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Abstract

This paper proposes new tests of randomness for innovations of a large class of time
series models. These tests are based on functionals of empirical processes constructed
either from the model residuals or from their associated ranks. The asymptotic behav-
ior of these empirical processes is determined under the null hypothesis of randomness.
The limiting distributions are seen to be independent of estimation errors when ap-
propriate regularity conditions hold. Several test statistics are derived from these
processes; the classical BDS statistic and a rank-based analogue thereof are included
as special cases. Since the limiting distributions of the rank-based test statistics are
margin-free, their finite-sample P-values can easily be calculated by simulation. Monte
Carlo experiments show that these statistics are quite powerful against several alter-
natives.

Key Words: Copulas; Empirical processes; BDS statistic; Pseudo-observations;
Randomness; Ranks; Time series.

Résumé

Dans cet article, on propose de nouveaux tests d’indépendance pour les erreurs
de modeles de séries chronologiques. Les tests sont basés sur des fonctionellles de
processus empiriques construits a partir de résidus ou des rangs des résidus. Le com-
portement asymptotique des processus empiriques est déterminé sous 'hypothese nulle
d’indépendance, et 'on montre que sous certaines conditions, la loi limite ne dépend
pas des estimations des parametres du modele. Plusieurs statistiques sont déduites de
ces processus, incluant la statistique BDS, ainsi que son analogue basé sur des rangs.
Comme la loi limite des statistiques de rangs ne dépend pas des marges, les valeurs
critiques peuvent étre estimées par simulation. Des expériences Monte Carlo sont
aussi utilisées pour montrer que ces nouveaux tests sont tres puissants par rapport a
plusieurs hypotheses alternatives de dépendance.

Acknowledgments: Partial funding in support of this work was provided by the
Natural Sciences and Engineering Research Council of Canada, by the Fonds québé-
cois de la recherche sur la nature et les technologies, as well as by the Institut de
finance mathématique de Montréal.
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1 Introduction

Time series models typically involve error terms called innovations that are assumed to
be mutually independent with common distribution function F. An important step in
validating such models is to check this so-called “white noise assumption” for the sequence
(€;) of innovations.

When the parameters of the model are known, the innovations are observable and a
wide variety of tools is available for testing the null hypothesis Hy of randomness. Common
tests are based on autocorrelations (Moran 1948; Ljung and Box 1978; Dufour and Roy
1985; Hong 2000), entropy measures (Robinson 1991; Hong and White 2005), rank-based
dependence measures (Hallin et al. 1985, 1987; Hallin and Puri 1992; Ferguson et al. 2000),
empirical distribution functions (Skaug and Tjgstheim 1993; Delgado 1996; Ghoudi et al.
2001), empirical characteristic functions (Hong 1999; Bilodeau and Lafaye de Micheaux
2005), and empirical copulas (Genest and Rémillard 2004).

In practice, however, the model parameters are usually unknown, so that the ¢; are
unobservable. In that case, a test for randomness must be based on “residuals” e;. The
latter are typically computed by plugging in the estimated parameter values in an equation
defining the relation between ¢; and the observed data y; at time 7. This equation may
also depend on finitely many previous values v;_1,...,yi—p and €;_1,...,&—4. A major
stumbling block associated with such a procedure is that the limiting distribution of a test
statistic will then generally depend both on the unknown parameter values and possibly
on the (infinite-dimensional) nuisance parameter F'. This issue, which is generally ignored
in practice, is highlighted, e.g., in the work of Ghoudi and Rémillard (1998, 2004).

One ingenious way around this problem is provided by the so-called BDS statistic of
Brock, Dechert, and Scheinkman, which was shown by Brock et al. (1996) to have the
same limiting behavior under Hy, whether the model parameters are known or estimated.
Inspired by the work of Grassberger and Procaccia (1983) on detecting chaotic behavior,
the BDS statistic .S, is based on a comparison of the observed and expected numbers of
pairs of vectors

w; = (Wi, -, Wim) = (€5« oy €i4m—1), 1<i<n (1)
such that
|wi — wj|| = s lwir, —wjk| <6

for some arbitrary constant ¢ > 0. This statistic leads to the rejection of Hy when |S,,| is
unduly large, by comparison with its distribution under the null.

More specifically, the BDS statistic is defined as

Vi = V™
Sn:Sn(el,...,€n+m_1) = W (2)
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in terms of

and

Here, s, is an estimate of the standard deviation of /n(V,, —V™). The specific estimate
proposed by Brock et al. (1996) does not require any knowledge of F'. It is defined by

m—1
Y D R O O E e Gl e ]
k=1

where

v %ZZZMQ — el <O)1(Jej —ex| < 9).

i=1 j=1 k=1

It was shown by these authors that for a wide class of time series models, S,, has an
asymptotic standard normal distribution under the null hypothesis of randomness, the
same that one would obtain if the model parameters were known and the statistic were
calculated using the (then observable) ;.

Nevertheless, the BDS procedure suffers from three major weaknesses. An obvious one
is the arbitrariness in the choice of 4, which may affect both the power and the size of the
test. In practice, Brock et al. (1996) recommend the use of § € [s/2,3s/2], where s is the
standard deviation of the pseudo-sample e, ..., e,1m—1. A second limitation is the fact
that the test is inconsistent, i.e., the probability of rejection of the null hypothesis does
not necessarily approach 1 as n — oo even when Hj is false; indeed, alternatives may be
found under which the expected value of the test statistic is equal to zero for at least some
choice of 4.

However, the third and most critical difficulty associated with the BDS test is that al-
though the statistic converges to a standard normal distribution under the null hypothesis,
this convergence is often so slow that even for sample sizes as large as 1000, one is still far
from the limit. This is most inconvenient from a practical point of view, because neither
the level nor the power of the test can then be determined with any precision, unless F' is
known. While in the latter case, an appropriate table of critical values can then be con-
structed, it is widely acknowledged that the rate of convergence varies considerably from
one choice of F' to another; see, e.g., Brock et al. (1996).

In this paper, extensions of the BDS statistic are considered which have the following
properties:

a) they are free of the arbitrary parameter d;
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b) their limiting distribution continues to be independent of the model parameters;

c¢) their finite-sample distribution is more tractable than that of S, and well approxi-
mated by Monte Carlo methods.

In particular, note that the speed at which a test statistic converges in law is irrelevant
when property c) holds.

A first alternative test statistic considered in Section 2 is a rank-based equivalent of the
original BDS statistic. It still depends on § but its asymptotic distribution, which is totally
independent of F, is identified in Proposition 1, and a simple algorithm for simulating its
finite-sample distribution is provided. Then, in Section 3, functional extensions of S,, are
given in the form of empirical processes, one of which is rank-based, and their asymptotic
behavior is studied. Calling on these empirical processes, alternative statistics are proposed
in Section 4 and algorithms for computing associated P-values and quantiles are stated.

The finite-sample performance of the proposed statistics is considered in Section 5,
where their power is estimated through Monte Carlo simulations for a wide range of serial
dependence alternatives, including those studied in Hong and White (2005). This is fol-
lowed by a discussion of the relative merits of these statistics. A small illustration of the
methodology is treated in Section 6, and Section 7 contains examples of time series models
that satisfy the conditions under which the asymptotic results are stated. The proofs of
all results are relegated to Appendices A and B. As for Appendix C, it details technical
conditions under which the central Assumption II is verified for common models.

2 A rank-based version of the BDS statistic

Given residuals eq, ..., e, from a time series model, let
. rank(e;)/(n+1)  forie{l,...,n};
€; — ~ . (3)
€i—n forie{n+1,...,n4+m—1}.

A natural nonparametric (circular) analogue of the BDS statistic S,, is then given by

Sn = Sn (é17' .- 7é7L+m—l) .

The asymptotic normality of this statistic (and of all other statistics to be introduced
herein) depends critically on the Assumptions I and II stated below. It will be seen in
Section 7 that the latter requirement is met by several well-known models including, e.g.,
linear and non-linear AR(p) as well as standard ARMA(p, ¢) models.

Assumption I: F' admits a continuous derivative that is square integrable.

Assumption II: For all x = (x1,...,2y) € R™, let

n

K, (z)= 1 Zl(w,- <z)= %Z H 1(wi < xp)

n “ X
i=1 i=1 k=1
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be the empirical distribution function associated with the w; defined in (1), and denote its
theoretical counterpart by K(x) = F(x1) X -+ X F(xy,). Write K,, = /n (K, — K) and let

also
an(z) = % ; {k];[l Uerip 1 < ) — K(az)} .

Then there exist processes o, (1,...,0Bm in the Skorohod space D(|—o0,00]™) of cadlag
processes with the property that O (x) does not depend on xj and such that as n — oo,
ap ~ a and K, ~ K in D([—o0, 00]™), where

K(z) = a(z) =) f(z)Bi(z), @ € [~o0,00]™ (4)

k=1

Proposition 1 Suppose that F' is symmetric and that Assumptions I and II hold under
Hy. Then S, ~ N(0,1) as n — oo.

The rank-based statistic S, shares with S,, its dependence on an arbitrary parameter
0 but, more importantly, the crucial property that its asymptotic distribution does not
depend either on the estimated parameters nor on F. The advantage that S, has over
Sy, however, is that its finite-sample distribution can be easily approximated, even when
F' is unknown. By resorting to Algorithm 1 below to construct tables for .S, a user may
then trust the nominal level of the statistic, whereas this could not be accomplished for
Sn, unless F' were known. In addition, the actual rate of convergence of S, to its normal
limit is irrelevant.

Algorithm 1 (Critical values for |S,|) Repeat the following steps for each £ € {1, ...,
L} for some suitably large L.

1. Generate Uy y, ..., U, mutually independent uniform random variates on (0,1).
2. Define ¢; = rank(U; ¢)/(n+1) fori e {1,...,n} and & = é_y, fori € {n+1,... ,n+pn
—1}.

3. Compute Sn,g = Sn(€1,. .y Cntm—1).

The 100 x a% critical value for the statistic \S’n\ 1s then approzimated by the correspond-
ing quantile in the set |Sp1l,...,|Sn,L|. Similarly, the P-value associated with an observed
value Sy o can be estimated by

S (18nel > 1800) -

(=1

SIE
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3 Empirical processes extending S, and S,
Although the rank-based statistic S,, does not suffer from the slow rate of convergence
associated with the original BDS statistic S,,, it still shares with it a dependence on the

arbitrary parameter 6 > 0. This section describes empirical processes that will be exploited
in Section 4 to get rid of this arbitrariness.

3.1 An empirical process extending 5,

Consider the process By, (t) defined for each t = (¢1,...,t,) € [0,00]™ by

:— Z Hl \wjk—wlk] <tk)

<i<j<n k=1
For all s € [0, 00], let also
1
Gn(s) = Bn(s,00,...,00) = —— Z 1(lej —eil < s).
(2) 1<i<j<n

A test of randomness based on

would then represent an extension of S, since V,,, = By, (d,...,0) and V = G,(0), so that
Sn=Dn(0,...,0)/sn.

The limit of the general process D, is characterized in Theorem 1 below, along with
that of two related processes, namely

Bn(t) = v {Bna)— HG(m)} and B}(t) = Vn {B;(t) —2HG<tk>},
k=1

k=1
where o
% ST F i+ tn) = Flwi — i)} (5)
i=1 k=1
and for all u € Ry,
Gu) =P(leg —e1] <u) = /_OO {F(z 4+ u) — F(zx —u)}dF(z). (6)

In the special case where F' is known (but only then), the processes B,, and B} could
be used instead of D,, to construct tests of randomness.
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Theorem 1 Suppose that Assumptions I-1I hold under Hy. Then asn — oo, (B,,B;,D,,)
~ (B,B*,D) in D([0,00]™)**, where B = B* and D are continuous centered Gaussian
processes with covariance functions I'y and I'p defined respectively by

Tp(s,t) = 4 {H Ysmte) = [ [ G(sk)G(tk)}
k=1

k=1

m

J—1 m
+ 42 {H G(s1)G(tmy1-k } H Y(8k> tht1-j) H G(s1)G(thtr1-4)
i=2 (k=1 k=j

m

+ 42 {1:[ G(Sm—i-l—k)G(tk)} H V(Skt1—j,tk) — H G(sk+1—4)G(tr)
j=2 Lk=1 iy Pl

and

Tn(s,t) =Tr(s,t) =4 > > {y(sj,tr) — G(s))G(te)} [T Gls0) ¢ S T] Glte)

j=1 k=1 (£5 £k

As with the classical BDS statistic, it can be seen from Theorem 1 that the asymptotic
covariances of the processes B,, B} and I, do not depend on the model parameters or
their estimates. However, they do depend on F' through G and

7(”71}) :P(|€2_€1| S’LL,|€3—€1| S’U)v u,v € [0700)

Nevertheless, consistent estimators of G(u) and 7(u, v) are respectively given by Gy, (u)
and by
1 n n n
(U, 0) = — 22; L(lei — ex| < w)l(lej — ex| < ).
i=1 j=1 k=

Remark 1 When F' is known, it would be tempting to work with the pseudo-observations
F(e;). However, it turns out that this is not a good idea, because unless F is symmetric, the
limiting distribution of the processes B, and B} could depend on the estimated parameters.
See the proof of Corollary 2 for more details.

3.2 An empirical process extending S,

Parallel results to those of Section 3.1 are presented here for the case where the e; are
replaced by the €; from (3). First introduce

wi:(’lI)il,...,'lDim):(éi7...7éi+m_1), 1§Z§n
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- 1 m
Bn(t) = = H L(|wjk — wir| < ),
(2) 1<i<j<n k=1
~ ~ 1 R
Gn(S) = Bn(S,OO, . 700) = 7 1(‘6] — el‘ < 3)7

and
_%ZH{ (Wi + t) F(wik—tk)}- (7)

Here, F(s) = 0V (s A 1) is the distribution function of a uniform random variable on the
interval (0,1).

Next, the analogues of D,,, B,, and B}, are defined respectively by

D, (1) = Vi {Bna) -11 én<tk>} ,

/ (F(o+u) — Flz — u)dB(z) = 0V {(2u— u?) A1},
In practice, of course, there is no incentive to use D,, over I@n, since G,, is deterministic

and &) - é(t)( 0 <%> > s Dy, (t) — Ié(t)( =0 <%> .

Theorem 2 Suppose that Assumptions I-1I hold under Hy. Then asn — oo, (EH,E;,D,L)

~ (B,B,B) in D ([0,1]™), where B is a continuous centered Gaussian process with covari-
ance function 'z (s,t) given by the same expression as I'p(s,t), but with G and -y respectively

replaced by G and

sup
teR L
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3
—uzv—2uv2+4uv—% if u < min(v,1 —v);
2 2, V-1,
v—u‘ —uv +T—v +u + 2uv if max(u,1 —u) < w;
Y(u,v) = \
—vzu—2vu2+4uv—% if v < min(u,1 — u);
2 oy ut—1 2 .
u—v° —ou —I—T—u + v+ 2w if max(v,1 —v) < u.

Note that under Hy and for any ¢ € (0, 1), it follows from Theorem 2 that

S, =D,(0,...,8)/3, ~ N(0,1),

where 32 = s2(é1,...,é,) — I3(6,...,0) as n — oo.

4 Statistics based on functional extensions

In the light of Theorems 1 and 2, obvious extensions of statistics .S,, and S,, could be
based on quadratic forms involving either D, (¢) or D,(¢) for finitely many, arbitrarily
selected values of ¢ € R'!'. Once properly normalized, these quadratic forms would then be
asymptotically distributed as chi-square random variables. Although sophisticated, this
approach would provide no real relief. For, the quadratic form would now depend on
several arbitrary choices of ¢ € R’ rather than on t = (J,...,d). In addition, the issue

related to the rate of convergence would remain for the test statistic based on I, or D,,.

One obvious way around the arbitrariness of quadratic forms based on a finite number
of evaluations of D,, or ID,, is to resort to continuous functionals of these empirical processes
that take into account their value over an infinite number of points. This section considers
several statistics of this type, both in the cases where F' is known or unknown.

4.1 The case where I’ is known

In the spirit of freeing the BDS statistic from the arbitrary parameter ¢, an option would be
to integrate S, over all possible values of this parameter. This idea leads rather naturally
to

/OOO Dy(s, ..., s)dGn(s).

Since F' is known, however, it seems more convenient to base a test of randomness either
on B, or B} rather than on D, itself. This yields
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1 . A 1
= Vn 6] Z mm G(|wik_wjk|)_m—+1 ;
2/ 1<i<j<n

and
n

jr. /OOOB;(t,...,t)dG(t) - %Z {Wm(wi) - mLH}

1=1

Here, G = 1 — G and for arbitrary integer p < m and ty,...,t, € [0,00),
oo P
Wt ) = / T (F(t+5) — Flte — )} dG(s).
0 k=1

By Theorem 1, one may conclude that both I,, and I}J converge in law to the centered
Gaussian random variable

I:/O B(s,...,s)dG(s)

with variance

/ooo /Ooo T(s,. .50, £)dG(s)dG(1).

Other natural extensions of .S,, based on the empirical processes B, and B} could be
constructed as follows from the Kolmogorov—Smirnov functional:

M, = sup |B,(s,...,s)| and M = sup [B)(s,...,s)|.
s€[0,00) s€[0,00)

Under the conditions stated in Theorem 1, M,, and M} converge weakly to sup{|B(s,
..,8)] s €[0,00)} as n — oo.

The Cramér—von Mises functional is yet another option, which has the advantage of
leading to statistics that can be computed more or less explicitly. Indeed,

Tn = /B%(il, oo ,tm)dG(tl) X - X dG(tm)

4 mo
- n(n — 1)2 Z Z H G (|wi1k - wj1k| N |wi2k - wj2k|)

1<ii<j1<n 1<ia<je<n k=1

4 (11, n
o1 Z H{§_§G(|wik_w]’k|)}+3—m'

1<i<j<n k=1
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Furthermore,

T = /BZQ(tl,...,tm)dG(tl) X - X dG ()

n n m n

= g—z +%ZZH Wo(wig, w;i) —82 HN(wjk)v

i=1 j=1 k=1 j=1k=1

where for all u,v € RT,

N(u) = /0 T F(uts) — Flu— )} G(s)dG(s).

It follows from Theorem 1 that the asymptotic distribution of 7, and T} is [ B2(t4,
cooytm)dG(t1) X - -+ x dG(t,,), which is an infinite sum of weighted chi-squares.

In view of the slow speed of convergence of the statistics S, I, I;, My, M}, T, and
Tx to limits that involve F'in an intricate way, it seems wiser to rely on their finite-sample
distribution for testing purposes. A Monte Carlo algorithm is provided below in the case
of T,,. Its validity stems from Theorem 1. The modifications needed for other functionals
of B, or B} are obvious.

Algorithm 2 (Critical values for T,) Repeat the following steps for each ¢ € {1, ...,
L} for some suitably large L.

1. Generate a random sample €14, ..., €ptm—1, from distribution F'.
2. Setej=¢€ig forallic{l,...,n+m—1} .

3. Use the e; to construct the w;.

4. Compute the value T}, ; of the Cramér-von Mises statistic T),.

The 100 x a% critical value for the statistic T, is then approzimated by the corresponding
quantile in the set Ty, 1, ..., T, 1. Similarly, the P-value associated with an observed value
T can be estimated by

1 L
> 1Ty > To)

/=1

il

4.2 The case where I is unknown

When F' is unknown but symmetric, rank-based analogues of I,, and I} are given by

5 1
i, - /OIB%n(s,...,s)dG(s)
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and

o /Olﬁg(s,...,s)dc:(s) - % > {Wm(wi) - mLH}

where W, (u) = W,(u), with u} = ux A (1 —ug), k € {1,...,p}, W, is symmetric in its
arguments and if 0 = up <wuy < -+ <wp <wupyy =1/2, then

~ p Up41 k k
Wp(ur, ..., up) = 22/ (1—s)(2s)P7* H(uj +s)+ SH(Uj +1—35) pds.
k=0 "k j=1 j=1

Again, using Theorem 2, one may conclude that both I,, and 1:;; converge in law to the
centered Gaussian random variable

~ 1~ ~
I:/O B(s,...,s)dG(s)

with variance

/1 /1 Ta(s,.. 8t 0)dC(s)dC(2).
0 0

Rank-based analogues of M,,, and M} are respectively given by

~ 1 ?
B
n<n+1’ 771—#1)‘

e (i i
"\n¥1 "t 1)

U]ﬂder~ the conditions stated in Theorem 2, M,, and M,*L converge weakly, as n — o0, to
sup{|B(s,...,s)| : s € [0,1]}.

M, = max
1<i<n

and

M} = max
1<i<n

Finally, explicit expressions for the rank-based analogues of T;, and T} are found to be

- /Bg(tl,...,tm)dé(tl)x---xdé(tm)

- _n(néil)2 Z Z H{l—é(lwilk—wﬁk\\/]whk—whk\)}

1<i1<j1<n 1<ia<je<n k=1

4 WS T R n
e Z H{i——G(\wik—wjkD}‘*‘?)—m’

1<i<j<n k=1
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and

In these formulas,
Wolu,v) = Wa(u',v')
1 ~ ~ ~ ~ ~
= /0 {F(u—i—s)—F(u—s)} {F(U—i—s)—F(v—s)}dG(s)
= é +u'v' (1 —u V') + %u’{l + ()3 + %v’{l + ()3
—(u' ANV') — g(u' v')3,

with v/ =u A (1 —u), v =vA(1—v), and

RN NS A S A A
480 4 2 2 2
7 1

1
= %—F u— +2u

A Monte Carlo algorithm is provided below for the determination of the distribution
of T,, under the null hypothesis of randomness. Its validity stems from Theorem 2. The
modifications needed for M,,, M} T* or other functionals of B,, or IBB* are obvious.

Algorithm 3 (Critical values for Tn) Repeat the following steps for each ¢ € {1,
L} for some suitably large L.

Generate a random sample Uy g, ..., Upym—1,¢ from U(0,1).
Call R; the rank of U; ¢ among Uy g, ..., Upym—1.-

Using Ry, ..., Ryyp—1, compute the & as per Equation (3).
Use the €; to construct the w;.

CLk W=

Compute the value T, ¢ of the rank-based Cramér—von Mises statistic T,.

The 100 x a% critical value for the statistic T,, is then approzimated by the corresponding
quantile in the set Tn717 ..., Ty 1. Similarly, the P-value associated with an observed value

Tn,O can be estimated by

L ~ ~
Z 1 (Tn’g > Tn,0> .

(=1

=~
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A final statistic that was included in the simulation study presented below is
St =B,(5,...,08)/5n,
which converges to a standard normal random variable by Theorem 2.

Remark 2 As illustrated in Table 1, note that in spite of the fact that M,, and M;{ converge
i law to the same limit, under the null hypothesis of randomness, their respective speed of
convergence could not be the same. In particular, for small sample sizes, quantiles might be
different. It is therefore recommended to calculate P-values and quantiles for each statistic
separately. The same advice applies to the pairs Sy, S T, T* and I, I}.

5 Finite-sample performance

This section carries out two sets of Monte Carlo experiments to compare the performance,
for a sample s 51ze n = 100, under various alternatives and dimensions m, of the statistics
S, Sk I, I . M,, M T, and T* For S, and S* 6 = 0.3 was used throughout
all 51mu1at10ns. To estlmate the power under a fixed alternative, 10,000 samples were

Table 1: 95% quantiles for statistics S),, 5’2 with 6§ = 0.3, I,,, IN,’;, M,, M;{, T,, and T; for
sample sizes n = 20, 50,100 and for m € {2,3,4,5,6}, based on 10,000 replicates.

m
Statistic n 2 3 4 5 6

20  9.012032 9.134711 9.869765 10.590494  13.172255

Sn 50  5.940659 5.730771  6.202165 6.629940 7.677685

100  4.540863  4.401059  4.692272 5.100884 5.816306
20 5.814012  4.296890  3.629241 3.201116 2.881487
50  4.423979  3.423614  2.967845 2.712009 2.556186

100  3.677803  2.945949  2.639806 2.458066 2.327052
20 0.075363  0.107253  0.121851 0.127242 0.127455

In 50 0.052585 0.078264  0.090282  0.095680 0.097110

100  0.043092 0.065551  0.076175  0.081853 0.083969
20 0.105261  0.119070  0.124014  0.123530 0.120635
50 0.078158 0.092435 0.099896  0.102787 0.103476

100 0.063384 0.078290 0.085704  0.088411 0.090208
20 0.375645 0.507397 0.603171 0.688483 0.759761

My, 50  0.260807  0.360727  0.442342  0.508878 0.564885

100  0.202400  0.287081  0.354657  0.409974 0.456697

20 0.227611 0.314323 0.378650  0.431029 0.471951

M} 50  0.169251  0.240221  0.295861 0.342389 0.382811
100  0.141433  0.209432  0.259929  0.300341 0.335972

20 0.017241 0.012620 0.008172  0.004973 0.002819

Tn 50 0.007356  0.005982  0.004142  0.002596 0.001482
100 0.004166  0.003801  0.002786  0.001800 0.001027

20 0.011396  0.009728  0.006244  0.003404 0.001700

T 50 0.006216  0.005944  0.004056  0.002420 0.001260
100  0.004048 0.004104 0.002972  0.001784 0.000956
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generated for each statistic, and the percentage of rejected samples was recorded. In order
to speed up calculations, the 95% quantiles of Table 1 were used, instead of P-values.

In the first series of experiments, the alternatives are the time series models used in
Hong and White (2005), restricted to Gaussian innovations. In that paper, the authors
introduced a new statistic measuring entropy with respect to independence at various lags.
In the second set of experiments, other models of alternatives are proposed, with variable
degrees of dependence depending on the value of a parameter. A discussion of the results
in presented afterwards.

5.1 First experiment

For the first set of comparisons, nine time series models exhibiting various forms of depen-
dence were used, as in Hong and White (2005). In all these models, listed in Table 2, the
(independent) innovations are Gaussian. Note that Hong and White (2005) also considered
log-normal innovations.

In order to be able to make comparisons with the results of Hong and White (2005), the
same procedure was followed to obtain nearly stationary time series: for each repetition
and for each alternative, a time series of length 200 was generated, and only the last 100
observations were used. The results of these comparisons are given in two tables.

_ Table 3 contains the estimated power, under the nine alternatives, for the statistics S,
Sx. I, I¥, M,, M}, T, and T calculated with m = 2, and the statistic 7, (1) proposed by
Hong and White (2005). All statistics are comparable since they are all based on the pairs
(x4, x441), t = 101,...,200. No simulations needed to be done for 7,(1), as the results were
kindly provided by the authors. In Table 4, similar results are presented for dimensions
m € {2,...,6}, for all statistics but 7,(1).

Table 2: List of models with Gaussian innovations used by Hong and White (2005)

Time Series Model Equation

LLD. Xt =¢€t

AR(1) Xt =03X¢—1+e

ARCH(1) X =h%e;, he =14 0.8X2_,

Threshold GARCH(1,1)  X; = hy/%e;, with h2 = 0.25 + 0.6h2_,
+0.5X7 1(et—1 < 0) +0.2X2_;1(e4—1 > 0)

Bilinear AR(l) Xt =0.8X¢_16¢t-1 + &

Nonlinear MA(1) X = 0.86?71 + &t

Threshold AR(1) X =04X; 11(Xe—1 > 1)+ &
—0.5X;11(X¢—1 <1)

Fractional AR(1) X = 08X 1|2+

Sign AR(l) Xt = sign(thl) + 0.43¢e¢
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Table 3: Percentage of rejection, at level o = .05, of series of length n = 100 of the first
set of alternatives, for tests based on the statistic 7,,(1) of Hong and White (2005) and the
statistics S, S¥ (both with 6 = 0.3), I,,, I*, M,, M*, T,, and T;*. For all statistics but
7.(1), the percentage of rejection was estimated with 10,000 replicates.

Model Sy I M T Sn In M, Tn  Tn(1)
LID. 520 525 449 567 | 508 4.65 536  4.93 6.5
AR(1) 14.01  14.65 11.53 14.78 | 48.61 54.92 51.46 5229  14.0
ARCH(1) 95.47  95.80 93.00 9598 | 7890 90.40 90.48 90.76  37.6
Threshold GARCH(1,1) 72.14 7271 66.22 72.90 | 48.99 61.85 62.22 61.75  20.6
Bilinear AR(1) 94.89 9454 88.66 94.69 | 98.28 99.44 96.78 98.78  69.6
Nonlinear MA(1) 50.64 49.64 38.45 50.55 | 71.10 73.62 55.55 67.52  34.0
Threshold AR(1) 868  9.24  6.97 951 | 54.77 4824 34.36 4452  25.6
Fractional AR(1) 6.62 807 739  7.85 | 43.63 44.30 37.92 40.19  17.0
Sign AR(1) 32.06 33.92 32.03 34.03 | 57.59 59.15 58.42 59.57  60.8

5.2 Second experiment

A second set of comparisons was made using a set of alternatives allowing for various
degrees of dependence reflected through a parameter #. These models, in which § = 0
corresponds to independence, are listed in Table 5.

Remark 3 The Threshold AR(1) model was proposed by Tong and Lim (1980). For the
randomized tent map due to Genest et al. (2002), the choice @ = 1/4 corresponds to the
deterministic tent map, described by Chatterjee and Yilmaz (1992) as a prime example of a
chaotic time series. Note that for the tent map, traditional measures of dependence for the
pairs (X, Xiig), like autocorrelations, Kendall’s tau or Spearman rho, all have theoretical
value 0. See, e.g., Genest et al. (2002).

Table 6 gives the percentages of rejection of samples of size n = 100 for the test based
on the statistic S, with 6 = 0.3, for m € {2,...,6} and for the 45 alternatives models.
Finally, Table 7 provides a comparison of the performance of the test statistics Sy, 5',*“ with
§=0.3, I, IN,’;, M, M;{, T, and T;[, for dimensions m € {2,...,6} and the 9 alternatives
corresponding to # = 1/4. In order to achieve stationarity for a given times series model,
for each replicate, 120 observations were generated, and only the last 100 were considered.

5.3 Discussion

First, as shown by the results in Table 3, tests based on statistics Sy, I,, M, and T}, have
better power than the test based on 7,(1) for all models of Table 2 with the exception of
the sign AR(1), where they come very close. As for the tests based on statistics 5’;;, f,’;, M;
and T, they clearly dominate 7,(1) for the ARCH(1), Threshold GARCH(1, 1), Bilinear
AR(1) and Nonlinear MA(1) models. They are also comparable to 7,(1) for the AR(1)
model. They are, however, outperformed by 7,(1) for the remaining three models.



16 G-2006-23 Les Cahiers du GERAD

Table 4: Percentage of rejection, at level a = .05, of the first set of alternatives, for the
tests based on the statistics S, S} (both with § = 0.3), I,,, I}, M,, M}, T, and T}, with
m € {2,2,3,4,5,6}, as estimated with 10,000 replicates of series of length n = 100.

Model m S s My T S, I, M, T
I1D. 520 525 449 567 | 508 4.65 536  4.93
LLD. 516 522 463 533 | 527 490 516 471
LLD. 515 524 483 517 | 504 496 521  4.95
LLD. 522 553 490 543 | 525 4.83 498  4.87
LLD. 540 524 493 528 | 471 495 496  5.14
AR(T) 1401 14.65 11.53 14.78 | 48.61 54.92 51.46 52.29
AR(1) 1310 12.20 10.96 13.68 | 42.73 49.97 4554 49.95
AR(1) 1231 1147 1082 12,55 | 34.81 44.94 39.52 45.61
AR(1) 1153 10.95 1059 11.85 | 29.29 40.38 3524 41.64
AR(1) 1133 10.05 10.04 11.43 | 23.22 36.60 31.74 38.94
ARCH(1) 9547 95.80 93.00 9598 | 78.90 90.40 90.48 90.76
ARCH(1) 94.18  93.77 91.25 94.34 | 76.21 89.96 90.05 88.98
ARCH(1) 91.53 91.06 89.35 91.45 | 67.91 87.76 88.21 85.87
ARCH(1) 88.32 88.09 87.28 88.60 | 60.50 85.45 86.16 81.86
ARCH(1) 85.09 84.39 8460 85.71 | 50.29 82.85 84.15 78.36

Threshold GARCH(1, 1
Threshold GARCH(1, 1

) 72.14 7271 66.22 7290 | 48,99 61.85 62.22 61.75

)
Threshold GARCH(1, 1)

)

)

80.84 79.31 75.76 80.68 | 57.79 73.10 73.60 71.89
84.00 82.29 81.02 83.70 | 57.94 78.35 78.75 76.12
85.53 83.48 83.62 8545 | 58.24 80.62 81.22 77.94
86.13 83.84 84.58 86.06 | 54.80 81.87 82.41 78.90
94.89 94.54 88.66 94.69 | 98.28 99.44 96.78 98.78
95.63 94.08 90.95 95.35 | 98.26 98.64 91.56 99.00
93.59 91.08 89.85 93.23 | 95.47 95.41 83.93 98.26
90.81 88.12 87.60 90.39 | 91.04 90.79 78.28 96.57
87.78 83.84 85.00 87.37 | 83.03 85.32 73.90 94.03
50.64 49.64 38.45 50.55 | 71.10 73.62 55.55 67.52
42.61 39.07 32.38 41.46 | 66.55 57.57 34.66 63.43
35.89 3245 2945 34.76 | 54.88 41.19 23.50 54.72
31.48 28,93 27.58 30.56 | 45.49 31.08 19.01 45.87
28.25 25.77 2535 27.71 | 34.80 2493 16.84 40.42
8.68 9.24 6.97 9.51 | 54.77 48.24 34.36  44.52
9.42 8.63 7.00 9.41 | 48.39 30.04 16.84 38.82
9.20 8.33 7.79 9.02 | 38.27  20.10 9.81  32.32
8.81 8.30 8.13 8.93 | 31.49 14.57 7.49  26.57
8.76 7.86 8.08 8.86 | 23.39 11.46 6.42  23.70
6.62 8.07 7.39 7.85 | 43.63 44.30 37.92 40.19
7.09 7.38 6.86 7.78 | 37.13  36.49 29.32 37.64
7.23 7.14 7.35 7.57 | 29.64 30.13 22.59 33.97
7.02 7.17 7.07 7.43 | 25.25 2491 1837 30.86
6.84 6.80 6.91 7.43 | 19.75 21.24 1530 28.33

Threshold GARCH(1, 1

Threshold GARCH(1, 1
Bilinear AR(1)
Bilinear AR(1)
Bilinear AR(1)
Bilinear AR(1)
Bilinear AR(1)

Nonlinear MA(1)

Nonlinear MA(1)

Nonlinear MA(1)

Nonlinear MA(1)

Nonlinear MA(1)

Threshold AR(1)

Threshold AR(1)

Threshold AR(1)

1)

1)

)

)

)

)

)

Threshold AR(

Threshold AR(

Fractional AR(1
Fractional AR(1
Fractional AR(1
Fractional AR(1
Fractional AR(1

DU R WD UUERE WNOSDUULR WO UUER WRNOD U WRN O TR WRNO TR WKNIO UL WNO UL W

Sign AR(1) 32.06 33.92 32.03 34.03 | 57.59 59.15 5842 59.57
Sign AR(1) 35.43 38.03 37.19 37.75 | 58.22 59.63 59.18 60.38
Sign AR(1) 37.11  39.61 39.79 39.75 | 57.65 59.92 59.71 60.38
Sign AR(1) 37.75 40.90 4091 40.79 | 57.60 59.93 60.17 60.09
Sign AR(1) 38.13 40.92 40.74 41.43 | 56.63 59.70 60.29 60.22

Second, based on the results of Tables 3-7, observe that among the statistics .S, I,
Mn, and Tn, the test based on In is most often the best (or close to best) choice. While
T,, performs quite well also, its computational complexity makes it much less attractive.
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Table 5: List of models used for the second experiment

Model Equation

AR(1) Gaussian Xt = 0X¢_1 + e¢, with Gaussian innovations &¢
AR(1) Laplace Xt = 0X¢_1 + e¢, with Laplace innovations &¢
AR(1) Cauchy Xt = 0X¢_1 + e¢, with Cauchy innovations &
MA(1) Xt = e¢ — Oe¢—1, with Gaussian innovations &
GARCH(1, 1) X; = hy/%e;, with h2 = 1+ 682 | +20X2
ARCH(1) X; = hy/%es, with hy =14 0X2_,

Threshold AR(l) X = 60X 1 sign(thl — 0.5) + €t,

with innovations e; ~ 1/(0, 1)
(Randomized) Tent Map X = (1 —n¢)er +me(1 — |2X¢—1 — 1)),
with i.i.d. e ~ U(0,1), independent
of the i.i.d. Bernoulli n; ~ B(40)
Clayton copula X is Markovian, with (X¢—1, X¢) ~ Cp,
with the Clayton copula, defined for u,v € (0, 1)

by Cy(u,v) = (u*Q +ovf — 1)71/9.

Among the other group of statistics based on By, I* and T* are the top choices in terms
of performance, with S} not that far behind.

Last but not least, the simulation results suggest that there is a large difference be-
tween the performance of test statistics based on B,, versus B}, depending on the type of
alternatives. In fact:

a) For most alternatives with constant conditional variance given the past, e.g., ~AR(~1)7
MA(1), Fractional AR(1), Threshold AR(1), the tests based on statistics Sy, I, My,
and T;, perform much better in general, than those based on S}, I}, M} and T};.

b) For alternatives with non-constant conditional variance given the past, e.g.,
ARCH(1), GARCH(1,1), and Threshold GARCH(1,1), the tests based on statis-
tics 5’,’;, f;, M,*L and T -, are much more powerful in general, than those based on S,
fn, Mn, and Tn.

In practice, of course, the nature of the alternative being faced is usually unknown. For
the statistic 7,, of Hong and White (2005), this is not a concern since the simulations indi-
cate that it performs equally well whether the conditional variance is constant or not. For
the statistics proposed herein, however, this might be problematic. Luckily, the following
general strategy can be used to circumvent the problem.

Consider a statistic D,, = qﬁ(En), calculated from a continuous functional ¢ of B,,, and

its parent statistic D = ¢(B%). Let P, and P* represent respectively the (approximate)
P-values of D,, and D}, as calculated using a method analogous to the one described

in Algorithm 3 for T,,. A combined test of approximate level « is then obtained by the
following rule:

Reject Hy < min(P,,P}) < a.
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Table 6: Percentage of rejection, at level a = 5%, of the second set of alternatives with
0 €{0,1/32,1/16,1/8,1/4}, for the test based on statistic S,, with § = 0.3, as estimated
with 10,000 replicates of series of length n = 100.

Model m 0=0 0=1/32 0=1/16 0=1/8 6=1/4
AR(1) Gaussian 2 4.71 4.96 5.66 9.52 34.73
AR(1) Gaussian 3 4.83 4.86 5.97 8.95 30.11
AR(1) Gaussian 4 4.59 4.35 5.30 7.52 23.83
AR(1) Gaussian 5 4.82 4.73 5.46 7.17 20.41
AR(1) Gaussian 6 4.19 4.35 4.71 6.03 15.78
AR(1) Laplace 2 5.17 5.01 6.77 14.49 53.46
AR(1) Laplace 3 5.29 5.31 6.41 11.94 46.97
AR(1) Laplace 4 4.90 5.08 5.52 9.40 37.80
AR(1) Laplace 5 5.08 5.33 6.03 8.85 32.21
AR(1) Laplace 6 4.37 4.93 5.27 7.05 25.16
AR(1) Cauchy 2 4.90 10.01 20.83 54.47 96.34
AR(1) Cauchy 3 5.07 9.56 18.56 47.86 93.60
AR(1) Cauchy 4 4.60 .77 13.99 39.34 88.35
AR(1) Cauchy 5 5.05 7.45 12.42 32.82 82.23
AR(1) Cauchy 6 4.65 6.23 9.88 25.15 73.26
MA(1) Gaussian 2 4.69 5.87 7.35 13.54 38.09
MA(1) Gaussian 3 4.73 5.89 7.15 12.03 33.08
MA(1) Gaussian 4 4.60 5.34 6.20 9.13 25.58
MA(1) Gaussian 5 4.96 5.63 6.05 8.50 21.09
MA(1) Gaussian 6 4.43 4.83 5.31 7.26 16.26
GARCH(1,1) 2 4.60 7.7 10.49 21.37 55.38
GARCH(1,1) 3 4.96 7.13 10.38 21.34 58.95
GARCH(1,1) 4 4.67 6.18 8.72 17.51 54.38
GARCH(1,1) 5 4.87 6.50 8.65 15.55 49.93
GARCH(1,1) 6 4.51 5.57 6.95 11.98 42.31
ARCH(1) 2 5.01 6.00 6.96 10.44 21.30
ARCH(1) 3 5.30 6.25 6.58 9.71 19.76
ARCH(1) 4 4.53 5.37 5.65 8.23 15.40
ARCH(1) 5 4.81 5.77 5.90 7.71 13.02
ARCH(1) 6 4.26 5.01 5.34 6.40 10.52
Tent map 2 4.60 11.23 32.22 90.41 100.00
Tent map 3 4.81 10.07 26.43 85.13 100.00
Tent map 4 4.54 7.78 19.28 76.01 100.00
Tent map 5 4.77 7.27 16.06 66.32 100.00
Tent map 6 4.23 6.28 12.06 53.71 100.00
Threshold AR(1) 2 5.10 5.85 8.38 19.27 59.87
Threshold AR(1) 3 5.12 5.66 8.24 16.72 54.09
Threshold AR(1) 4 4.55 5.09 6.37 12.94 44.39
Threshold AR(1) 5 5.07 5.24 6.18 11.93 37.09
Threshold AR(1) 6 4.60 4.60 5.18 9.47 28.98
Clayton 2 4.83 5.11 5.67 8.94 21.89
Clayton 3 4.47 5.21 5.65 8.47 19.61
Clayton 4 4.30 4.59 4.85 7.06 15.50
Clayton 5 4.52 5.07 5.21 6.89 13.29
Clayton 6 4.07 4.19 4.71 5.85 10.50
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Table 7: Percentage of rejection, at level a = 5%, of the second set of alternatives with
¢ = 1/4, for test based on statistics Sy, S}, (both with 6 = 0.3), T),, Ty, M,,, My, I; and
I,,, as estimated with 10, 000 replicates of series of length n = 100.

Model S s M b S, In Mn, Ty
AR(1) Gaussian 10.15 1075 0.46 10.63 | 3473  38.38 3618  36.07
AR(1) Gaussian 1013 972 868 991 | 30.11 3394  30.65  34.07
AR(1) Gaussian 935 889 879 938 | 2383 2059  26.10  31.06
AR(1) Gaussian 9.07 885 855 9.07 | 2041 2619 2315  28.54
AR(1) Gaussian 877 828 840 885 | 1578  23.95 2097  26.80
AR(1) Laplace 2798 2550 18.27 2590 | 53.46 6334  59.40 61.35
AR(1) Laplace 2526 21.20 17.16 22.50 | 46.97  56.69  54.28  58.50
AR(1) Laplace 22.50 18.13 16.75 19.58 37.80 51.24 49.22 53.83
AR(1) Laplace 2017 17.17 16.61 17.73 | 3221  46.46  45.37  49.55
AR(1) Laplace 18.91 15.15 16.00 16.83 25.16 43.04 41.71 46.18
AR(1) Cauchy 8131 8406 7933 8560 | 9634 9835 9680  97.90
AR(1) Cauchy 79.27 7779 7372 7951 | 93.60  97.12 9452  97.23
AR(1) Cauchy 7275  70.46 68.67 72.40 | 88.35 9503 9145  95.64
AR(1) Cauchy 66.60 64.48 63.88 66.12 | 8223  92.24  88.09  93.56
AR(1) Cauchy 61.17 57.96 58.38 6111 | 7326  89.41 8395  91.89
MA (1) Gaussian 10.74 1138 949 11.06 | 38.00 4227 3803  38.08
MA(1) Gaussian 1052 1042 895 985 | 33.08 37.11  31.82  36.96

10.04 9.76 9.05 9.15 25.58 32.38 26.81 33.38
9.83 9.70 9.02 8.98 21.09 27.72 23.06 29.67
9.63 9.03 8.91 8.90 16.26 24.67 20.92 26.99

)

)
MA(1) Gaussian
MA(1) Gaussian
MA(1) Gaussian

GARCH(1,1) 81.25 81.83 7549 8247 55.38 69.18 70.05 70.36
GARCH(1,1) 84.92 83.95 80.10 84.79 58.95 76.59 77.37 74.80
GARCH(1,1) 84.18 82.79 81.18 84.03 54.38 78.21 78.28 74.67
GARCH(1,1) 82.04 81.46 80.66 82.51 49.93 76.94 77.90 73.07
GARCH(1,1) 80.09 78.84 79.26 80.56 42.31 75.69 76.83 70.52
ARCH(1) 41.89 43.06 35.18 43.42 21.30 29.12 29.70 29.56
ARCH(1) 39.26  37.39 3248 39.47 19.76 29.82 29.59 27.18
ARCH(1) 35.23 3295 30.77 34.95 15.40 29.07 28.25 24.36
ARCH(1) 31.62 30.27 2896 31.72 13.02 26.63 26.56 21.78
ARCH(1) 29.04 26.38 26.82 29.31 10.52 25.08 25.06 20.63
Tent map 100.00 89.08 15.59 99.69 | 100.00 100.00 100.00  100.00
Tent map 99.85 55.94 76.78 96.45 | 100.00 100.00 100.00  100.00
Tent map 96.28 41.42 80.29 83.00 | 100.00 100.00 100.00  100.00
Tent map 88.15 37.58 79.17 70.42 | 100.00 100.00 83.34  100.00
Tent map 78.93 33.83 75.71 60.88 | 100.00 86.42 18.84  100.00

Threshold AR
Threshold AR

(1) 5.17 5.82 4.83 5.51 59.87 63.87 48.56 58.47
(1)
Threshold AR(1)
(1)
1

5.04 5.26 4.50 5.28 54.09 50.12 36.59 56.79
5.17 5.26 4.73 5.05 44.39 40.49 28.02 51.47
5.06 5.46 4.98 5.19 37.09 32.17 22.78 46.96
5.00 5.19 4.82 5.16 28.98 26.86 19.50 43.24

Threshold AR
Threshold AR

Clayton 11.39 11.56 9.57 11.72 21.89 24.64 22.61 21.56
Clayton 11.22  10.64 8.92 11.27 19.61 22.18 19.65 20.35
Clayton 10.48  10.29 9.15 10.81 15.50 19.79 17.05 18.83
Clayton 10.07 9.85 9.37 10.54 13.29 17.70 15.22 17.18

c:cnusoowoacnukoowoucnq;oawmcn»po:wmcn»po:wmm»mwcmwuxmwmwuxmwmm%mwg

Clayton 9.86 8.96 9.23 10.38 10.50 16.70 14.56 16.32
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To see that the limiting level of this decision rule is «, note that under Hy, both statistics
converge in law to the same random variable D = ¢(B). Accordingly, both P, and Py
converge to the same random variable U ~ U/(0,1). Hence

lim P{min(P,,P)) <a}=PU<a)=a.

5.4 Comparison between statistics based on B, and IB%;

As remarked before, there are really two different groups of statistics: those based either
on B,, or on B}. According to Theorem 2, their asymptotic behavior is the same under
the null hypothesis of randomness. However, under an alternative making &; dependent
but stationary and ergodic with common continuous distribution F', their power should
depend respectively on v/n p(t) and y/n p*(t), p and p* being given respectively by

p(t) =B(t) - [[ G(tx) and p*(t) = B*(t) — 2 [ G(t),
k=1 k=1

where
B(t)=P (ﬂ{wk — Vil < tk}>
k=1

and

m

B (t) = 2P (m{\Uk Wy < m})
k=1

are defined in terms of three independent random vectors U, V, and W with uniform

marginals. Here, U and V are from the copula C associated with (e1,...,&y), i.e., C is

the joint distribution function of F'(g1),..., F (). As for W, its elements are taken to be

mutually independent.

Under the assumptions of stationarity and ergodicity, B, and Bg are convergent esti-
mators of B and B*. Therefore, one could use Monte Carlo simulations to find out the
value of § for which the maximum distance between B(J, . ..,d) and (26 — §2)™ is achieved.
Having done such simulations, it turns out that for many models of alternatives of the
second list, = 0.3 is almost always close to the optimum value.

6 An illustrative example

To illustrate the use of the proposed statistics, consider “Series G” of Box et al. (1994),
which consists of 144 monthly totals z; of thousands of international airline passengers.
The series extends from January, 1949, to December, 1960. As a variance-stabilizing
transformation, these authors consider the series z; = log(z;), for which they arrive at the
model VV12z; = (1 — 0B)(1 — ©B'?)g;, written explicitly as

2 — Zi—1 — %i—12 — %i—13 = €; — i1 — Og;_12 + 0O¢g;_13,
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with 6 = 0.402, 6 = 0.557, and 2 = 1.34 x 1073, These estimates were obtained by the
method of maximum likelihood, assuming that the &; are normally distributed. Based on
the Ljung—Box statistic, Box et al. (1994) arrive at the conclusion that “the check does
not provide any evidence of inadequacy in the model.” The same conclusion is reached by
Brockwell and Davis (1991).

The above model for Y; = VVi2z; is an MA(1) x MAj5(1). Assumptions I and II can
easily be seen to hold in this case, provided that second-order moments of ¢; exist and
that their density is continuous, bounded and symmetric (as would be the case, e.g., under
normality). Under these conditions, the statistics Sy, I,,, M,, and T}, and S*, I*, M and
T* provide alternative checks for the model.

Table 8 provides estimated P-values for the new statistics, based on 10,000 replicates.
As can be seen from it, the null hypothesis of independence for m consecutive innovations
of the fitted model is readily rejected at the 1% level for p > 6, for all statistics but S,.
Curiously, however, the rank-based version .S,, of the BDS statistic does not lead to the
rejection of Hy for any 2 < m < 10.

Table 8: P-values (%) for the model proposed by Box et al. (1994), using 10,000 replicates

Order m
Statistic 2 3 4 5 6 7 8 9 10
S,’; 1.54 1.98 1.96 1.91 0.95 0.73 0.57 0.48 0.39
f,*L 2.23 2.98 2.60 1.86 0.98 0.57 0.47 0.40 0.41
M,: 3.25 3.76 2.84 1.88 1.16 0.98 1.06 0.80 0.65
T; 1.80 2.12 2.05 1.63 0.81 0.50 0.44 0.36 0.29
Sn 22.21 57.13 75.73 46.91 27.07 30.18 37.01 26.23 12.78
In 6.12 7.42 4.96 1.76 0.81 0.62 0.58 0.48 0.38
M, 5.74 3.87 2.78 1.27 0.92 1.21 0.95 0.66 0.49
T 3.80 6.10 5.60 2.40 1.30 0.80 0.70 0.80 0.80

7 Models satisfying Assumption II

Univariate stationary time series models can be divided into two major classes, according
as the conditional variance given the past is constant or not. Many time series models (Y;)
from the first group can be represented in the form

Yi=¢(Zi—1,0) + €, (8)

in terms of (possibly exogenous) random vectors (Z;) and innovations (e;). Here, it is
assumed that for j > i the innovation ¢; is independent of Z;, that (Z;);>1 is a stationary
and ergodic series, and that the parameter space O C R? is open. For example, AR(p) and
threshold AR(p) models are of this form. One could also enlarge that family and consider
“recursive” models of the form

Y;l = ¢(Zi—17€i—177"'>€i—me) + €4, (9)
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whereof the standard ARMA(p,q) models are well-known representatives. The popular
econometric model described below provides another example.

Example 1 Consider the ARCH(p) model
1/2

p
E 2
X’i = w + a]XZ—] Ei,
J=1

in which the innovations €; are N(0,1) and the components of the parameter 0 = (w,
ai, ..., ap) satisfy w > 0, ap > 0,...,a, > 0 together with the second order stationarity

condition
P
Zaj < 1.
=1

Note that the latter condition is also sufficient (but not necessary) to ensure strong sta-
tionarity. Setting Y; = log (Xiz), Ziq = (Xf_l,...,XZ?_p and ; = log (622), it follows
that

Yi=¢(Zi—1,0) +e;, i>1
with ¢(z,0) = ¢(z,w,a) =log (w+a'z).

Note that the density f of €; is giwven by f(z) = exp(—e®/2)e*/?/\/2m. It it clearly
continuous and its square integrates to 1/(2m). However, f is not symmetric. Nevertheless,
since ' is known and the estimation of 0 behaves well. Furthermore, Assumption 2 holds
true, so Theorem 2 can be applied to test the independence in the series |g;|.

Incidentally, one can also check that G(z) = (2/m)arctan (61/2), since €1 — €3 =
2log (|e1/€2|) and €1/ea has standard Cauchy distribution.

It is shown in Lemma 2 below that, under weak regularity conditions including Assump-
tion I, time series models defined by (8) satisfy Assumption II. Moreover, building on the
work of Bai (1994), one can show that Assumption I holds true for ARMA(p, q) models.
The exact hypotheses are stated in Lemma 3, which in proven in Ghoudi and Rémillard
(2006). Tt is likely that Assumption IT also holds for time series models satisfying (9); this
problem is currently under investigation.

Concerning time series models with non-constant conditional variance, the situation is
quite different. In fact, unless these models can be transformed into models of the form
(8) or (9), as done in Example 1 above for the ARCH(p) model, there is no hope that
Assumption IT could be satisfied. See, e.g., Berkes and Horvath (2003) for results on
GARCH models restricted to m = 1.

Example 2 Consider the ARCH(p) model defined by

P
Yi=p+, ja+ ij(yi—j —w?e = p+oie.
j=1
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For this model, it can be shown, e.g., using the techniques developed by Ghoudi and
Rémillard (2004), that if

1/2

p
ein = (Yi — ﬂn)/ an + Z bin(Yiej — fin)?
=1

and

On = VI (60— 0) = Vi (fin = pstp — a,b, — b) ~ © = (M, A, B),
then K,, ~ K in D([—o0,00]™), where for any t = (t1,...,tn,) € R™,

K(t) = a(t) + > F'(t;)8()
j=1
with
gy = {11Fw ¢ E {JM LA LS BY - p)?
0>5 J J J e=1

It is clear that 3; depends on tj, even if up = 0, so Assumption II is not met. As seen
before, however, Assumption II holds true when u = 0 and ; = log(|e;|) is considered
instead of €;.

Appendices

A Auxiliary results

This appendix contains a series of lemmas that will be used to prove the main convergence

results. Suppose wy, ..., w, are random vectors in R™, and for any x = (z1,...,x,,) € R™,
set
1 n
Kn(lﬂ):;lezgﬂj Zlezk<$k
i=1 i=1 k=1
and
1 n
Fin(xp) = —lezk<$k k=1,...,m.
n =1
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Assume that K, is an estimation of an arbitrary distribution function K with con-
tinuous margins Fi,..., F,,. Then there exists a unique copula C such that for all x =
($17 s axm) € Rm,

K(z1,...,2m) = C{Fi(x1),...,Fpn(xm)}.

Accordingly, the so-called empirical copula

Cn(uh s aum) = KTL {Fl_ﬁ(ulx cee aFr;,ln(um)}

is an estimation of C(u1,...,u,,) for every u = (u1,...,un) € [0,1]™.

Further set, for all z € R™,

Ko(z) =[] Felxw). (10)
k=1

Finally, assume that for each &k = 1,...,m, wig,...,wyr are mutually distinct with
probability one. It is then a simple exercise to show that

sup FkoFk_é(u)—u‘ = sup ‘kaoFk_l(u)—M. (11)
0<u<1 ’ 0<u<1

This fact is instrumental in establishing the weak convergence of the processes Fy, =
Vn (Fn — Fy) and C,, = /n (C,, — C), which is stated next.

Lemma 1 Suppose that K,, = /n(K, — K) ~ K in D([—o00,0]|™) as n — co. Then also
Fin ~ Fi in D([—00, c0]), where

Fi(zy) = K(oo,. .., 00,2k, 00,...,00).

Moreover, if C has continuous derivatives of order one on [0,1]", then C,, ~» C in
D ([0,1]™) as n — oo, where

C(u) =K {Fl_l(ul), .. ,F,;l(um)} — ZFk o Fk_l(uk)aiw C(u), (12)
k=1

for any u = (uy,...,uy) € [0,1]™.

Proor: First, the convergence of Iy ,, follows from the convergence of K,,. Next, using
(11) and the convergence of Fy, ,,, one can see that for any k € {1,...,m},

_ P
sup ‘FkoFké(u)—u‘ — 0 as n— oo.
O<u<1 ’

Consequently,

K, {Flj;(ul), o ,F,;}n(um)} s KT (ua), - ., F ()} in D ([0, 1]™).
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Next, note that for any u = (u1,...,un) € [0,1]™,

Cp(u) = Kn{Fl_é(ul),,ngln(um)}

+vn [0 {FoF i), ... o F,,;}n(um)} - O(u)] .

Also, the same kind of arguments used to show (11) yields the tightness of Qj ,(uy) =
Vi {Fy o F_ Y (ug) — ui} for any k = 1,...,m. Furthermore, it is easy to check that the

finite-dimensional distributions of Qg , converge to those of —IFj o F~ ! Hence, one may
conclude that

NG [C {Fl o M), ..., F o F,;}n(um)} - C(u)]

o =Y By By () o ),
k=1

Uk,
which completes the proof. |

Remark 4 The conclusion of Lemma 1 is well known to hold in the special case where the
observations wi, ..., w, on which K, is based form a random sample from an m—uvariate
distribution. See, e.g., Ganfler and Stute (1987) or Fermanian et al. (2004). The ex-
tension provided here, however, shows that the result remains valid in the more frequent
contexts where the w; are not identically distributed or even serially dependent.

Let S, be the set of all subsets of {1,...,m}. For A € S,,, let t4 € R™ be such that

(t4)k = —tk if k e A
ARV 4 ifké A

For any t € [0, c0]™, set
1 n n m
Bn(t) = ﬁ ZZ H 1(\wjk — wik] < tk).
i=1 j=1 k=1
Next, for any h € D([—o0,00]™), define the mappings ¢(h) and ¥*(h), by

sy = Y (~nA / ha + t4)dEK (2), (13)

A€Sm

wm® = 3 O [ bt (o). (14)

AESH
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It is easy to check that both ¢ and ¢* are continuous linear mappings from D([—o0, 0o|™)

to D ([0, 00]™). Further set B,, = /n (B, — B), where

Bt = (K)(t) = 3 (~)A /K(m—i—tA)dK(x), t e [0,00]"

AeSnm

Next, set B = 2¢*(K,,). Then, using the multinomial formula
m
H$k+yk Z (H!Ek)X H Yi | s
k=1 ACSm \k€A JESM\A

it is easy to check that

=7kl

H{Fk Wik + ) — Fio(wir, — te)} HGk (k)| s

where
Gk(tk) = /{Fk(azk + tk) — Fk(azk — tk)}dFk(xk), k=1,...,m.

The asymptotic behaviors of B,, and B} are given next.

Proposition 2 Suppose that K,, ~ K in D([—o0,00]™) as n — co. Then

sup |Bn(t) — 20(K,))(t)] == 0 as n — oo.
teR™

Moreover, B,, ~ B = 2¢(K) and B}, ~» B* = 2¢*(K) in D ([0, 00]™).
PRrROOF: First, using the weak convergence of K,, to K, it follows that

sup
te[0,00]™

n — Q.

}:K (w; +1t) — !/K (z +t)dK (z)

=1

Next, an application of the multinomial formula yields

B,(t) = %ZZHl(\wjk—wiklétk)

i=1 j=1k=1

1 n n m
= ﬁ ZZ H {1(wik < Wik + tk) — 1(wik < wjp — tk)}
i=1 j=1 k=1
n m
{H 1(wy < Wik — tk)}

AESH i=1 j=1 (k€A

(15)
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m
H L(wi, < wj + ty)
keSm\A

‘ I n n
— H1w2k<w]k—tk)

AES, i=1 j=1 \keA

m
H 1(wik < Wik —l—tk) + Op(l)
keSm\A

‘ | n n

i <wj +ta) +op(1)
AeSy, i=1 j=1

B (- &

= TZK (wj 4 ta) +op(1)
AESH 7j=1

1 (-1l &
= — > K (w;j +ta)
\/ﬁ AeSm " Jj=1
(- &
+ > > K(wj +ta) +op(1).
AESm n j=1

Next, one has

S (D)@ <wj+ta) =1{jz—wi| <t} = Y (DAL w; <z +ta),
A€Sm AESm

almost surely, so that

DA 2

Z( D) ZKw]—I—tA) = Z

DA
/ 1z < wj + ta)dK ()
AeSm " Jj=1

S’!?L

_ i n/ w; < @+ t4)dK (z)

— (_1)|A‘ Ky (x4 ta)dK (z)
AESH / !

_ % e / Ko (x + t4)dK ()

AESm

+ Y (_1)A|/K(m+tA)dK(:v)

AeSn,

- v B

AESm

1)\A|

/Kn(a: +ta)dK (z) + B(t).
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Hence the following chain of identities holds uniformly in ¢ € [0, co]™:

But) = Y (-)M2 S Ky + 1)

AES'm .7:1

3 /Kn(:n +t0)dK (@) + op(1)

AeSnm

2} (—1)|A/Kn(x—i—tA)dK(x)—l—oP(l)

AeS,
= 20(K,)(8) + op(1).

To complete the proof, one may then invoke the continuous mapping theorem to conclude
that ¥(K,,) ~ ¢(K) and ¢*(K,,) ~» ¢*(K) in D ([0, 00]™). Hence the result. |

The main result of this Appendix can now be stated.

Theorem 3 Suppose that the margins Fi,. .., F,, of K admit continuous and square inte-

grable derivatives FY,. .., F] , respectively. Further assume that the copula associated with

K is the independence copula and that there exist processes «, 31, ..., Bm € D([—o0, 00]|™)
with the property that B (x) does not depend on xy, and such that K,, ~ K in D([—o0, 0o]™)
as n — 0o, where

K(x) = a(w) = Y F(ax)Be(z), @ € [~00,00]™,
k=1

Then

sup [B,(t) — B (¢)] L0 asn— oo
teRm

and By, ~» B = 2¢(a) in D (][0, c0]™).

PROOF: First, note that because of the independence hypothesis, ¢* = 1. Next, it follows
from Proposition 2 that sup |B,(t) — B (t)| converges in probability to zero and
teR™

m

B ~ B = 20(K) = 2¢(a) — 2 $(FBk)-

k=1

Thus to complete the proof, it suffices to show that for any k = 1,...,m, ¢(F.8;) = 0.
As the argument is the same for all k € {1,...,m}, one takes k = m for sake of simplicity.
Then for any t € [0, c0]™,

w(Fr/nﬁm)(t) = Z (_1)|A‘ /Fr/n{xm + (tA)m}Bm(‘T + tA)dK(‘T)

AeSnm
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= X O [ ) — i — )Pl

AESmfl

x / B + £4)AFL (21) - AP (Era),

since [, (x) does not depend on x,,. That the whole expression vanishes then follows from
the fact that

/ (F! (2 + t) — FL (2 — t) YA () = 0, (16)

which is a simple consequence of the square integrability of F . |

Now for every k € {1,...,m} and t = (t1,...,t,) € [0,00]™, set
1 n n
Gnt :Bn DRI 7t7 P = 5 1 ik — W; St
bn(tk) = Bn(00,., 00,15, 00, .., 0) nQ;; (gt — wir| < t)
and define
Dn(t) = \/E {Bn(t) - H Gk,n(tk)} .
k=1

As shown below, the weak convergence of the process D, is then a consequence of
the previous result. Before stating this fact precisely, define for any k € {1,...,m} the

mapping ¢y, by
De(B)(te) = /{h(mk +t) — hizk — )} dFk(zh), € [0,00], h € D(|—o0,50)]).

Corollary 1 Suppose that the conditions of Theorem 3 hold true. For every k € {1,
co.,m} and x = (x1,...,2T,) € R™, set

ag(zg) = a0, ..., 00, Tk, 00, ..., 00).

Then Dy, ~ D in D ([0,00]™) as n — oo, and for allk € {1,...,m}, Gy, ~ Gy = 2 (o)
in D([0, 00]), where

m

D =2¢(e) = 2> Wilor)(te) [ Gi(ts), t=(tr,... tm) € [0,00]™.

k=1 j£k

PROOF: First note that for every k € {1,...,m} and = = (x1,...,z,) € R™,

ka ~ Fk(xk) = ak(azk) — Fé(azk)ﬂk(oo, . ,OO)
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as n — oo. It follows from Proposition 2 that

Grn(tr) = 20k (Frn)(tr) +op(1),

SO
G ~ 2 (Fr) = 2¢x(ag) in D([0, o0]),

in view of (16).

To complete the proof, note that, uniformly in ¢t € R,

Dn(t) = Bn(t) + \/ﬁ {H Gk,n(tk) - B(t)}

k=1

= Bu(t)+ Y _ Grnlte) S [ G5ts) p +0p(D).
k=1 j#k
|

The next result pertains to the weak convergence of rank-based analogues of I, and
B,,. To this end, define for every i € {1,...,n},

wi = (w’ila cee 7'u~)im) = (Fl,n('wil)y cee 7Fm,n(wim)) .

Note that for every ¢ € [—00, 00]™, one has

n

Cot) = =) 1(i; < 1),

i=1

Suppose that C' is the independence copula. For u € [0,1]™, define

and define the mappings Y : h € D([—o0,00]™) — (h) € D([0,1]™) and ¢y : h €
D([—O0,00]) = wl(hl) S D([07 1])7 by

() (w) = Y (=) Wz + ua)de

AeSnm [071]”1

and

1
Jn(hy) (un) =/0 {ha(s + 1) — (s — un)} ds.
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Next, set IES’;L = 2¢)(Cy,). Tt follows that for every u € [0,1]™, one has

Bt(u) = 209 )=2> (-pH Co(z + ua)da

AeSnm [071]”1
\/_ =1

m
H{lek—i-uk) F (i — ug)} HGuk ,

with F(z) = max{0, min(z, 1)} = P(U; < z) for every z € R and
Gls) = P(|Us — U] < 5) = /{Fu—i—s Flu— s)hdu = 25 — 52,
for all s € [0,1], where Uy, U ~ U(0,1) are independent. Finally, set B, = v/n (B, — C).

The stage is now set for the final result of this Appendix.

Corollary 2 Assume that the conditions of Theorem 3 hold true. For every k € {1,
.,m}, let oy, be defined as in Corollary 1. For all u = (uq,...,uy) € [0,1]™, set

v (ug) = o o Fy  (uy)

and define
alu) =« {Fl_l(ul), o Fy M) b
Then
sup [B,(u) — I@;(u)‘ L0 asn— oo
uelo,1m

and B, ~ B = 2¢(C) in D ([0,1]™). Moreover, if Fy,...,F,, are symmetric (not neces-
sarily with respect to the origin), then for all uw = (uq,...,uy) € [0,1]™

B(u) = 20(@)(u) =2 (an)(ur) [ ] Gj(uy)-

k=1 J#k

PROOF: Let u = (uy,...,uy) € [0,1]™ be given. First, note that from Lemma 1, C,, ~» C
as n — oo, and using (12), one has

Clu) = K{F{l(ul),...,anl(um)}—ZFkoF,;l(uk)aiWC(u)

= a(u) = > ar(ur) [Jus
k=1
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—ZFéoFkl ui) § Brlu) - ) [Twig
J#k
with Bk = 0 {Fl .. ,Fnjl(um)}. It then follows from Proposition 2 that
sup  |Bp(u) — Iﬁ%fl(u)‘ L0 asn— oo
ue(0,1)™

and that B,, ~ B = 2¢(C) in D ([0, 1]™).

) Since Bk(u) does not depend on wug, the proof will be complete if one can show that
Y1(F) o F7') =0o0n [0,1] for all k € {1,...,m}. To this end, note that for all € (0,1),
one has

Ui (Fy o i) (@)

1
/{F,éoFk_l(s—l—x)—F,éoFk_l(S—x)}ds
— /FkOF ds—/ Fj o F'(s)ds

F ' (1-x)
- [ wmera- [ {Re)
F —00

Set Qi(s) = Fy '(s), s € (0,1). Then Q,(s) = 1/F}, o F.*(s), so that ¢y (F} o F, ') =0 is
satisfied if and only if @ (s) = Q). (1 —s) for all s € (0,1), meaning that F}, is symmetric.
Hence the result. [ |

B Proof of the main results

Since Proposition 1 is a particular case of Theorem 1, only the latter is proved. Further
note that although it is convenient to define the last m — 1 values of €; in a circular way as
in (3), this does not affect the limiting distribution of any statistic based on é1, ..., €, tm—1.
Therefore, arguments in this section are presented as if a sample of size n +m — 1 (rather
than n) had been collected.

B.1 Proof of Theorem 1
First, set
° 1 n n m
Bn (t) = = 2 221 kl_[l 1(lejpr-1 — ith—1] < t), t € [0,00]™
=1 j=1 k=

o*
and define B, = 2¢(c,). Using the multinomial formula, one can write

ox

B, (t \/— Z H{F (Siph—1 +tr) — Feiyp—1 —tr)} — H G(tx)
i=1 Lk=1

k=1
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Next, by hypothesis, a;,, ~ « in D([—o00,00]™) as n — 00, so IBB”: 2¢(ay) ~ 2¢(a) = B*

and Iﬁsnw B* in D ([0, 00]™) as a consequence of Proposition 2. The weak convergence of
B,, to B = 2¢(«) then follows directly from Theorem 3.

The formula for the covariance of B can thus be recovered from the relation B = 2y (a),
o*
together with the fact that the limiting covariance of B,, is the covariance of B. The validity

[}
of Algorithm 2 is also a consequence of the weak convergence of B,, to B.

Finally, the weak convergence of I, follows from Corollary 1. Moreover, one can write

D(t) = 2(a) — 2 ¢r(en)(te) [[ Gt5)
k=1 j#k
for all ¢ € [0, 00]™. This is because for every s € [0, 00|, one has
Oél(s) = OZ(S,OO, SR OO) = a2(8) == Oém(S)-

To complete the proof, one can easily check that for all s € [0, 00] and ¢ € [0, co]™

)

cov {¢1(a1)(s), ¥ () ()} = cov {1(a1)(s), ¥1(a1)(t1)} = v(s,t1) — G(s)G(t1).

B.2 Proof of Theorem 2

The weak convergence of D,, and B,, follows from Corollary 1. The validity of Algorithm 3
is a consequence of the weak convergence of &, to &, together with the fact that B depends
only on &. Moreover, since B has the same form as D when F' and G are replaced by F'
and G, the formula for the covariance given in Theorem 1 remains valid. |

C Conditions for the validity of Assumption II

This appendix gives precise conditions under which Assumption II holds for models (8)
or ARMA models. Consider first the time series model (8). One needs some regularity
conditions on F' and ¢. Suppose that the density F”’ of ¢; is uniformly continuous and that
in addition, ¢(z,6) is continuously differentiable with respect to 6 and ¢(z,0) = Vgo(z,0)
is the d-dimensional row vector.

Assume that for any fixed § € O C R,

E{Hé(zl,e)‘f} < 0
and that
limE{ sup HQB(ZO,G’) - ng(ZO,H)H2} —0. (17)

6—0 |6"—0|<5
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Suppose that the estimator 6,, of 6 is such that ©,, = \/n (6,, — ) converge in law to
some variable ©. Next, set €;, =Y; — ¢(Zi—1,6,), i.e., the e;, are the residuals. Recall
that for all t = (t1,...,ty,) € R™,

n

1
Kn(tl,...,tm) == E 1(62‘,” S tla---aei+m—1,n § tm)
=1

and

1 n
oan(t) =+/n {E;l(&‘ <t €ime1 < ) —K(t)} ;
where K (t) = H;nzl F(tj). The following lemma, is proved at the end of the section.

Lemma 2 Suppose that (ay,,0,) ~ (o, 0) in D([—oc,00]™) x RE. Under the above as-
sumptions, K,, ~ K, where

d
K(t)=at)+ Y _F'(t;) [[Fte) p ES 6(Zj—1,0) [[1lee < 1) 7 ©.
j=1

>3] £<j

It is then clear from this lemma that Assumption II is satisfied since, for any j €
{1,...,m},

Bi(t) =S [T F(te) p ES 6(Z-1,0) [ 1ee < te) p ©

>4 <y
does not depend on t;.
Next, consider ARMA (p, ¢) models of the form

P

q
Yimu—Y ou(Vick—p) = — > pjeiy, i>1 (18)
k=1 j=1

where the innovations (g;) have mean zero and finite variance o2, and the coefficients
o= (¢1,.. .,gZ)p)T and ¢ = (p1,.. .,cpq)T satisfy the usual conditions, i.e., the (complex)
roots of the polynomials 1 — Z:l ér2* and 1 — Ezzl @ 2" all lies outside the unit circle.

Let 0, = (,&n, b, gﬁn) denote an estimation of (u, ¢, ), and set ©,, = /n (én —0).

Lemma 3 Suppose that for the ARMA model (18),
(0, Op) ~ (a,©) in  D([—o0,00]™) x R x RP x RY, (19)

where (o, ©) is a centered Gaussian process. If in addition the density F' of &; is continuous
and bounded, then Assumption II is satisfied, i.e., K,, ~ K as n — oo with K having
representation (4).
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Lemma 3 follows easily from results in Ghoudi and Rémillard (2006). The conclusion is
not surprising anyway, since an ARMA(p, ¢) model can be seen as an AR(oco) model, and
AR(p) models are covered by Lemma 2.

Note that the convergence condition (19) holds true for OLS estimators or MLE esti-

mators provided the density F” is sufficiently smooth.

C.1 Proof of Lemma 2

First note that proving the weak convergence of K, on D([—o0,00]|™) is equivalent to
show that E, = K,, (F~!,...,F™!) ~ E = K(F~',...,F ') on D([0,1]™). For each
i€ {l,...,n}, introduce U; = F(g;) and u;p, = F(e;n) = F{Y; — ¢(Zi—1,0,)}.

With these new definitions, one has E,, = /n(E,, — E), where
1 n m
E,(u) = — Z 1(uin <ul,.. ., Uigm—1n < Up) and E(u) = H U,
k=1

n <
=1

for all uw = (u1,...,un) € [0,1]™. Furthermore,

~ 1 n m
an(u) = +v/n EZI(U,- <u)— Huj
i=1 7j=1
and

d
E(u) =) + > F o P (uj) [ [Jue | B &(Zi-1,0) [[1(U < up) 3 0, (20)
7=1 >3 0<j
where @ = a (F~1,...,F~1) and #(2,0) = Vgo(2,0) is a d-dimensional row vector.

The proof uses the asymptotic theory of empirical processes based on pseudo-observa-
tions developed by Ghoudi and Rémillard (2004). In particular, the convergence of E,, will
follow from their Theorem 2.4, once its assumptions have been checked. To simplify this
operation, it will be convenient to cast the problem in their notation. To do so, set

®
Xi = (lev Zi—lyyri—l—lv Zi7 cee aYri—l-m—b Zi+m—2) €eX= ([_007 Oo]l+p) " 5

and write ¢, = (Uj,...,Ujym—1) for every integer i > 1. Further set X = X; and € = ¢;.
Next, for all x = (y1, 20, - - -, Ym, 2m—1) € X, define
Hy(z) = (H (2),...,H{" (2)),

n

where for any j € {1,...,m}, Hg)(az) = \/H{Hy(f)(aj) - H(j)(:n)} with

HY(z) = F{y; — ¢(2j-1,0)} and HY)(z) = F {y; — ¢(zj-1.00)}.
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Now, set r = (r(l), . ,r(m)) where for j € {1,...,m}, and any x € X,

r9(@) =1+ é(zj-1,0)| + ¢(zj-1,0),
where g is such that {6 : ||§/ — 6] < dp} C O, and

o(e,8) = sup ||§(Z0,0) —d(Z0,0)|[, (2.0) € X x [0,50].
60" —6| <5

Finally, let C, be the set of all R™-valued functions on X x R? such that

9z 0) = —F' {y; — ¢(2j-1,0)} d(2j_1,0)a, 1<j<m.

Observe that since F’ is uniformly continuous, there exists a non-decreasing bounded
function ¢ on [0, 00) such that ¢(0) = 0 and such that

|F(x) — Fy) — (x —y)F'(y)| < o —y| e(|z —y)).

Next,
Vi [¢(z,0n) — 6(2,0) — Vo(z,0)0n] < [|On]l¢ (2, 16 —0]]) -

Setting dslj)(a:) = ¢(2zj—1,0n) — P(2j—1,0), for any j € {1,...,m}, it follows that

< Vi ldP @) e{la @)}
+1Onlle (21, 16 — 011

HD (z) — fU)(z,0,)

S0, an n — 0o,

HY (x) = £ (2, 0,)

/ rO) (z) L 0,
using the weak convergence of ©,, and condition (17).

Therefore, if (ay,, 0,) ~ (a, ©) in D([—o0, 00]™) x RY, and given that condition (17) is
satisfied, then (&, H,,) converges in D([0, 1]™) x D([—o0, o0]?) to (&, H), where

HY(x) = —fD(x,0), je{l,....m}.

In view of the above, and given that E {|r(X)[|?} < oo by hypothesis, Lemma 7.2 of
Ghoudi and Rémillard (2004) now implies that Hypothesis IT of their paper is verified.

sup
xr

Next, for f € C,, it follows that for j € {1,...,m}, p; {u, f(j)(',a)} is given by

1 {u,f(j)(-,a)} =F' o F~(uj) {Hw} E {(JB(Zjl,H)H]_(Ug < w)} a.

>3] £<j

Hence Hypothesis I is also verified and because the density of Ui is uniform on [0, 1],
Hypothesis I1I is not needed. Thus one may conclude that E,, ~ E in D(]0,1]™), where E
has representation (20). |
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