3.2. We discuss the case where both marginals have unbounded support;

straightforward modifications apply otherwise.

We rewrite (11) as

g′(ρ) =
1

2π
√

1 − ρ2

∞
∑

i=−∞

p1,i+1φ(z1,i)Si, (24)

where

Si =
∞
∑

j=−∞

p2,j+1φ

(

z2,j − ρz1,i
√

1 − ρ2

)

. (25)

Our bound of the upper tail of Si is based on the observation that φ
(

(z2,j − ρz1,i)/
√

1−ρ2
)

is decreasing as j increases beyond j∗(i), where j∗(i) = min{j : z2,j ≥ ρz1,i}. This yields

∞
∑

j=k+1

p2,j+1φ

(

z2,j − ρz1,i
√

1 − ρ2

)

≤ (1 − f2,k)φ

(

z2,k − ρz1,i
√

1 − ρ2

)

for any k ≥ j∗(i). (26)

The lower tail is bounded similarly:

k−1
∑

j=−∞

p2,j+1φ

(

z2,j − ρz1,i
√

1 − ρ2

)

≤ f2,k−1φ

(

z2,k − ρz1,i
√

1 − ρ2

)

for any k ≤ j∗(i), (27)

because φ
(

(z2,j − ρz1,i)/
√

1 − ρ2
)

is decreasing as j decreases beyond j∗(i). A similar

approach allows bounding the tails of the summation in (24). Observe that Si ≤ φ(0) for

all i and φ(z1,i) is decreasing as i increases beyond i∗, where i∗ = min{i : z1,i ≥ 0}. This

yields
∞
∑

i=k+1

p1,i+1φ(z1,i)Si ≤ φ(0)φ(z1,k)(1 − f1,k) for any k ≥ i∗. (28)

Similarly,
k−1
∑

i=−∞

p1,i+1φ(z1,i)Si ≤ φ(0)φ(z1,k)f1,k−1 for any k ≤ i∗. (29)

Select small real numbers ǫ1 > 0 and ǫ2 > 0. We truncate the summation in (24), keeping

terms between the indices
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i− := i−(ǫ1) := max{k : k ≤ i∗, φ(0)φ(z1,k)f1,k−1 ≤ ǫ12π
√

1 − ρ2},
i+ := i+(ǫ1) := min{k : k ≥ i∗, φ(0)φ(z1,k)(1 − f1,k) ≤ ǫ12π

√

1 − ρ2}. (30)

For i in this finite range, we truncate the summation in (25), keeping terms between the

indices

j−(i) = max{k : k ≤ j∗(i), p1,i+1φ(z1,i)f2,k−1φ((z2,k − ρz1,i)/
√

1 − ρ2) ≤ ǫ2},
j+(i) = min{k : k ≥ j∗(i), p1,i+1φ(z1,i)(1 − f2,k)φ((z2,k − ρz1,i)/

√

1 − ρ2) ≤ ǫ2}. (31)

(Note the truncation indices depend on ρ; our notation does not emphasize this). Define

the finite-term approximation of g′,

g̃′(ρ) =
1

2π
√

1 − ρ2

i+
∑

i=i−

p1,i+1φ(z1,i)

j+(i)
∑

j=j−(i)

p2,j+1φ

(

z2,j − ρz1,i
√

1 − ρ2

)

. (32)

The bounds stated in (26), (27), (28) and (29) easily imply the following result.

Proposition 4 We have

g̃′(ρ) ≤ g′(ρ) ≤ g̃′(ρ) + ǫ(ρ) (33)

where ǫ(ρ) = 2ǫ1 + 2(i+(ǫ1) − i−(ǫ1) + 1)ǫ2.

Remark 1 We outline an implementation for computing g̃′(ρ) and ǫ(ρ). In a first outer

until block, i increases from i∗ until i+ is found; for each fixed i in this range, j first

increases from j∗(i) until j+(i) is found (an until block nested inside the outer block);

then, similarly, j decreases from j∗(i) until j−(i) is found. A second outer until block is

analogous to the first outer block: i decreases from i∗ until i− is found. The work of this

algorithm is O
(

∑i+

i=i−(j+(i) − j−(i))
)

. This work and the size of the error bound ǫ(ρ)

are unknown a priori in terms of ǫ1 and ǫ2; they are both determined during the process

of approximating g′(ρ).

2.4 Uniform convergence to the continuous-marginals rank correlation

This section establishes a convergence result relating the rank-correlation function under

discrete marginals to the rank-correlation function for continuous marginals, i.e., rC in

(6), in a limit we will make precise. Let (X1,n,X2,n), n = 1, 2, . . . be a sequence of pairs

of discrete random variables; write pl,j,n for the probability mass corresponding to the

j-th mass point of the l-th marginal (l = 1, 2) in the n-th pair, and denote by F1,n and

F2,n the associated c.d.f.’s in the n-th pair. Write rn(ρ) = Corr(F1,n(X1,n), F2,n(X2,n)),
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where (X1,n,X2,n) has marginals F1,n and F2,n and bivariate dependence as in (2) with

ρ = Corr(Z1, Z2). To capture the idea that discreteness vanishes in the limit, let ml,n =

maxj pl,j,n and assume

lim
n→∞

ml,n = 0 for l = 1, 2. (34)

We now state an asymptotic upper bound on the L∞-distance between rn and rC that

vanishes in the limit as n → ∞.

Proposition 5 If (34) holds, then

lim sup
n→∞

sup
ρ∈[−1,1]

|rn(ρ) − rC(ρ)|
m1,n + m2,n

≤ 42, (35)

and thus supρ∈[−1,1] |rn(ρ) − rC(ρ)| converges to 0 as n → ∞.

Proof. For l = 1, 2, define the composite functions hl,n = Fl,n ◦ F−1
l,n . Each Fl,n(Xl,n) has

distribution equal to that of hi,n(U), where U is uniformly distributed on (0,1). The key

behind the proof is that |hl,n(u) − u| ≤ ml,n for all 0 ≤ u ≤ 1. Write µl,n = E[Fl,n(Xl,n)],

σ2
l,n = Var[Fl,n(Xl,n)], and gn(ρ) = Cov[F1,n(X1,n), F2,n(X2,n)]. We will use repeatedly

below the inequality |x1y1 − x2y2| ≤ |y1 − y2| + |x1 − x2| for any 0 ≤ x1, x2, y1, y2 ≤ 1.

Using (6) and this inequality, we have

|rn(ρ) − rC(ρ)| =

∣

∣

∣

∣

gn(ρ) − µ1,nµ2,n

σ1,nσ2,n
− gC(ρ) − 1/4

1/12

∣

∣

∣

∣

=

∣

∣

∣

∣

[gn(ρ) − µ1,nµ2,n]

(

1

σ1,nσ2,n
− 12

)

+12 [gn(ρ) − µ1,nµ2,n − gC(ρ) + 1/4]

∣

∣

∣

∣

≤ (|gn(ρ)| + µ1,nµ2,n)

∣

∣

∣

∣

12σ1,nσ2,n − 1

σ1,nσ2,n

∣

∣

∣

∣

+12 (|gn(ρ) − gC(ρ)| + |µ1,nµ2,n − 1/4|) . (36)

We now find asymptotic upper bounds for each of the terms in (36). We have

|µl,n − 1/2| =

∣

∣

∣

∣

∫ 1

0
(hl,n(u) − u)du

∣

∣

∣

∣

≤
∫ 1

0
|hl,n(u) − u|du ≤ ml,n,

so limn→∞ µl,n = 1/2 for l = 1, 2 and lim supn→∞ |µ1,nµ2,n − 1/4|/(m1,n + m2,n) ≤ 1/2.

Writing σ2
l,n =

∫ 1
0

[

(hl,n(u) − u) + (u − 1
2 ) + (1

2 − µl,n)
]2

du and integrating the expanded

square, it is easy to see that

∣

∣

∣

∣

σ2
l,n − 1

12

∣

∣

∣

∣

≤ m2
l,n + m2

l,n + 4ml,n

∫ 1

0

∣

∣

∣

∣

u − 1

2

∣

∣

∣

∣

du + 2m2
l,n = ml,n + 4m2

l,n, (37)
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proving that limn→∞ σ2
l,n = 1/12 for l = 1, 2. The Cauchy-Schwartz inequality yields

supρ |gn(ρ)| ≤ σ1,nσ2,n, so lim supn→∞ supρ |gn(ρ)| ≤ 1/12. Furthermore,

lim sup
n→∞

∣

∣

∣

√

σ2
1,nσ2

2,n − 1
12

∣

∣

∣

m1,n + m2,n
≤ lim sup

n→∞

6
∣

∣

∣
σ2

1,nσ2
2,n −

(

1
12

)2
∣

∣

∣

m1,n + m2,n
≤ 1

2
;

in the above, the first inequality follows from a Taylor expansion of
√

x about 1/12 with

remainder term involving the first derivative, and the second inequality follows from (37).

Finally,

sup
ρ

|gn(ρ) − gC(ρ)|

= sup
ρ

∣

∣

∣

∣

∫ ∞

−∞

∫ ∞

−∞
[h1,n(Φ(x1))h2,n(Φ(x2)) − Φ(x1)Φ(x2)] φρ(x1, x2)dx1dx2

∣

∣

∣

∣

≤ sup
ρ

∫ ∞

−∞

∫ ∞

−∞

(

sup
(x1,x2)∈R2

|h1,n(Φ(x1))h2,n(Φ(x2)) − Φ(x1)Φ(x2)|
)

φρ(x1, x2)dx1dx2

≤ sup
ρ

∫ ∞

−∞

∫ ∞

−∞
(m1,n + m2,n)φρ(x1, x2)dx1dx2

= m1,n + m2,n. (38)

The result (35) follows from the asymptotic bounds established for each of the terms in

(36). 2

For n large, (35) and (6) imply the approximate bound supρ∈[−1,1] |rn(ρ) − (6/π)

arcsin(ρ/2)| ≤ 42(m1,n + m2,n). In our examples in Section 4, this bound was too large to

ensure that rX(2 sin(πr̃/6)) is sufficiently close (for our purposes) to r̃ = rC(2 sin(πr̃/6)).

Had the bound been small enough, that would have made our nearly-exact solution meth-

ods less intereresting, because the bound by itself would have ensured that 2 sin(πr̃/6) is a

sufficiently accurate answer. Of course, better bounds than ours may still act in the same

way, i.e., as guarantors of the accuracy of 2 sin(πr̃/6) as an approximation to the exact

solution. Regardless of the bound’s effectiveness in our examples, the proof adds to our

intuition; it suggests, for example, that the approximation’s effectiveness hinges on both

marginals (as opposed to only one) being nearly continuous.

3 Solution methods

We detail methods for solving either of the two versions of the correlation-matching prob-

lem. Our discussion focuses on the rank-correlation variant for reasons given earlier. As-

sume that we are given a target r̃ ∈ (rX(−1), rX(1)) and want to compute the value r−1
X (r̃),

i.e., the unique solution of (3). A zero of a function f is a value ρ such that f(ρ) = 0.
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To conform with standard algorithms for solving a single equation, which typically seek a

zero of an appropriate function, define f(ρ) = g(ρ) − µ1µ2 − r̃σ1σ2 and note that f has

derivatives identical to those of g and that f(ρ) < (>) 0 if and only if rX(ρ) < (>) r̃.

Thus, finding the solution of (3) is equivalent to finding the unique zero of f .

Section 3.1 treats the case where both marginals have finite support. Infinite supports

are addressed in Section 3.2, which offers an approximate solution method and a bound

on its error.

3.1 Discrete marginals with finite support

If ni is the number of support points of marginal i, then (10) and (11) imply that the

computational work for each evaluation of g (equivalently, f) or of its derivative f ′ = g′ is

proportional to n = n1n2, the number of terms in the double sums. The proportionality

constants may differ substantially between g and g′.

In what follows, we first explain how we compute g and g′, then we define three al-

gorithms to find a root of f . The first algorithm uses only evaluations of g and not its

derivative, the second integrates f ′ until the integral reaches zero, and the third is a variant

of the Newton-Raphson iterative method to find a root of f .

Evaluation of g and g′. For the evaluation of g, we employ (10) instead of (9), because

the literature emphasizes the computation of the bivariate normal integral in the former

expression. We considered several methods for evaluating Φ̄ρ(x, y), a function of ρ, x, and y,

for which no analytic expression is available. Algorithm 462 in Donnelly (1973) implements

the method developed in Owen (1956), which expresses Φ̄ρ in terms of the functions Φ and

T (h, a), where the latter is the area (integral) of an uncorrelated bivariate standard normal

distribution (zero means, unit variances) over the subset of the (x, y)-plane contained

between y = ax and y = 0 and to the right of x = h. The function T (h, a) is expressed

(and computed efficiently) as a series. A second class of methods exploits property (13)

and computes Φ̄ρ(x, y) by numerical integration with respect to the correlation. More

precisely, Φ̄ρ(x, y) is computed as Φ̄s(x, y) + Q, where: s = 0 or sign(ρ) (when |ρ| is

under and above a certain threshold, respectively); Φ̄0(x, y) = Φ(−x)Φ(−y); Φ̄1(x, y) =

Φ(−max(x, y)); Φ̄−1(x, y) = max(0,Φ(−x) − Φ(y)); and Q =
∫ ρ
s φt(x, y)dt is computed

by numerical integration. This approach is detailed in Drezner and Wesolowsky (1989)

and Genz (2004), which focus on moderate accuracy (6-7 decimals) and high accuracy

(15 decimals), respectively. For 15-decimal precision, we compared Algorithm 462 to the

method of Genz (2004). For ρ = −0.92,−0.54,−0.16, 0.22, 0.60, 0.98, we sampled one

million pairs (x, y) uniformly in the square [−3, 3]2; the observed ratios of CPU times

(Algo. 462 to Genz) were about 0.4, 0.6, 1.1, 1.1, 0.6, and 0.7, respectively. In 7-decimal

precision, and for the same set of ρ values, the CPU time ratios of Algorithm 462 to
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the method of Drezner and Wesolowsky (1989) were about 0.7, 1.3, 1.3, 1.3, 1.3, 0.7.

Comparing the 7- to 15-decimal accuracy versions of Algorithm 462, we observed a ratio

of CPU total times (sums over 6 evaluations for the values of ρ above) of about 0.67. For

all subsequent work, we chose to evaluate f via Algorithm 462 of Donnelly (1973) with 15

decimal digits of accuracy.

Computing the derivative g′(ρ) is easier, because there is an analytic expression for

φρ(x, y). We just use it and sum up the terms. In a preliminary test, we estimated the

ratio of work (CPU time) needed to compute g(ρ) over the work needed to compute the

derivative g′(ρ) at about 12. This was based on all calls made to these functions when

solving the problem r̃ = 0.90 in the nearly-continuous negative binomial case shown at

the bottom panel of Table 1, Section 4. We feel that this number is fairly representative

because the points zi,k = Φ−1(fi,k), k = 1, 2, . . ., provide a good coverage of the normal

density for each i.

Method NI1: Root bracketing without derivatives. This first method assumes no

knowledge of derivatives of f and serves as the benchmark against which we compare the

speed and accuracy of other methods. We know that the zero of f is contained in [−1, 0]

if r̃ < 0, and is [0, 1] if r̃ > 0; this follows from parts 1 and 2 of Theorem 1 and the

Intermediate Value Theorem. Root-bracketing methods maintain a bracket; this is an

interval with endpoints b and c such that f(b) and f(c) are of opposite sign, so the interval

must contain the root. One such method is bisection, which is iterative and halfs the

bracket length at each iteration. Root accuracy is usually controlled by a tolerance ǫ > 0:

if b is the better root estimate among the bracket endpoints, (i.e., |f(b)| < |f(c)|), then it

is returned as the root on the first iteration such that either f(b) = 0 (in the floating-point

representation) or |b−c| ≤ ǫ. By the definition of bracket, this guarantees that b is within ǫ

of the root. According to Press et al. (1992), Procedure zero in Brent (1971) (called Brent’s

method for short), is “the method of choice for general one-dimensional root finding where

a function’s values only (and not its derivative) are available.” This method combines

root bracketing, bisection, and inverse quadratic interpolation, which uses three prior root

estimates to fit an inverse quadratic function (ρ as a quadratic function of f(ρ)) whose

value at f(ρ) = 0 is taken as the next estimate of the root. This is what we have used in

our experiments.

Method NI2: Finding a root of f by numerically integrating its derivative. This

method is summarized as follows.

1. Start at some initial value ρ0 and evaluate f(ρ0), as described in the previous sub-

section.

2. Select an integration grid S = {ρ0, ρ1, ρ2, . . .}, which is a sequence of increasing

(decreasing) values depending on whether f(ρ0) < (>) 0, and such that: if r̃ > 0 and
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f(ρ0) < (>) 0, then 1 (0) is an accumulation point of S; if r̃ < 0 and f(ρ0) < (>) 0,

then 0 (−1) is an accumulation point of S.

3. Compute estimates f̂(ρk) of f(ρk) for k = 1, 2, . . . by numerically integrating its

derivative g′. Stop at the smallest k, say K, such that f̂(ρk) > (<) 0, respectively.

By construction, the interval [ρK−1, ρK ] contains a zero of f̂ .

4. Compute the approximation ρ̄ of the zero via polynomial interpolation of f̂ over

[ρK−ℓ, ρK ], where ℓ is a small positive integer. For example, for linear interpola-

tion, take ℓ = 1 and output the unique ρ̄ satisfying (ρ̄ − ρK−1)/(ρK − ρK−1) =

−f̂(ρK−1)/
[

f̂(ρK) − f̂(ρK−1)
]

.

We now discuss the selection of integration rule, the choice of sequence S, and the method’s

accuracy. We discuss the case r̃ > 0 and f̂(ρ0) < 0; the other three cases are similar.

Two effective classes of integration rules over a finite interval [a, b] are the Gaussian

and Newton-Cotes quadrature rules (Stoer and Bulirsch, 1980). These rules evaluate the

integrand at a finite set of points in [a, b] and compute a weighted sum of these evaluations.

In theory, the Gaussian rules (Stoer and Bulirsch, 1980, sec. 3.6) give better accuracy than

the Newton-Cotes rules for a given number n of evaluation points: they integrate exactly

all polynomials of degree less than 2n. However, if we change a or b slightly, for fixed n, all

the evaluation points must change. In our context, since the integration interval changes

at each step of the root-finding process, the Gaussian rule on [0, ρk] cannot reuse any of

the evaluation points of the rule on the previous interval [0, ρk−1]. With Newton-Cotes

rules (Stoer and Bulirsch, 1980, sec. 3.1), the integral over [a, b] is approximated as a sum

of approximations of the integral over the pieces of a partition of [a, b] (see below), and it

possible to select the integration grid in our procedure in a way that the evaluation points

for [0, ρk−1] are reused for [0, ρk]. Thus, from an efficiency standpoint, Newton-Cotes

rules are more suitable in our root-finding context.

A well-known special case of a Newton-Cotes rule is Simpson’s rule (Stoer and Bulirsch,

1980, pp. 119-120). For this rule, we select a finite sequence S consisting of ρk = ρ0 + 2kh

for k = 0, 1, 2, . . . ,m, where h > 0 is a step size and m is such that 1 − 2h < ρm < 1. In

our implementation, we first select ρm close to 1 (ρm = 1 − δ for some small δ ≥ 0) and

then select h and m (a positive integer) such that |1−δ−ρ0| = 2hm. Proposition 3 implies

limρ→1 g′(ρ) is either 0 or infinity. In the latter case, one can expect numerical integration

rules as ours to loose accuracy as the points of interest approach 1. One may often find

via (22) what the limit is. Lacking this knowledge, a defensive choice is to avoid setting δ

unnecessarily small, depending on the user’s root-accuracy need. An example illustrating

this difficulty near 1 is given in Section 4. The Simpson estimate of the definite integral
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∫ ρ0+2kh
ρ0

g′(t)dt is computed recursively by setting I0 = 0 and

Ik = Ik−1 +
h

3

(

g′(ρ0 + 2kh − 2h) + 4g′(ρ0 + 2kh − h) + g′(ρ0 + 2kh)
)

.

This gives the estimate f̂(ρk) = f(ρ0) + Ik, whose error will be discussed later.

If the stopping condition in step 3 is not met after m steps for the m selected at the

outset (that is, f̂(ρm) has the same sign as f̂(ρ0)), then we continue integrating over a

new grid defined to the right of the last point of the previous grid, recursively, if necessary,

until a stopping condition as in step 3 is met. That is, the mention in step 2 of an infinite

sequence S only serves to allow an input r̃ that is arbitrarily close to rX(1) or rX(−1).

We consider two variants of algorithm NI2, defined according to how ρ0 is selected:

Variant NI2A sets ρ0 = 2 sin(πr̃/6), which is a natural estimate of the root because it

becomes exact in the limit where discreteness disappears (see Proposition 5 and part 3 of

Theorem 1). Variant NI2B sets ρ0 = 0. The motivation for NI2A is to try to minimize

the length of the integration interval [ρ0, ρK ], and thus the number Ng′ of evaluations of

the function g′. On the other hand, it requires one (costly) evaluation of f(ρ0) in Step 1.

Variant NI2B eliminates the cost of this evaluation, because we know f(0) = −r̃σ1σ2, but

Ng′ is typically larger because we must integrate over a longer interval. If the root does not

exceed the value ρm selected at the outset, then NI2 requires Ng′ = 1+2⌈|r−1
X (r̃)−ρ0|/2h⌉

evaluations of the function g′, where h is the value selected at the outset. Which variant

will be faster depends on: (i) the ratio of work needed to compute g relative to g′; (ii) the

distance |r−1
X (r̃) − ρ0|; and (iii) the desired accuracy; lower accuracy allows larger h and

thus smaller Ng′ .

Method NI3: Hybrid of Newton-Raphson and bisection. Our third algorithm is a

modified version of the Newton-Raphson method. This method would produce a sequence

of root estimates ρk+1 = ρk − f(ρk)/f
′(ρk) for k = 0, 1, 2, . . ., where −f(ρk)/f

′(ρk) is a

correction term such that the new root estimate is the zero of the linear function with

value f(ρk) and slope f ′(ρk) at abscissa ρk. We need to protect against the possibility

that at two subsequent iterations k and k + 1, the correction terms cancel each other and

neither ρk nor ρk+1 is a root; that is, f(ρk)/f(ρk) + f(ρk+1)/f(ρk+1) = 0, f(ρk) 6= 0, and

f(ρk+1) 6= 0; in this case, the recursion enters an infinite cycle without ever finding the

root (ρk+2j = ρk for all positive j); this is illustrated in Press et al. (1992, Figure 9.4.3).

We protect as proposed in Press et al. (1992, routine rtsafe, pp. 366–367); this algorithm

maintains a root estimate and a bracket formed by the last two root estimates; if the

Newton step starting from the current root estimate would fall outside the current bracket

or if the current bracket length is more than half the previous bracket length, then the next

root estimate is the bracket’s midpoint; otherwise, the next root estimate is found by the

Newton step. Root accuracy is controlled by a tolerance ǫ as in NI1. This method has good
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convergence properties near the root (Press et al., 1992, pages 364-365), so it is particularly

attractive when high accuracy is sought. The initial bracket is [−1, 0] if r̃ < 0, and [0, 1] if

r̃ > 0. Our initial root estimate is ρ0 = 2 sin(πr̃/6); this value is likely to be closer to the

root than other uninformative values, e.g., the midpoint of the initial bracket. It is easy

to show that the bracket is at least halved over any two successive iterations (Press et al.

(1992) do not state this); thus, the number of iterations never exceeds 2⌈log2(1/ǫ)⌉, and it

is potentially smaller, depending on the Newton steps’ effectiveness.

Controlling the accuracy. Efficient algorithms are known for computing the bivariate

normal integral Φ̄ρ to negligible error (this was discussed earlier); this allows efficiently

computing g to negligible error. In view of this, the methods we discussed fall into two

classes that should be contrasted: classical root finding (NI1, NI3) versus approximate

root finding via integration and interpolation (NI2). In general, none of these methods can

provide a guarantee on rank-correlation error (a known multiple of |f(ρ̄)|, where ρ̄ is the

estimated root) unless a global bound on the slope of f is known. Classical root-finding

methods, however, do deliver a value to within a specified distance from the true root.

For the approximate root-finding methods, we do not have integration-error bounds and

consequently we offer no guarantee either on root error or on rank-correlation error, re-

gardless of how much work one does. (Note, however, that global bounds on higher-order

derivatives of g can be obtained by straightforward derivations and arguments paralleling

(16); this would yield such integration-error bounds.) Thus, the approximate root finding

approach—as developed here—can be attractive only in special settings, namely: (1) solu-

tion speed is more important than a root-accuracy guarantee; or (2) classical root finding is

too complicated to implement, e.g., because a good code for computing Φρ is unavailable.

Worst-case work comparison as required accuracy increases. We focus on the

rank-correlation error at the estimated root, |rX(ρ̄) − r̃|, and assume a requirement that

it should not exceed ǫ > 0. We explain that if one views the error in evaluating g as

negligible, then one should expect NI2 to require more work than NI3 or the bisection

method in the limit as ǫ → 0. In standard polynomial interpolation, function values are

known exactly at the interpolation points; in this case, a bound on the error (at any point

inside the interpolation interval) is given in Stoer and Bulirsch (1980, Theorem 2.1.4.1).

If the integration error was zero at all interpolation points, this result would imply that

the error is of order O(hℓ+1) when an order-ℓ interpolating polynomial is used (the error

may of course be zero, but that would seem to be a fortunate coincidence). Thus, we can

expect the error to decrease at the rate m−k for some positive integer k that depends on the

particular Newton-Cotes rule and ℓ. The worst-case number of evaluations of g′ for NI2 is

pm+1, where p is a positive integer that depends on the Newton-Cotes rule; for Simpson’s

rule, we have p = 2. To keep the error at most ǫ, this number must grow as O(ǫ−1/k). To

allow comparison to NI3 and bisection, we consider a user of these methods that selects a
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tolerance ǫ/M , where M := supρ∈I |g′(ρ)| < ∞, where I is the initial bracket; this ensures

that the error is at most ǫ. The bisection method requires ⌈log2(M/ǫ)⌉ evaluations of g.

NI3 requires 2⌈log2(M/ǫ)⌉ iterations in the worst case. In conclusion, if high accuracy is

required, then NI3 (or bisection) are preferred to NI2, because they are likely to require

less work.

Linear correlations. For the linear correlation matching problem, all three methods

extend immediately. The initial bracketing intervals are identical; we simply replace the

functions g and g′ by their counterparts gL and g′L stated in Section 2.2. To get a nonzero

starting point for NI2 or NI3, we can invert (6), despite the fact that this has no theoretical

basis and that it may be a poor choice relative to crude estimates such as the midpoint of

the initial bracket, as suggested by the discussion following (4).

3.2 Discrete marginals with infinite (or large) support

If one of the marginals has infinite support, all quantities involved in the definition of

f(ρ), namely, µl and σl for l = 1, 2, and g(ρ), involve infinite series; in general, exact

computations appear to be impossible—we are not aware of exact formulae, even if the

marginals belong to the well-known classes. Approximating g(ρ) (for arbitrary ρ) is the

main difficulty, because if one were to truncate the series (10) to a finite number of terms, it

would be difficult to bound the error. Approximating the constants µl and σl is easier, as

we will explain. In view of this, method NI2B stands out, because it is the only one among

those in Section 3.1 that does not require evaluating g(ρ). Thus, we adapt method NI2B

as follows: (i) in the integration (step 3 of method NI2), we replace g′ by its approximation

g̃′ established in Section 2.3; and (ii) we replace µl and σl by approximations defined below

(the µl are involved indirectly via σl).

It is straightforward to approximate µl and σl by truncating the associated series;

error bounds are easily obtained and stated in the proof of Proposition 6 below. Select

small real numbers ηl > 0. For l = 1, 2, define k+
l = min{k :

∑∞
j=k+1 pl,j ≤ ηl} and

k−
l = max{k :

∑k−1
j=−∞ pi,j ≤ ηl}. Define µ̃l =

∑k+

l

j=k−

l

pi,jfi,j and σ̃2
l =

∑k+

l

j=k−

l

pi,jf
2
i,j − µ̃2

l

as approximations of µl and σ2
l , respectively.

We now define the adaptation of NI2B. We assume that ρ0 = 0 and that we use the

sequence S with the Newton-Cotes integration rule. The estimates of f(ρk) are f̃(0) =

−r̃σ̃1σ̃2 (since rX(0) = 0) and f̃(ρk) = f̃(0) + I(ρk; g̃
′) for k = 1, 2, ..., where I(ρk; g̃′) is

the estimate of
∫ ρk

0 g′(t)dt via a Newton-Cotes formula applied to g̃′ in (32).

To bound the error in rank correlation at the estimated root, |rX(ρ̄)− r̃|, define: I(ρk; ǫ)

is the Newton-Cotes estimate of
∫ ρk

0 ǫ(t)dt, where ǫ(ρ) is defined following (33); I(ρk; g′)

is the Newton-Cotes estimate of
∫ ρk

0 g′(t)dt, which will not be explicitly computed, but is
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involved in the bound; and write ∆k = |f̃(ρk) − f(ρk)| for all k. Write K for the index in

step 3 of NI2; note that MK := supρ∈[ρK−1,ρK)] |g̃′(ρ)| ≤ sup|ρ|≤1−δ |g′(ρ)| < ∞. The next

result bounds the error, and finite support is a special case. The Remarks below discuss

how one may reduce this bound.

Proposition 6

(a) Assume all integral estimates are based on Simpson’s rule with h = (1 − δ)/(2m),

ρ0 = 0, and |ρm| = 1 − δ for some δ > 0. Then

∆k ≤ ζ(η1, η2) + |I(ρk; ǫ)| + O(m−4) for any ρk ∈ S, (39)

where

ζ(η1, η2) = |r̃|
(

σ̄1
2η2[1 + 2(µ̃2 + η2)]

σ̃2 + σ2

+ σ̃2
2η1[1 + 2(µ̃1 + η1)]

σ̃1 + σ1

)

,

σl :=
√

σ̃2
l − 2ηl[1 + 2(µ̃l + ηl)] and σ̄l :=

√

σ̃2
l + 2ηl[1 + 2(µ̃l + ηl)] for l = 1, 2.

(b) For any ρ̄ ∈ [ρK−1, ρK ], we have

|rX(ρ̄) − r̃| ≤ |f̃(ρK−1) − f̃(ρK)| + max(∆K−1,∆K)

σ1σ2

≤ MK/m + ζ(η1, η2) + |I(ρK ; ǫ)|
σ1σ2

+ O(m−4). (40)

Proof. We have

|f̃(ρk) − f(ρk)| =

∣

∣

∣

∣

f̃(0) + I(ρk; g̃
′) −

(

f(0) +

∫ ρk

0
g′(s)ds

)

− I(ρk; g
′) + I(ρk; g

′)

∣

∣

∣

∣

≤ |f̃(0) − f(0)| + |I(ρk; g̃
′) − I(ρk; g

′)| +
∣

∣

∣

∣

I(ρk; g
′) −

∫ ρk

0
g′(s)ds

∣

∣

∣

∣

= |r̃||σ̃1σ̃2 − σ1σ2| + |I(ρk; ǫ)| + O(m−4)

≤ |r̃| (σ1|σ2 − σ̃2| + σ̃2|σ1 − σ̃1|) + |I(ρk; ǫ)| + O(m−4); (41)

step 2 is the triangle inequality; in step 3, we observe that I(ρk; g
′) − I(ρk; g̃

′) = I(ρk; ǫ)

and that
∣

∣I(ρk; g
′) −

∫ ρk

0 g′(s)ds
∣

∣ ≤ h4|ρkg
(5)(ξ)|/180 for some ξ with |ξ| ≤ ρk, where g(5)

is the fourth derivative of g′ (Stoer and Bulirsch, 1980, p. 122), and finally note that

|g(5)(ξ)| < ∞, since g(5) is continuous on the closed interval [−1 + δ, 1 − δ]; step 4 is

another application of the triangle inequality. It remains to bound σ1 and |σ̃l − σl| for

l = 1, 2. We have |µ̃l − µl| ≤ 2ηl and |σ̃2
l − σ2

l | ≤ 2ηl[1 + 2(µ̃l + ηl)] (proofs are easy and

omitted), and thus

σl ≤ σl ≤ σ̄l. (42)
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Thus

|σ̃l − σl| =
|σ̃2

l − σ2
l |

σ̃l + σl
≤ 2ηl[1 + 2(µ̃l + ηl)]

σ̃l + σl

. (43)

Combining (41), (42), and (43), we obtain (39). To prove (40), we note that |rX(ρ̄)− r̃| =

|f(ρ̄)|/(σ1σ2) and

|f(ρ̄)| ≤ max(|f(ρK−1)|, |f(ρK)|)
≤ max(|f̃(ρK−1)| + ∆K−1, |f̃(ρK)| + ∆K)

≤ |f̃(ρK−1)| + |f̃(ρK)| + max(∆K−1,∆K),

= |f̃(ρK−1) − f̃(ρK)| + max(∆K−1,∆K). (44)

Step 1 uses the monotonicity of f ; step 2 uses the definition of ∆k; the equality in

step 4 holds because f̃(ρK−1) and f̃(ρK) bracket zero, by construction. This proves

the first inequality in (40). To get the second inequality in (40), we use the bound

in (39), note that |I(ρk; ǫ)| are nondecreasing in k, and note that |f̃(ρK−1) − f̃(ρK)| =
h
3 |g̃′[ρK − 2h] + 4g̃′[ρK − h] + g̃′[ρK ]| ≤ 2hMK ≤ MK/m. 2

Remark 2 In the special case of finite support, (41) states that ∆k = O(m−4) for all k.

We obtain the rudimentary bound |rX(ρ̄) − r̃| ≤ MK/(mσ1σ2) + O(m−4), which goes to

zero as m → ∞.

Remark 3 In the infinite support case, the first inequality in (40) combined with (39)

yields the value (|f̃(ρK−1) − f̃(ρK)| + ζ(η1, η2) + |I(ρK ; ǫ)|)/(σ1σ2) as a computable ap-

proximate (heuristic) bound on the absolute error in the output correlation, because we

dropped the O(m−4) integration-error term. Contrary to the finite-support case, it is not

enough to let m → ∞ to guarantee that the rank correlation error goes to zero. One must

additionally keep small the two new error terms, which may be done as follows. Con-

trolling ζ(η1, η2) is straightforward by decreasing the ηi, i = 1, 2. Controlling |I(ρk; ǫ)| is

somewhat complicated; recall the expression for the function ǫ(ρ) following (33) and note

that 2(i+(ǫ1)− i−(ǫ1)+1)ǫ2 may increase as ǫ1 decreases. In general, we may expect to re-

duce ǫ(ρ) (for any ρ) by appropriately decreasing ǫ1 and/or ǫ2 (at the expense of increased

work). Also note that fixed ǫ1 and decreasing ǫ2 result in decreasing ǫ(ρ).

4 Numerical examples

We tried our solution methods on two sets of examples, in which the marginal have finite

and infinite support, respectively. In our first set of examples, the two marginals are

identical binomial distributions, denoted Bin(n, p), with success probability p = 1/2 and

varying number of trials n.
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Our second set of examples is inspired from modeling the joint distribution of arrival

counts to a call center over successive time periods in a day and is based on the case

study in Avramidis et al. (2004). We are focusing on bivariate rank-correlation matching

for (X1,X2), where X1 and X2 are the counts on the time periods (8:00am, 8:30am) and

(8:30am, 9:00am), respectively. The negative binomial distribution provides a good fit to

each marginal. Denote by NegBin(s, p) the negative binomial distribution with mean sp

and variance sp(1 + p). The parameters (s, p) of the two marginals estimated from the

call center data set in that paper are s1 = 15.68, s2 = 60.21, p1 = 0.3861, p2 = 0.6211.

The sample rank correlation between X1 and X2 is 0.43. For the correlation matching, we

work with bounded (and finite) supports: we upper-bound the support of each marginal

at the quantile of order 1 − 10−6, i.e, x∗
l = F−1

l (1 − 10−6), and reset the probability

mass of x∗
l accordingly, for l = 1, 2. This may significantly impact the correlation relative

to the unbounded marginals, but we did not attempt to bound this error. We create

additional test problems as follows. In our experiments, we vary s to study the effect of

“discreteness strength” on the NORTA correlation matching problem. We also vary the

target correlation r̃.

In applications we have in mind, r̃ will be estimated from data; this means high accuracy

(either in the root or in the rank correlation) is unlikely to be necessary. With this in

mind, we employed NI1 and NI3 with tolerance 10−2 and 10−4. Preliminary computations

showed that in one of our examples the root is very close to 1; to avoid cumbersome

implementations of NI2 that must refine the integration rule to the right of 1 − 2h (for

the h of interest here), we set ρm = 1 − δ with δ = 10−4. To select the integration-grid

spacing 2h, let d denote the worst-case integration distance, so d = |1 − δ − ρ0| if r̃ > 0

and f̂(ρ0) < 0 or if r̃ < 0 and f̂(ρ0) > 0; and d = |ρ0| otherwise. For NI2A, we set 2h

to be as close as possible to 10−2, i.e., h = d/(2m), where m = max(1, [100d]) and [x]

is the integer closest to x; this aims to make the accuracy (very roughly) comparable to

that of NI1. For a sufficiently small m, NI2B will be faster than NI2A because it does

not require the evaluation of f(ρ0), so with this in mind, we used NI2B with m = 5 (so

h = (1 − δ)/10 ≈ 0.2). This aims towards fast execution achieved at the risk of loss of

accuracy. We employ quadratic interpolation in step 4 unless m = 2, in which case linear

interpolation applies.

Tables 1, 2, 3, and 4 summarize the results for methods NI1, NI2A, NI2B and NI3,

respectively. Each of the six panels corresponds to a different pair of marginals; in each

case, we give the defining parameters, the extreme correlations rX(−1) and rX(1) for

these marginals, and the number of bivariate support points n = n1n2, where ni is the

number of support points of marginal i. Each row corresponds to a problem instance

created by additionally specifying the target r̃. For each problem instance, we report

system-independent (method-dependent) measures of work: for NI1, the number N1 of

iterations of the root-bracketing algorithm and thus evaluations of g; for NI2, the number
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Ng′ of evaluations of g′; for NI3, the number N3 of iterations, and thus evaluations of

each of g and g′. Additionally, we report: the computed root ρ̄; the CPU time measured

in seconds; the correlation rX(ρ̄); and the (absolute) relative error (error, for short) in

induced correlation, |rX(ρ̄) − r̃|/r̃, shown as a percentage. When the target correlation is

small, the reader may prefer to focus on absolute errors. All experiments were done on a

2.4 GHz AMD 64 bit-processor running Linux.

In all cases, NI1 and NI3 with ǫ = 10−4 have good accuracy and require only a modest

number of iterations. As the tolerance decreases from ǫ = 10−2 to ǫ = 10−4, the number of

iterations of NI3 grows by a factor much smaller than the worst-case number 2 log2(100) ≈
13. This suggests that high accuracy would require a small additional computing cost.

For all methods, the largest errors occur in the binomial example with n1 = 3, which we

examine in more detail later. Except for this example with r̃ = 0.98, NI3 always requires

less work than NI1, about 30% on average and usually between 20% and 45%. Moreover,

with two exceptions in the same example, NI3 is more accurate than NI1. The high-

tolerance NI1 (ǫ = 10−2) usually has relative error about 4%-5% when r̃ = 0.05, but the

absolute error is perhaps more relevant, and this error is small (a simple rough remedy

against large relative errors would be to set ǫ in proportion to r̃). NI2A is generally

fast; it is also accurate, with one exception. This method benefits when the distance

|r−1
X (r̃) − 2 sin(πr̃/6)| is small; in the minimal-discreteness cases (when n1 = n2 = 1000

for the binomial and for the largest values of r1 and r2 for the negative binomial case),

this distance is very small, and NI2A is as accurate as NI1 or NI3 and usually faster.

The largest observed value of this distance was about 0.09 (binomial marginals, n1 = 3,

r̃ = −0.5). NI2B does not benefit from such a small integration distance, unless the root

is close to zero; it frequently exhibits large errors that tend to increase as the discreteness

increases and as the root (or r̃) moves farther from zero; the large errors are not surprising,

since a very sparse integration grid was used.

We discuss the binomial problem with n1 = n2 = 3 and r̃ = 0.98. The root is

r−1
X (0.98) ≈ 0.999041 and its approximation is 2 sin(0.98π/6) ≈ 0.981808. Figure 1 shows

rX(ρ) for 0.98 ≤ ρ ≤ 1. NI3 behaves as pure bisection, because the attempted Newton

steps fall outside the bracket at all iterations. NI1 requires fewer iterations than NI3. The

low-order polynomial approximations of g supporting NI2 are poor in this areaa, so NI2

suffers from relatively large integration error. (Condition (22) is easily seen to hold in all

binomial examples, and Proposition 3 gives limρ→1 g′(ρ) = ∞.) We examined NI2 with

m varying widely over powers of 2. The inaccuracy of NI2B persists until m quite large

enough to make the method slow: at m = 128, we obtain ρK = 1 − δ = 0.9999, f̂(ρK)

has relative error about 2.2%, and the final error (the measure in the rightmost column in

the tables) is about 1.7%; comparing these two errors suggests that the large final error

is due to integration error; it is not due to interpolation error. NI2A fares much better;

for example, at m = 16, the final error is 0.06%. As mentioned earlier, setting δ too small
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Figure 1: The function rX(ρ) on [0.98, 1] in the example with binomial marginals with
n1 = 3; compared to the function rC(ρ) given by (6).

is detrimental: for NI2A, changing to δ = 10−12 and maintaining the value m = 2 that

applies in Table 2, the final error increases to 4.2%.

In summary, if a good code is available for computing the bivariate normal distribution

(and thus f), then we recommend NI3; both NI2 variants provide no accuracy guarantee

and therefore they should be viewed as cheap, fast alternatives to NI3. If such good code

is not available, then NI2B is an easier solution, because it requires only f ′ and not f .

5 Conclusion

We studied the NORTA correlation-matching problem for the case where the marginals are

discrete. We proved some key properties of both the rank and linear correlations and their

derivatives as functions of the correlation parameter ρ of the normal copula. We obtained

a formula for the derivative f ′ of the function f whose root is sought. The derivative

involves only the exponential function and can be evaluated significantly faster than f .

We developed and analyzed algorithms that exploit the derivative. We emphasized rank-

correlation matching, but our methods apply immediately to linear-correlation matching.

For unbounded univariate marginals and rank-correlation matching, we adapted one of

our methods that only requires evaluating f ′ (and not f) by substituting a finite-term

approximation of f ′, and we provided bounds on the resulting error.
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Table 1: Results for method NI1.
ǫ r̃ ρ̄ CPU (s) N1 rX(ρ̄) Rel. error (%)

Binomial 10−2 -0.50 -0.6076 0.084×10−3 5 -0.4999 0.049
n1 = n2 = 3 0.05 0.0603 0.063×10−3 5 0.0499 0.115
p1 = p2 = 0.5 0.20 0.2387 0.063×10−3 5 0.1991 0.475
n = 16 0.90 0.9760 0.102×10−3 6 0.8999 0.009
rX(−1) = −0.9241 0.98 0.9999 0.050×10−3 3 0.9935 1.382
rX(1) = 1 10−4 -0.50 -0.6079 0.103×10−3 6 -0.5000 < 0.001

0.05 0.0604 0.082×10−3 5 0.0500 < 0.001
0.20 0.2399 0.084×10−3 5 0.2000 < 0.001
0.90 0.9760 0.118×10−3 6 0.9000 < 0.001
0.98 0.9990 0.130×10−3 7 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5194 0.093 4 -0.4991 0.175
n1 = n2 = 100 0.05 0.0551 0.069 3 0.0524 4.703
p1 = p2 = 0.5 0.20 0.2099 0.092 4 0.1999 0.036
n = 10201 0.90 0.9107 0.085 4 0.8996 0.043
rX(−1) = −0.9971 0.98 0.9861 0.061 3 0.9811 0.114
rX(1) = 1 10−4 -0.50 -0.5203 0.119 5 -0.5000 < 0.001

0.05 0.0526 0.094 4 0.0500 < 0.001
0.20 0.2099 0.117 5 0.2000 < 0.001
0.90 0.9111 0.113 5 0.9000 < 0.001
0.98 0.9851 0.098 5 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5171 5.503 4 -0.4992 0.159
n1 = n2 = 1000 0.05 0.0500 4.410 3 0.0477 4.511
p1 = p2 = 0.5 0.20 0.2091 5.858 4 0.1999 0.031
n = 1002001 0.90 0.9082 4.703 4 0.8999 0.014
rX(−1) = −0.9997 0.98 0.9803 3.153 3 0.9780 0.207
rX(1) = 1 10−4 -0.50 -0.5179 6.995 5 -0.5000 < 0.001

0.05 0.0524 6.193 4 0.0500 < 0.001
0.20 0.2091 7.509 5 0.2000 < 0.001
0.90 0.9083 5.848 5 0.9000 < 0.001
0.98 0.9821 4.289 4 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5330 6.57×10−3 4 -0.4960 0.209
r1 = 1.568 0.05 0.0518 4.33×10−3 3 0.0478 4.412
p1 = 0.3861 0.43 0.4614 5.49×10−3 4 0.4299 0.030
r2 = 6.021 0.90 0.9323 4.46×10−3 3 0.8986 0.151
p2 = 0.6211 0.96 0.9895 5.88×10−3 4 0.9593 0.076
n = 768 10−4 -0.50 -0.5341 8.31×10−3 5 -0.5000 < 0.001
rX(−1) = −0.9738 0.05 0.0542 5.78×10−3 4 0.0500 < 0.001
rX(1) = 0.9652 0.43 0.4616 7.14×10−3 5 0.4300 < 0.001

0.90 0.9336 5.97×10−3 4 0.9000 < 0.001
0.96 0.9903 9.59×10−3 6 0.9600 < 0.001

Negative Binomial 10−2 -0.50 -0.5177 0.053 4 -0.4993 0.148
r1 = 15.68 0.05 0.0501 0.041 3 0.0478 4.481
p1 = 0.3861 0.43 0.4467 0.056 4 0.4298 0.042
r2 = 60.21 0.90 0.9090 0.053 4 0.8999 0.017
p2 = 0.6211 0.98 0.9811 0.037 3 0.9778 0.229
n = 6560 10−4 -0.50 -0.5184 0.070 5 -0.5000 < 0.001
rX(−1) = −0.9971 0.05 0.0524 0.052 4 0.0500 < 0.001
rX(1) = 0.9989 0.43 0.4469 0.066 5 0.4300 < 0.001

0.90 0.9092 0.067 5 0.9000 < 0.001
0.98 0.9832 0.054 4 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5169 1.301 4 -0.4992 0.159
r1 = 156.7 0.05 0.0500 0.871 3 0.0478 4.491
p1 = 0.3861 0.43 0.4464 1.273 4 0.4298 0.042
r2 = 602.1 0.90 0.9080 1.255 4 0.8999 0.013
p2 = 0.6211 0.98 0.9802 0.877 3 0.9780 0.199
n = 189912 10−4 -0.50 -0.5177 1.639 5 -0.5000 < 0.001
rX(−1) = −0.9997 0.05 0.0524 1.236 4 0.0500 < 0.001
rX(1) = 0.9999 0.43 0.4465 1.616 5 0.4300 < 0.001

0.90 0.9081 1.611 5 0.9000 < 0.001
0.98 0.9819 1.190 4 0.9800 < 0.001
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Table 2: Results for method NI2A with δ = 10−4 and 2h set as close as possible to 10−2.

r̃ ρ̄ CPU (s) Ng′ rX(ρ̄) Rel. error (%)
Binomial -0.50 -0.6079 0.062×10−3 21 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0604 0.032×10−3 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2399 0.045×10−3 9 0.2000 < 0.001
n = 16 0.90 0.9760 0.067×10−3 17 0.8999 0.011
rX(−1) = −0.9241 0.98 0.9962 0.031×10−3 5 0.9602 2.024
rX(1) = 1

Binomial -0.50 -0.5203 0.032 5 -0.5000 < 0.001
n1 = n2 = 100 0.05 0.0526 0.032 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2099 0.032 5 0.2000 < 0.001
n = 10201 0.90 0.9111 0.032 5 0.9000 < 0.001
rX(−1) = −0.9971 0.98 0.9851 0.028 5 0.9810 0.099
rX(1) = 1

Binomial -0.50 -0.5179 2.17 5 -0.5000 < 0.001
n1 = n2 = 1000 0.05 0.0524 2.48 5 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2091 2.40 5 0.2000 < 0.001
n = 1002001 0.90 0.9083 2.01 5 0.9000 < 0.001
rX(−1) = −0.9997 0.98 0.9821 1.89 5 0.9800 < 0.001
rX(1) = 1

Negative Binomial -0.50 -0.5341 2.27×10−3 5 -0.5000 < 0.001
r1 = 1.568 0.05 0.0542 2.09×10−3 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4616 1.95×10−3 5 0.4300 < 0.001
r2 = 6.021 0.90 0.9336 2.29×10−3 7 0.9000 < 0.001
p2 = 0.6211 0.96 0.9903 2.33×10−3 7 0.9600 < 0.001
n = 768
rX(−1) = −0.9738
rX(1) = 0.9652

Negative Binomial -0.50 -0.5184 0.019 5 -0.5000 < 0.001
r1 = 15.68 0.05 0.0524 0.019 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4469 0.018 5 0.4300 < 0.001
r2 = 60.21 0.90 0.9092 0.019 5 0.9000 < 0.001
p2 = 0.6211 0.98 0.9832 0.018 5 0.9800 < 0.001
n = 6560
rX(−1) = −0.9971
rX(1) = 0.9989

Negative Binomial -0.50 -0.5177 0.50 5 -0.5000 < 0.001
r1 = 156.7 0.05 0.0524 0.46 5 0.0500 < 0.001
p1 = 0.3861 0.43 0.4465 0.47 5 0.4300 < 0.001
r2 = 602.1 0.90 0.9081 0.47 5 0.9000 < 0.001
p2 = 0.6211 0.98 0.9819 0.45 5 0.9800 < 0.001
n = 189912
rX(−1) = −0.9997
rX(1) = 0.9999
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Table 3: Results for method NI2B with m = 5, δ = 10−4 (so h = 0.09999).

r̃ ρ̄ CPU (s) Ng′ rX(ρ̄) Rel. error (%)

Binomial -0.50 -0.6078 0.024×10−3 9 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0601 0.010×10−3 3 0.0497 0.514
p1 = p2 = 0.5 0.20 0.2389 0.015×10−3 5 0.1999 0.026
n = 16 0.90 0.8485 0.029×10−3 11 0.7409 17.676
rX(−1) = −0.9241 0.98 0.8642 0.029×10−3 11 0.7565 22.805
rX(1) = 1

Binomial -0.50 -0.5202 9.65×10−3 7 -0.4999 0.029
n1 = n2 = 100 0.05 0.0525 4.20×10−3 3 0.0499 0.172
p1 = p2 = 0.5 0.20 0.2099 6.95×10−3 5 0.2000 < 0.001
n = 10201 0.90 0.8718 15.60×10−3 11 0.8582 4.641
rX(−1) = −0.9971 0.98 0.9142 15.80×10−3 11 0.9034 7.821
rX(1) = 1

Binomial -0.50 -0.5178 1.023 7 -0.4998 0.030
n1 = n2 = 1000 0.05 0.0523 0.44 3 0.0499 0.157
p1 = p2 = 0.5 0.20 0.2091 0.73 5 0.2000 < 0.001
n = 1002001 0.90 0.8982 1.64 11 0.8892 1.202
rX(−1) = −0.9997 0.98 0.9625 1.62 11 0.9586 2.187
rX(1) = 1

Negative Binomial -0.50 -0.5340 0.76×10−3 7 -0.4998 0.031
r1 = 1.568 0.05 0.0541 0.34×10−3 3 0.0499 0.157
p1 = 0.3861 0.43 0.4614 0.75×10−3 7 0.4299 0.028
r2 = 6.021 0.90 0.9567 1.19×10−3 11 0.9246 2.736
p2 = 0.6211 0.96 1.00 1.13×10−3 11 0.9652 0.545
n = 768
rX(−1) = −0.9738
rX(1) = 0.9652

Negative Binomial -0.50 -0.5183 6.38×10−3 7 -0.4999 0.029
r1 = 15.68 0.05 0.0523 2.72×10−3 3 0.0499 0.160
p1 = 0.3861 0.43 0.4468 6.44×10−3 7 0.4299 0.019
r2 = 60.21 0.90 0.8995 9.77×10−3 11 0.8896 1.150
p2 = 0.6211 0.98 0.9644 9.74×10−3 11 0.9595 2.091
n = 6560
rX(−1) = −0.9971
rX(1) = 0.9989

Negative Binomial -0.50 -0.5176 0.18 7 -0.4998 0.030
r1 = 156.7 0.05 0.0523 0.078 3 0.0499 0.155
p1 = 0.3861 0.43 0.4465 0.18 7 0.4296 0.020
r2 = 602.1 0.90 0.9077 0.29 11 0.8996 0.041
p2 = 0.6211 0.98 0.9816 0.28 11 0.9797 0.035
n = 189912
rX(−1) = −0.9997
rX(1) = 0.9999
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Table 4: Results for method NI3.
ǫ r̃ ρ̄ CPU (s) N1 rX(ρ̄) Rel. error (%)

Binomial 10−2 -0.50 -0.6079 0.038×10−3 2 -0.5000 < 0.001
n1 = n2 = 3 0.05 0.0604 0.020×10−3 1 0.0500 0.004
p1 = p2 = 0.5 0.20 0.2399 0.040×10−3 2 0.2000 < 0.001
n = 16 0.90 0.9767 0.060×10−3 3 0.9013 0.142
rX(−1) = −0.9241 0.98 0.9922 0.137×10−3 7 0.9429 3.783
rX(1) = 1 10−4 -0.50 -0.6079 0.064×10−3 3 -0.5000 < 0.001

0.05 0.0604 0.053×10−3 2 0.0500 < 0.001
0.20 0.2399 0.054×10−3 2 0.2000 < 0.001
0.90 0.9760 0.106×10−3 5 0.9000 < 0.001
0.98 0.9990 0.222×10−3 12 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5203 0.028 1 -0.5000 < 0.001
n1 = n2 = 100 0.05 0.0526 0.029 1 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2099 0.028 1 0.2000 < 0.001
n = 10201 0.90 0.9111 0.025 1 0.9000 < 0.001
rX(−1) = −0.9971 0.98 0.9851 0.022 1 0.9800 < 0.001
rX(1) = 1 10−4 -0.50 -0.5203 0.054 2 -0.5000 < 0.001

0.05 0.0526 0.056 2 0.0500 < 0.001
0.20 0.2099 0.053 2 0.2000 < 0.001
0.90 0.9111 0.047 2 0.9000 < 0.001
0.98 0.9851 0.044 2 0.9800 < 0.001

Binomial 10−2 -0.50 -0.5179 1.642 1 -0.5000 < 0.001
n1 = n2 = 1000 0.05 0.0524 1.924 1 0.0500 < 0.001
p1 = p2 = 0.5 0.20 0.2091 1.831 1 0.2000 < 0.001
n = 1002001 0.90 0.9083 1.387 1 0.9000 < 0.001
rX(−1) = −0.9997 0.98 0.9821 1.214 1 0.9800 < 0.001
rX(1) = 1 10−4 -0.50 -0.5179 3.360 2 -0.5000 < 0.001

0.05 0.0524 1.918 1 0.0500 < 0.001
0.20 0.2091 1.771 1 0.2000 < 0.001
0.90 0.9083 2.796 2 0.9000 < 0.001
0.98 0.9821 2.550 2 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5341 3.79×10−3 2 -0.5000 < 0.001
r1 = 1.568 0.05 0.0542 1.78×10−3 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4616 3.15×10−3 2 0.4300 < 0.001
r2 = 6.021 0.90 0.9336 3.45×10−3 2 0.9000 < 0.001
p2 = 0.6211 0.96 0.9902 3.46×10−3 2 0.9616 < 0.001
n = 768 10−4 -0.50 -0.5341 3.77×10−3 2 -0.5000 < 0.001
rX(−1) = −0.9738 0.05 0.0542 3.42×10−3 2 0.0500 < 0.001
rX(1) = 0.9652 0.43 0.4616 3.16×10−3 2 0.4300 < 0.001

0.90 0.9336 5.13×10−3 3 0.9000 < 0.001
0.96 0.9903 5.10×10−3 3 0.9600 < 0.001

Negative Binomial 10−2 -0.50 -0.5184 0.017 1 -0.5000 < 0.001
r1 = 15.68 0.05 0.0524 0.016 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4469 0.016 1 0.4300 < 0.001
r2 = 60.21 0.90 0.9092 0.016 1 0.9000 < 0.001
p2 = 0.6211 0.98 0.9832 0.015 1 0.9800 < 0.001
n = 6560 10−4 -0.50 -0.5184 0.031 2 -0.5000 < 0.001
rX(−1) = −0.9971 0.05 0.0524 0.016 1 0.0500 < 0.001
rX(1) = 0.9989 0.43 0.4469 0.031 2 0.4300 < 0.001

0.90 0.9092 0.031 2 0.9000 < 0.001
0.98 0.9832 0.028 2 0.9800 < 0.001

Negative Binomial 10−2 -0.50 -0.5177 0.393 1 -0.5000 < 0.001
r1 = 156.7 0.05 0.0524 0.370 1 0.0500 < 0.001
p1 = 0.3861 0.43 0.4465 0.378 1 0.4300 < 0.001
r2 = 602.1 0.90 0.9081 0.383 1 0.9000 < 0.001
p2 = 0.6211 0.98 0.9819 0.332 1 0.9800 < 0.001
n = 189912 10−4 -0.50 -0.5177 0.394 1 -0.5000 < 0.001
rX(−1) = −0.9997 0.05 0.0524 0.369 1 0.0500 < 0.001
rX(1) = 0.9999 0.43 0.4465 0.366 1 0.4300 < 0.001

0.90 0.9081 0.740 2 0.9000 < 0.001
0.98 0.9819 0.689 2 0.9800 < 0.001
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Our numerical experience and findings can be summarized as follows. We initially ex-

pected that the ratio of work per evaluation of f compared to work per evaluation of f ′

would be large, making NI2 competitive. To our surprise, there exist algorithms that com-

pute the bivariate normal integral (and thus f) to negligible error at small computing cost.

In our implementation, this ratio was about 12, a value smaller than we expected. (Other

users may observe a different value, depending on the method for computing bivariate

normal integrals and the implementation quality.) Moreover, NI2 lacks a solution-error

guarantee, so it should be viewed as a cheap and approximate alternative to exact meth-

ods. Implementing the derivative f ′ is very simple, requiring just a few lines of simple

code. In summary, if a good code is available for computing the bivariate normal integral,

then our recommendation is the Newton-type method NI3. Otherwise, NI2B is an easy

(approximate) solution, because it requires only f ′ and not f ; but some care is needed to

keep the integration errors small enough.

We also contributed a convergence result on the L∞ distance (i.e., the supremum over

ρ ∈ [−1, 1] of the absolute difference) between the rank-correlation function rX(ρ;F1, F2)

for given discrete marginals F1 and F2 and the explicitly known analog for continuous

marginals, (6/π) arcsin(ρ/2), in terms of the maximum probability masses of F1 and F2,

as these masses go to zero. In particular, this result justifies the value 2 sin(πr̃/6) as an

approximation to the solution to (3) and points to it as a starting point for exact solution

methods.

Interesting future work is to analyze further the properties of normal-copula dependence

for discrete marginals with unbounded support. Problems and approaches of interest are:

(1) study the correlation error that results from truncating to finite support for a single

given ρ; (2) if this error can be made small uniformly across ρ by an appropriate truncation,

then finite-support correlation-matching methods could be proved to be effective; (3) pro-

pose and analyze alternatives to our approximate correlation-matching method, perhaps

via steps (1) and (2); and (4) evaluate correlation-matching methods experimentally.
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