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auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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Abstract

This paper proposes new tests of randomness for innovations of a large class of time
series models. These tests are based on functionals of empirical processes constructed
either from the model residuals or from their associated ranks. The asymptotic behav-
ior of these empirical processes is determined under the null hypothesis of randomness.
The limiting distributions are seen to be independent of estimation errors when ap-
propriate regularity conditions hold. Several test statistics are derived from these
processes; the classical BDS statistic and a rank-based analogue thereof are included
as special cases. Since the limiting distributions of the rank-based test statistics are
margin-free, their finite-sample P -values can easily be calculated by simulation. Monte
Carlo experiments show that these statistics are quite powerful against several alter-
natives.

Key Words: Copulas; Empirical processes; BDS statistic; Pseudo-observations;
Randomness; Ranks; Time series.

Résumé

Dans cet article, on propose de nouveaux tests d’indépendance pour les erreurs
de modèles de séries chronologiques. Les tests sont basés sur des fonctionellles de
processus empiriques construits à partir de résidus ou des rangs des résidus. Le com-
portement asymptotique des processus empiriques est déterminé sous l’hypothèse nulle
d’indépendance, et l’on montre que sous certaines conditions, la loi limite ne dépend
pas des estimations des paramètres du modèle. Plusieurs statistiques sont déduites de
ces processus, incluant la statistique BDS, ainsi que son analogue basé sur des rangs.
Comme la loi limite des statistiques de rangs ne dépend pas des marges, les valeurs
critiques peuvent être estimées par simulation. Des expériences Monte Carlo sont
aussi utilisées pour montrer que ces nouveaux tests sont très puissants par rapport à
plusieurs hypothèses alternatives de dépendance.

Acknowledgments: Partial funding in support of this work was provided by the
Natural Sciences and Engineering Research Council of Canada, by the Fonds québé-
cois de la recherche sur la nature et les technologies, as well as by the Institut de
finance mathématique de Montréal.
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1 Introduction

Time series models typically involve error terms called innovations that are assumed to
be mutually independent with common distribution function F . An important step in
validating such models is to check this so-called “white noise assumption” for the sequence
(εi) of innovations.

When the parameters of the model are known, the innovations are observable and a
wide variety of tools is available for testing the null hypothesisH0 of randomness. Common
tests are based on autocorrelations (Moran 1948; Ljung and Box 1978; Dufour and Roy
1985; Hong 2000), entropy measures (Robinson 1991; Hong and White 2005), rank-based
dependence measures (Hallin et al. 1985, 1987; Hallin and Puri 1992; Ferguson et al. 2000),
empirical distribution functions (Skaug and Tjøstheim 1993; Delgado 1996; Ghoudi et al.
2001), empirical characteristic functions (Hong 1999; Bilodeau and Lafaye de Micheaux
2005), and empirical copulas (Genest and Rémillard 2004).

In practice, however, the model parameters are usually unknown, so that the εi are
unobservable. In that case, a test for randomness must be based on “residuals” ei. The
latter are typically computed by plugging in the estimated parameter values in an equation
defining the relation between εi and the observed data yi at time i. This equation may
also depend on finitely many previous values yi−1, . . . , yi−p and εi−1, . . . , εi−q. A major
stumbling block associated with such a procedure is that the limiting distribution of a test
statistic will then generally depend both on the unknown parameter values and possibly
on the (infinite-dimensional) nuisance parameter F . This issue, which is generally ignored
in practice, is highlighted, e.g., in the work of Ghoudi and Rémillard (1998, 2004).

One ingenious way around this problem is provided by the so-called BDS statistic of
Brock, Dechert, and Scheinkman, which was shown by Brock et al. (1996) to have the
same limiting behavior under H0, whether the model parameters are known or estimated.
Inspired by the work of Grassberger and Procaccia (1983) on detecting chaotic behavior,
the BDS statistic Sn is based on a comparison of the observed and expected numbers of
pairs of vectors

wi = (wi1, . . . , wim) = (ei, . . . , ei+m−1), 1 ≤ i ≤ n (1)

such that
‖wi − wj‖ = max

1≤k≤m
|wik −wjk| ≤ δ

for some arbitrary constant δ > 0. This statistic leads to the rejection of H0 when |Sn| is
unduly large, by comparison with its distribution under the null.

More specifically, the BDS statistic is defined as

Sn = Sn (e1, . . . , en+m−1) =
Vm − V m

sn/
√
n

(2)
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in terms of

Vm =
1
(

n
2

)

∑

1≤i<j≤n

1(‖wi − wj‖ ≤ δ) =
1
(

n
2

)

∑

1≤i<j≤n

m
∏

k=1

1(|wik − wjk| ≤ δ)

and

V =
1
(

n
2

)

∑

1≤i<j≤n

1(|ej − ei| ≤ δ).

Here, sn is an estimate of the standard deviation of
√
n(Vm−V m). The specific estimate

proposed by Brock et al. (1996) does not require any knowledge of F . It is defined by

s2n = 4
(

γm − V 2m
)

− 4m2V 2m−2
(

γ − V 2
)

+ 8

m−1
∑

k=1

V 2k
(

γm−k − V 2m−2k
)

,

where

γ =
1

n3

n
∑

i=1

n
∑

j=1

n
∑

k=1

1(|ej − ei| ≤ δ)1(|ej − ek| ≤ δ).

It was shown by these authors that for a wide class of time series models, Sn has an
asymptotic standard normal distribution under the null hypothesis of randomness, the
same that one would obtain if the model parameters were known and the statistic were
calculated using the (then observable) εi.

Nevertheless, the BDS procedure suffers from three major weaknesses. An obvious one
is the arbitrariness in the choice of δ, which may affect both the power and the size of the
test. In practice, Brock et al. (1996) recommend the use of δ ∈ [s/2, 3s/2], where s is the
standard deviation of the pseudo-sample e1, . . . , en+m−1. A second limitation is the fact
that the test is inconsistent, i.e., the probability of rejection of the null hypothesis does
not necessarily approach 1 as n → ∞ even when H0 is false; indeed, alternatives may be
found under which the expected value of the test statistic is equal to zero for at least some
choice of δ.

However, the third and most critical difficulty associated with the BDS test is that al-
though the statistic converges to a standard normal distribution under the null hypothesis,
this convergence is often so slow that even for sample sizes as large as 1000, one is still far
from the limit. This is most inconvenient from a practical point of view, because neither
the level nor the power of the test can then be determined with any precision, unless F is
known. While in the latter case, an appropriate table of critical values can then be con-
structed, it is widely acknowledged that the rate of convergence varies considerably from
one choice of F to another; see, e.g., Brock et al. (1996).

In this paper, extensions of the BDS statistic are considered which have the following
properties:

a) they are free of the arbitrary parameter δ;
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b) their limiting distribution continues to be independent of the model parameters;

c) their finite-sample distribution is more tractable than that of Sn and well approxi-
mated by Monte Carlo methods.

In particular, note that the speed at which a test statistic converges in law is irrelevant
when property c) holds.

A first alternative test statistic considered in Section 2 is a rank-based equivalent of the
original BDS statistic. It still depends on δ but its asymptotic distribution, which is totally
independent of F , is identified in Proposition 1, and a simple algorithm for simulating its
finite-sample distribution is provided. Then, in Section 3, functional extensions of Sn are
given in the form of empirical processes, one of which is rank-based, and their asymptotic
behavior is studied. Calling on these empirical processes, alternative statistics are proposed
in Section 4 and algorithms for computing associated P -values and quantiles are stated.

The finite-sample performance of the proposed statistics is considered in Section 5,
where their power is estimated through Monte Carlo simulations for a wide range of serial
dependence alternatives, including those studied in Hong and White (2005). This is fol-
lowed by a discussion of the relative merits of these statistics. A small illustration of the
methodology is treated in Section 6, and Section 7 contains examples of time series models
that satisfy the conditions under which the asymptotic results are stated. The proofs of
all results are relegated to Appendices A and B. As for Appendix C, it details technical
conditions under which the central Assumption II is verified for common models.

2 A rank-based version of the BDS statistic

Given residuals e1, . . . , en from a time series model, let

ẽi =

{

rank(ei)/(n + 1) for i ∈ {1, . . . , n};
ẽi−n for i ∈ {n+ 1, . . . , n+m− 1}. (3)

A natural nonparametric (circular) analogue of the BDS statistic Sn is then given by

S̃n = Sn (ẽ1, . . . , ẽn+m−1) .

The asymptotic normality of this statistic (and of all other statistics to be introduced
herein) depends critically on the Assumptions I and II stated below. It will be seen in
Section 7 that the latter requirement is met by several well-known models including, e.g.,
linear and non-linear AR(p) as well as standard ARMA(p, q) models.

Assumption I: F admits a continuous derivative that is square integrable.

Assumption II: For all x = (x1, . . . , xm) ∈ Rm, let

Kn(x) =
1

n

n
∑

i=1

1(wi ≤ x) =
1

n

n
∑

i=1

m
∏

k=1

1(wik ≤ xk)



4 G–2006–23 Les Cahiers du GERAD

be the empirical distribution function associated with the wi defined in (1), and denote its
theoretical counterpart by K(x) = F (x1)× · · · ×F (xm). Write Kn =

√
n (Kn −K) and let

also

αn(x) =
1√
n

n
∑

i=1

{

m
∏

k=1

1(εi+k−1 ≤ xk) −K(x)

}

.

Then there exist processes α, β1, . . . , βm in the Skorohod space D([−∞,∞]m) of càdlàg
processes with the property that βk(x) does not depend on xk and such that as n → ∞,
αn  α and Kn  K in D([−∞,∞]m), where

K(x) = α(x) −
m
∑

k=1

f(xk)βk(x), x ∈ [−∞,∞]m. (4)

Proposition 1 Suppose that F is symmetric and that Assumptions I and II hold under
H0. Then S̃n  N (0, 1) as n→ ∞.

The rank-based statistic S̃n shares with Sn its dependence on an arbitrary parameter
δ but, more importantly, the crucial property that its asymptotic distribution does not
depend either on the estimated parameters nor on F . The advantage that S̃n has over
Sn, however, is that its finite-sample distribution can be easily approximated, even when
F is unknown. By resorting to Algorithm 1 below to construct tables for S̃n, a user may
then trust the nominal level of the statistic, whereas this could not be accomplished for
Sn, unless F were known. In addition, the actual rate of convergence of S̃n to its normal
limit is irrelevant.

Algorithm 1 (Critical values for |S̃n|) Repeat the following steps for each ℓ ∈ {1, . . .,
L} for some suitably large L.

1. Generate U1,ℓ, . . . , Un,ℓ mutually independent uniform random variates on (0, 1).

2. Define ẽi = rank(Ui,ℓ)/(n+1) for i ∈ {1, . . . , n} and ẽi = ẽi−n for i ∈ {n+1, . . . , n+m

−1}.
3. Compute S̃n,ℓ = Sn(ẽ1, . . . , ẽn+m−1).

The 100×α% critical value for the statistic |S̃n| is then approximated by the correspond-

ing quantile in the set |S̃n,1|, . . . , |S̃n,L|. Similarly, the P -value associated with an observed

value S̃n,0 can be estimated by

1

L

L
∑

ℓ=1

1
(

|S̃n,ℓ| > |S̃n,0|
)

.
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3 Empirical processes extending Sn and S̃n

Although the rank-based statistic S̃n does not suffer from the slow rate of convergence
associated with the original BDS statistic Sn, it still shares with it a dependence on the
arbitrary parameter δ > 0. This section describes empirical processes that will be exploited
in Section 4 to get rid of this arbitrariness.

3.1 An empirical process extending Sn

Consider the process Bn(t) defined for each t = (t1, . . . , tm) ∈ [0,∞]m by

Bn(t) =
1
(n
2

)

∑

1≤i<j≤n

m
∏

k=1

1(|wjk −wik| ≤ tk).

For all s ∈ [0,∞], let also

Gn(s) = Bn(s,∞, . . . ,∞) =
1
(n
2

)

∑

1≤i<j≤n

1(|ej − ei| ≤ s).

A test of randomness based on

Dn(t) =
√
n

{

Bn(t) −
m
∏

k=1

Gn(tk)

}

,

would then represent an extension of Sn, since Vm = Bn(δ, . . . , δ) and V = Gn(δ), so that
Sn = Dn(δ, . . . , δ)/sn.

The limit of the general process Dn is characterized in Theorem 1 below, along with
that of two related processes, namely

Bn(t) =
√
n

{

Bn(t) −
m
∏

k=1

G(tk)

}

and B⋆
n(t) =

√
n

{

B⋆
n(t) − 2

m
∏

k=1

G(tk)

}

,

where

B⋆
n(t) =

2

n

n
∑

i=1

m
∏

k=1

{F (wik + tk) − F (wik − tk)} , (5)

and for all u ∈ R+,

G(u) = P(|ε2 − ε1| ≤ u) =

∫ ∞

−∞
{F (x+ u) − F (x− u)}dF (x). (6)

In the special case where F is known (but only then), the processes Bn and B⋆
n could

be used instead of Dn to construct tests of randomness.
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Theorem 1 Suppose that Assumptions I–II hold under H0. Then as n→ ∞, (Bn,B
⋆
n,Dn)

 (B,B⋆,D) in D ([0,∞]m)⊗3, where B = B⋆ and D are continuous centered Gaussian
processes with covariance functions ΓB and ΓD defined respectively by

ΓB(s, t) = 4

{

m
∏

k=1

γ(sk, tk) −
m
∏

k=1

G(sk)G(tk)

}

+ 4
m
∑

j=2

{

j−1
∏

k=1

G(sk)G(tm+1−k)

}







m
∏

k=j

γ(sk, tk+1−j) −
m
∏

k=j

G(sk)G(tk+1−j)







+ 4

m
∑

j=2

{

j−1
∏

k=1

G(sm+1−k)G(tk)

}







m
∏

k=j

γ(sk+1−j , tk) −
m
∏

k=j

G(sk+1−j)G(tk)







and

ΓD(s, t) = ΓB(s, t) − 4
m
∑

j=1

m
∑

k=1

{γ(sj , tk) −G(sj)G(tk)}







∏

ℓ 6=j

G(sℓ)













∏

ℓ 6=k

G(tℓ)







.

As with the classical BDS statistic, it can be seen from Theorem 1 that the asymptotic
covariances of the processes Bn, B⋆

n and Dn do not depend on the model parameters or
their estimates. However, they do depend on F through G and

γ(u, v) = P(|ε2 − ε1| ≤ u, |ε3 − ε1| ≤ v), u, v ∈ [0,∞).

Nevertheless, consistent estimators of G(u) and γ(u, v) are respectively given by Gn(u)
and by

γn(u, v) =
1

n3

n
∑

i=1

n
∑

j=1

n
∑

k=1

1(|ei − ek| ≤ u)1(|ej − ek| ≤ v).

Remark 1 When F is known, it would be tempting to work with the pseudo-observations
F (ei). However, it turns out that this is not a good idea, because unless F is symmetric, the
limiting distribution of the processes Bn and B⋆

n could depend on the estimated parameters.
See the proof of Corollary 2 for more details.

3.2 An empirical process extending S̃n

Parallel results to those of Section 3.1 are presented here for the case where the ei are
replaced by the ẽi from (3). First introduce

w̃i = (w̃i1, . . . , w̃im) = (ẽi, . . . , ẽi+m−1), 1 ≤ i ≤ n.
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For each s ∈ [0,∞] and t = (t1, . . . , tm) ∈ [0,∞]m, let

B̃n(t) =
1
(n
2

)

∑

1≤i<j≤n

m
∏

k=1

1(|w̃jk − w̃ik| ≤ tk),

G̃n(s) = B̃n(s,∞, . . . ,∞) =
1
(n
2

)

∑

1≤i<j≤n

1(|ẽj − ẽi| ≤ s),

and

B̃⋆
n(t) =

2

n

n
∑

i=1

m
∏

k=1

{

F̃ (w̃ik + tk) − F̃ (w̃ik − tk)
}

. (7)

Here, F̃ (s) = 0 ∨ (s ∧ 1) is the distribution function of a uniform random variable on the
interval (0, 1).

Next, the analogues of Dn, Bn and B⋆
n are defined respectively by

D̃n(t) =
√
n

{

B̃n(t) −
m
∏

k=1

G̃n(tk)

}

,

B̃n(t) =
√
n

{

B̃n(t) −
m
∏

k=1

G̃(tk)

}

and B̃⋆
n(t) =

√
n

{

B̃⋆
n(t) − 2

m
∏

k=1

G̃(tk)

}

,

where

G̃(u) =

∫ ∞

−∞
{F̃ (x+ u) − F̃ (x− u)dF̃ (x) = 0 ∨ {(2u− u2) ∧ 1}.

In practice, of course, there is no incentive to use D̃n over B̃n, since G̃n is deterministic
and

sup
t∈R+

∣

∣

∣
G̃n(t) − G̃(t)

∣

∣

∣
= O

(

1

n

)

⇒ sup
t∈R+

∣

∣

∣
D̃n(t) − B̃(t)

∣

∣

∣
= O

(

1

n

)

.

Theorem 2 Suppose that Assumptions I–II hold under H0. Then as n→ ∞, (B̃n, B̃
⋆
n, D̃n)

 (B̃, B̃, B̃) in D ([0, 1]m), where B̃ is a continuous centered Gaussian process with covari-
ance function Γ

B̃
(s, t) given by the same expression as ΓD(s, t), but with G and γ respectively

replaced by G̃ and
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γ̃(u, v) =



































































−u2v − 2uv2 + 4uv − u3

3
if u ≤ min(v, 1 − v);

v − u2 − uv2 +
v3 − 1

3
− v2 + u+ 2uv if max(u, 1 − u) ≤ v;

−v2u− 2vu2 + 4uv − v3

3
if v ≤ min(u, 1 − u);

u− v2 − vu2 +
u3 − 1

3
− u2 + v + 2uv if max(v, 1 − v) ≤ u.

Note that under H0 and for any δ ∈ (0, 1), it follows from Theorem 2 that

S̃n = D̃n(δ, . . . , δ)/s̃n  N (0, 1),

where s̃2n = s2n(ẽ1, . . . , ẽn) → Γ
B̃
(δ, . . . , δ) as n→ ∞.

4 Statistics based on functional extensions

In the light of Theorems 1 and 2, obvious extensions of statistics Sn and S̃n could be
based on quadratic forms involving either Dn(t) or D̃n(t) for finitely many, arbitrarily
selected values of t ∈ Rm

+ . Once properly normalized, these quadratic forms would then be
asymptotically distributed as chi-square random variables. Although sophisticated, this
approach would provide no real relief. For, the quadratic form would now depend on
several arbitrary choices of t ∈ Rm

+ rather than on t = (δ, . . . , δ). In addition, the issue

related to the rate of convergence would remain for the test statistic based on Dn or D̃n.

One obvious way around the arbitrariness of quadratic forms based on a finite number
of evaluations of Dn or D̃n is to resort to continuous functionals of these empirical processes
that take into account their value over an infinite number of points. This section considers
several statistics of this type, both in the cases where F is known or unknown.

4.1 The case where F is known

In the spirit of freeing the BDS statistic from the arbitrary parameter δ, an option would be
to integrate Sn over all possible values of this parameter. This idea leads rather naturally
to

∫ ∞

0
Dn(s, . . . , s)dGn(s).

Since F is known, however, it seems more convenient to base a test of randomness either
on Bn or B⋆

n rather than on Dn itself. This yields
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In =

∫ ∞

0
Bn(t, . . . , t)dG(t)

=
√
n







1
(n
2

)

∑

1≤i<j≤n

min
1≤k≤m

Ḡ (|wik − wjk|) −
1

m+ 1







,

and

I⋆
n =

∫ ∞

0
B⋆

n(t, . . . , t)dG(t) =
2√
n

n
∑

i=1

{

Wm(wi) −
1

m+ 1

}

.

Here, Ḡ = 1 −G and for arbitrary integer p ≤ m and t1, . . . , tp ∈ [0,∞),

Wp(t1, . . . , tp) =

∫ ∞

0

p
∏

k=1

{F (tk + s) − F (tk − s)} dG(s).

By Theorem 1, one may conclude that both In and I⋆
n converge in law to the centered

Gaussian random variable

I =

∫ ∞

0
B(s, . . . , s)dG(s)

with variance
∫ ∞

0

∫ ∞

0
ΓB(s, . . . , s, t, . . . , t)dG(s)dG(t).

Other natural extensions of Sn based on the empirical processes Bn and B⋆
n could be

constructed as follows from the Kolmogorov–Smirnov functional:

Mn = sup
s∈[0,∞)

|Bn (s, . . . , s)| and M⋆
n = sup

s∈[0,∞)
|B⋆

n (s, . . . , s)| .

Under the conditions stated in Theorem 1, Mn and M⋆
n converge weakly to sup{|B(s,

. . . , s)| : s ∈ [0,∞)} as n→ ∞.

The Cramér–von Mises functional is yet another option, which has the advantage of
leading to statistics that can be computed more or less explicitly. Indeed,

Tn =

∫

B2
n(t1, . . . , tm)dG(t1) × · · · × dG(tm)

=
4

n(n− 1)2

∑

1≤i1<j1≤n

∑

1≤i2<j2≤n

m
∏

k=1

Ḡ (|wi1k − wj1k| ∨ |wi2k − wj2k|)

− 4

n− 1

∑

1≤i<j≤n

m
∏

k=1

{

1

2
− 1

2
G2 (|wik − wjk|)

}

+
n

3m
.
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Furthermore,

T ⋆
n =

∫

B⋆
n
2(t1, . . . , tm)dG(t1) × · · · × dG(tm)

=
4n

3m
+

4

n

n
∑

i=1

n
∑

j=1

m
∏

k=1

W2(wik, wjk) − 8
n
∑

j=1

m
∏

k=1

N(wjk),

where for all u, v ∈ R+,

N(u) =

∫ ∞

0
{F (u+ s) − F (u− s)}G(s)dG(s).

It follows from Theorem 1 that the asymptotic distribution of Tn and T ⋆
n is

∫

B2(t1,
. . . , tm)dG(t1) × · · · × dG(tm), which is an infinite sum of weighted chi-squares.

In view of the slow speed of convergence of the statistics Sn, In, I⋆
n, Mn, M⋆

n, Tn and
T ⋆

n to limits that involve F in an intricate way, it seems wiser to rely on their finite-sample
distribution for testing purposes. A Monte Carlo algorithm is provided below in the case
of Tn. Its validity stems from Theorem 1. The modifications needed for other functionals
of Bn or B⋆

n are obvious.

Algorithm 2 (Critical values for Tn) Repeat the following steps for each ℓ ∈ {1, . . .,
L} for some suitably large L.

1. Generate a random sample ǫ1,ℓ, . . . , ǫn+m−1,ℓ from distribution F .

2. Set ei = ǫi,ℓ for all i ∈ {1, . . . , n+m− 1} .

3. Use the ei to construct the wi.

4. Compute the value Tn,ℓ of the Cramér–von Mises statistic Tn.

The 100 × α% critical value for the statistic Tn is then approximated by the corresponding
quantile in the set Tn,1, . . . , Tn,L. Similarly, the P -value associated with an observed value
Tn,0 can be estimated by

1

L

L
∑

ℓ=1

1 (Tn,ℓ > Tn,0) .

4.2 The case where F is unknown

When F is unknown but symmetric, rank-based analogues of In and I⋆
n are given by

Ĩn =

∫ 1

0
B̃n(s, . . . , s)dG̃(s)

=
√
n







1
(n
2

)

∑

1≤i<j≤n

min
1≤k≤m

(1 − |w̃ik − w̃jk|)2 −
1

m+ 1







,
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and

Ĩ⋆
n =

∫ 1

0
B̃⋆

n(s, . . . , s)dG̃(s) =
2√
n

n
∑

i=1

{

W̃m(w̃i) −
1

m+ 1

}

,

where W̃p(u) = W̃p(u
′), with u′k = uk ∧ (1 − uk), k ∈ {1, . . . , p}, W̃p is symmetric in its

arguments and if 0 = u0 ≤ u1 ≤ · · · ≤ up ≤ up+1 = 1/2, then

W̃p(u1, . . . , up) = 2

p
∑

k=0

∫ uk+1

uk







(1 − s)(2s)p−k
k
∏

j=1

(uj + s) + s

k
∏

j=1

(uj + 1 − s)







ds.

Again, using Theorem 2, one may conclude that both Ĩn and Ĩ⋆
n converge in law to the

centered Gaussian random variable

Ĩ =

∫ 1

0
B̃(s, . . . , s)dG̃(s)

with variance
∫ 1

0

∫ 1

0
Γ

B̃
(s, . . . , s, t, . . . , t)dG̃(s)dG̃(t).

Rank-based analogues of Mn, and M⋆
n are respectively given by

M̃n = max
1≤i≤n

∣

∣

∣

∣

B̃n

(

i

n+ 1
, . . . ,

i

n+ 1

)∣

∣

∣

∣

and

M̃⋆
n = max

1≤i≤n

∣

∣

∣

∣

B̃⋆
n

(

i

n+ 1
, . . . ,

i

n+ 1

)∣

∣

∣

∣

.

Under the conditions stated in Theorem 2, M̃n and M̃⋆
n converge weakly, as n → ∞, to

sup{|B̃(s, . . . , s)| : s ∈ [0, 1]}.
Finally, explicit expressions for the rank-based analogues of Tn and T ⋆

n are found to be

T̃n =

∫

B̃2
n(t1, . . . , tm)dG̃(t1) × · · · × dG̃(tm)

=
4

n(n− 1)2

∑

1≤i1<j1≤n

∑

1≤i2<j2≤n

m
∏

k=1

{

1 − G̃ (|wi1k −wj1k| ∨ |wi2k − wj2k|)
}

− 4

n− 1

∑

1≤i<j≤n

m
∏

k=1

{

1

2
− 1

2
G̃2 (|wik − wjk|)

}

+
n

3m
,



12 G–2006–23 Les Cahiers du GERAD

and

T̃n =

∫

∣

∣

∣ B̃⋆
n(t1, . . . , tm)

∣

∣

∣

2
dG̃(t1) × · · · × dG̃(tm)

=
4n

3m
+

4

n

n
∑

i=1

n
∑

j=1

m
∏

k=1

W̃2(w̃ik, w̃jk) − 8
n
∑

j=1

m
∏

k=1

Ñ(w̃jk).

In these formulas,

W̃2(u, v) = W̃2(u
′, v′)

=

∫ 1

0

{

F̃ (u+ s) − F̃ (u− s)
}{

F̃ (v + s) − F̃ (v − s)
}

dG̃(s)

=
1

6
+ u′v′(1 − u′ ∨ v′) +

1

3
u′{1 + (u′)3} +

1

3
v′{1 + (v′)3}

−(u′ ∧ v′)3 − 2

3
(u′ ∨ v′)3,

with u′ = u ∧ (1 − u), v′ = v ∧ (1 − v), and

Ñ(u) = Ñ(u′) =

∫ 1

0

{

F̃ (u+ s) − F̃ (u− s)
}

G̃(s)dG̃(s)

=
187

480
− 3

4

(

u− 1

2

)2

+
1

2

(

u− 1

2

)4

=
7

30
+

1

2
u− u3 +

1

2
u4.

A Monte Carlo algorithm is provided below for the determination of the distribution
of T̃n under the null hypothesis of randomness. Its validity stems from Theorem 2. The
modifications needed for M̃n, M̃⋆

n, T̃ ⋆
n or other functionals of B̃n or B̃⋆

n are obvious.

Algorithm 3 (Critical values for T̃n) Repeat the following steps for each ℓ ∈ {1, . . .,
L} for some suitably large L.

1. Generate a random sample U1,ℓ, . . . , Un+m−1,ℓ from U(0, 1).

2. Call Ri the rank of Ui,ℓ among U1,ℓ, . . . , Un+m−1,ℓ.

3. Using R1, . . . , Rn+p−1, compute the ẽi as per Equation (3).

4. Use the ẽi to construct the w̃i.

5. Compute the value T̃n,ℓ of the rank-based Cramér–von Mises statistic T̃n.

The 100 × α% critical value for the statistic T̃n is then approximated by the corresponding
quantile in the set T̃n,1, . . . , T̃n,L. Similarly, the P -value associated with an observed value

T̃n,0 can be estimated by

1

L

L
∑

ℓ=1

1
(

T̃n,ℓ > T̃n,0

)

.
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A final statistic that was included in the simulation study presented below is

S̃⋆
n = B̃n(δ, . . . , δ)/s̃n,

which converges to a standard normal random variable by Theorem 2.

Remark 2 As illustrated in Table 1, note that in spite of the fact that M̃n and M̃⋆
n converge

in law to the same limit, under the null hypothesis of randomness, their respective speed of
convergence could not be the same. In particular, for small sample sizes, quantiles might be
different. It is therefore recommended to calculate P -values and quantiles for each statistic
separately. The same advice applies to the pairs S̃n, S̃⋆

n, T̃n, T̃ ⋆
n , and Ĩn, Ĩ⋆

n.

5 Finite-sample performance

This section carries out two sets of Monte Carlo experiments to compare the performance,
for a sample size n = 100, under various alternatives and dimensions m, of the statistics
S̃n, S̃⋆

n, Ĩn, Ĩ⋆
n, M̃n, M̃⋆

n, T̃n and T̃ ⋆
n . For S̃n and S̃⋆

n, δ = 0.3 was used throughout
all simulations. To estimate the power under a fixed alternative, 10,000 samples were

Table 1: 95% quantiles for statistics S̃n, S̃⋆
n with δ = 0.3, Ĩn, Ĩ⋆

n, M̃n, M̃⋆
n, T̃n and T̃ ⋆

n for
sample sizes n = 20, 50, 100 and for m ∈ {2, 3, 4, 5, 6}, based on 10,000 replicates.

m
Statistic n 2 3 4 5 6

20 9.012032 9.134711 9.869765 10.590494 13.172255

S̃n 50 5.940659 5.730771 6.202165 6.629940 7.677685
100 4.540863 4.401059 4.692272 5.100884 5.816306
20 5.814012 4.296890 3.629241 3.201116 2.881487

S̃⋆
n 50 4.423979 3.423614 2.967845 2.712009 2.556186

100 3.677803 2.945949 2.639806 2.458066 2.327052

20 0.075363 0.107253 0.121851 0.127242 0.127455

Ĩn 50 0.052585 0.078264 0.090282 0.095680 0.097110
100 0.043092 0.065551 0.076175 0.081853 0.083969
20 0.105261 0.119070 0.124014 0.123530 0.120635

Ĩ⋆
n 50 0.078158 0.092435 0.099896 0.102787 0.103476

100 0.063384 0.078290 0.085704 0.088411 0.090208

20 0.375645 0.507397 0.603171 0.688483 0.759761

M̃n 50 0.260807 0.360727 0.442342 0.508878 0.564885
100 0.202400 0.287081 0.354657 0.409974 0.456697
20 0.227611 0.314323 0.378650 0.431029 0.471951

M̃⋆
n 50 0.169251 0.240221 0.295861 0.342389 0.382811

100 0.141433 0.209432 0.259929 0.300341 0.335972

20 0.017241 0.012620 0.008172 0.004973 0.002819

T̃n 50 0.007356 0.005982 0.004142 0.002596 0.001482
100 0.004166 0.003801 0.002786 0.001800 0.001027
20 0.011396 0.009728 0.006244 0.003404 0.001700

T̃ ⋆
n 50 0.006216 0.005944 0.004056 0.002420 0.001260

100 0.004048 0.004104 0.002972 0.001784 0.000956



14 G–2006–23 Les Cahiers du GERAD

generated for each statistic, and the percentage of rejected samples was recorded. In order
to speed up calculations, the 95% quantiles of Table 1 were used, instead of P -values.

In the first series of experiments, the alternatives are the time series models used in
Hong and White (2005), restricted to Gaussian innovations. In that paper, the authors
introduced a new statistic measuring entropy with respect to independence at various lags.
In the second set of experiments, other models of alternatives are proposed, with variable
degrees of dependence depending on the value of a parameter. A discussion of the results
in presented afterwards.

5.1 First experiment

For the first set of comparisons, nine time series models exhibiting various forms of depen-
dence were used, as in Hong and White (2005). In all these models, listed in Table 2, the
(independent) innovations are Gaussian. Note that Hong and White (2005) also considered
log-normal innovations.

In order to be able to make comparisons with the results of Hong and White (2005), the
same procedure was followed to obtain nearly stationary time series: for each repetition
and for each alternative, a time series of length 200 was generated, and only the last 100
observations were used. The results of these comparisons are given in two tables.

Table 3 contains the estimated power, under the nine alternatives, for the statistics S̃n,
S̃⋆

n, Ĩn, Ĩ⋆
n, M̃n, M̃⋆

n, T̃n and T̃ ⋆
n calculated with m = 2, and the statistic Tn(1) proposed by

Hong and White (2005). All statistics are comparable since they are all based on the pairs
(xt, xt+1), t = 101, . . . , 200. No simulations needed to be done for Tn(1), as the results were
kindly provided by the authors. In Table 4, similar results are presented for dimensions
m ∈ {2, . . . , 6}, for all statistics but Tn(1).

Table 2: List of models with Gaussian innovations used by Hong and White (2005)

Time Series Model Equation
I.I.D. Xt = εt

AR(1) Xt = 0.3Xt−1 + εt

ARCH(1) Xt = h
1/2

t εt, ht = 1 + 0.8X2
t−1

Threshold GARCH(1, 1) Xt = h
1/2

t εt, with h2
t = 0.25 + 0.6h2

t−1

+0.5X2
t−1

1(εt−1 < 0) + 0.2X2
t−1

1(εt−1 ≥ 0)
Bilinear AR(1) Xt = 0.8Xt−1εt−1 + εt

Nonlinear MA(1) Xt = 0.8ε2
t−1

+ εt

Threshold AR(1) Xt = 0.4Xt−11(Xt−1 > 1) + εt

−0.5Xt−11(Xt−1 ≤ 1)

Fractional AR(1) Xt = 0.8|Xt−1|1/2 + εt

Sign AR(1) Xt = sign(Xt−1) + 0.43εt
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Table 3: Percentage of rejection, at level α = .05, of series of length n = 100 of the first
set of alternatives, for tests based on the statistic Tn(1) of Hong and White (2005) and the
statistics S̃n, S̃⋆

n (both with δ = 0.3), Ĩn, Ĩ⋆
n, M̃n, M̃⋆

n, T̃n and T̃ ⋆
n . For all statistics but

Tn(1), the percentage of rejection was estimated with 10, 000 replicates.

Model S̃⋆
n Ĩ⋆

n M̃⋆
n T̃ ⋆

n S̃n Ĩn M̃n T̃n Tn(1)
I.I.D. 5.20 5.25 4.49 5.67 5.08 4.65 5.36 4.93 6.5
AR(1) 14.01 14.65 11.53 14.78 48.61 54.92 51.46 52.29 14.0
ARCH(1) 95.47 95.80 93.00 95.98 78.90 90.40 90.48 90.76 37.6
Threshold GARCH(1, 1) 72.14 72.71 66.22 72.90 48.99 61.85 62.22 61.75 20.6
Bilinear AR(1) 94.89 94.54 88.66 94.69 98.28 99.44 96.78 98.78 69.6
Nonlinear MA(1) 50.64 49.64 38.45 50.55 71.10 73.62 55.55 67.52 34.0
Threshold AR(1) 8.68 9.24 6.97 9.51 54.77 48.24 34.36 44.52 25.6
Fractional AR(1) 6.62 8.07 7.39 7.85 43.63 44.30 37.92 40.19 17.0
Sign AR(1) 32.06 33.92 32.03 34.03 57.59 59.15 58.42 59.57 60.8

5.2 Second experiment

A second set of comparisons was made using a set of alternatives allowing for various
degrees of dependence reflected through a parameter θ. These models, in which θ = 0
corresponds to independence, are listed in Table 5.

Remark 3 The Threshold AR(1) model was proposed by Tong and Lim (1980). For the
randomized tent map due to Genest et al. (2002), the choice θ = 1/4 corresponds to the
deterministic tent map, described by Chatterjee and Yilmaz (1992) as a prime example of a
chaotic time series. Note that for the tent map, traditional measures of dependence for the
pairs (Xt,Xt+ℓ), like autocorrelations, Kendall’s tau or Spearman rho, all have theoretical
value 0. See, e.g., Genest et al. (2002).

Table 6 gives the percentages of rejection of samples of size n = 100 for the test based
on the statistic S̃n with δ = 0.3, for m ∈ {2, . . . , 6} and for the 45 alternatives models.

Finally, Table 7 provides a comparison of the performance of the test statistics S̃n, S̃⋆
n, with

δ = 0.3, Ĩn, Ĩ⋆
n, M̃n, M̃⋆

n, T̃n and T̃ ⋆
n , for dimensions m ∈ {2, . . . , 6} and the 9 alternatives

corresponding to θ = 1/4. In order to achieve stationarity for a given times series model,
for each replicate, 120 observations were generated, and only the last 100 were considered.

5.3 Discussion

First, as shown by the results in Table 3, tests based on statistics S̃n, Ĩn, M̃n, and T̃n have
better power than the test based on Tn(1) for all models of Table 2 with the exception of

the sign AR(1), where they come very close. As for the tests based on statistics S̃⋆
n, Ĩ⋆

n, M̃⋆
n

and T̃ ⋆
n , they clearly dominate Tn(1) for the ARCH(1), Threshold GARCH(1, 1), Bilinear

AR(1) and Nonlinear MA(1) models. They are also comparable to Tn(1) for the AR(1)
model. They are, however, outperformed by Tn(1) for the remaining three models.
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Table 4: Percentage of rejection, at level α = .05, of the first set of alternatives, for the
tests based on the statistics S̃n, S̃⋆

n (both with δ = 0.3), Ĩn, Ĩ⋆
n, M̃n, M̃⋆

n, T̃n and T̃ ⋆
n , with

m ∈ {2, 2, 3, 4, 5, 6}, as estimated with 10, 000 replicates of series of length n = 100.

Model m S̃⋆
n Ĩ⋆

n M̃⋆
n T̃ ⋆

n S̃n Ĩn M̃n T̃n

I.I.D. 2 5.20 5.25 4.49 5.67 5.08 4.65 5.36 4.93
I.I.D. 3 5.16 5.22 4.63 5.33 5.27 4.90 5.16 4.71
I.I.D. 4 5.15 5.24 4.83 5.17 5.04 4.96 5.21 4.95
I.I.D. 5 5.22 5.53 4.90 5.43 5.25 4.83 4.98 4.87
I.I.D. 6 5.40 5.24 4.93 5.28 4.71 4.95 4.96 5.14
AR(1) 2 14.01 14.65 11.53 14.78 48.61 54.92 51.46 52.29
AR(1) 3 13.10 12.20 10.96 13.68 42.73 49.97 45.54 49.95
AR(1) 4 12.31 11.47 10.82 12.55 34.81 44.94 39.52 45.61
AR(1) 5 11.53 10.95 10.59 11.85 29.29 40.38 35.24 41.64
AR(1) 6 11.33 10.05 10.04 11.43 23.22 36.60 31.74 38.94
ARCH(1) 2 95.47 95.80 93.00 95.98 78.90 90.40 90.48 90.76
ARCH(1) 3 94.18 93.77 91.25 94.34 76.21 89.96 90.05 88.98
ARCH(1) 4 91.53 91.06 89.35 91.45 67.91 87.76 88.21 85.87
ARCH(1) 5 88.32 88.09 87.28 88.60 60.50 85.45 86.16 81.86
ARCH(1) 6 85.09 84.39 84.60 85.71 50.29 82.85 84.15 78.36
Threshold GARCH(1, 1) 2 72.14 72.71 66.22 72.90 48.99 61.85 62.22 61.75
Threshold GARCH(1, 1) 3 80.84 79.31 75.76 80.68 57.79 73.10 73.60 71.89
Threshold GARCH(1, 1) 4 84.00 82.29 81.02 83.70 57.94 78.35 78.75 76.12
Threshold GARCH(1, 1) 5 85.53 83.48 83.62 85.45 58.24 80.62 81.22 77.94
Threshold GARCH(1, 1) 6 86.13 83.84 84.58 86.06 54.80 81.87 82.41 78.90
Bilinear AR(1) 2 94.89 94.54 88.66 94.69 98.28 99.44 96.78 98.78
Bilinear AR(1) 3 95.63 94.08 90.95 95.35 98.26 98.64 91.56 99.00
Bilinear AR(1) 4 93.59 91.08 89.85 93.23 95.47 95.41 83.93 98.26
Bilinear AR(1) 5 90.81 88.12 87.60 90.39 91.04 90.79 78.28 96.57
Bilinear AR(1) 6 87.78 83.84 85.00 87.37 83.03 85.32 73.90 94.03
Nonlinear MA(1) 2 50.64 49.64 38.45 50.55 71.10 73.62 55.55 67.52
Nonlinear MA(1) 3 42.61 39.07 32.38 41.46 66.55 57.57 34.66 63.43
Nonlinear MA(1) 4 35.89 32.45 29.45 34.76 54.88 41.19 23.50 54.72
Nonlinear MA(1) 5 31.48 28.93 27.58 30.56 45.49 31.08 19.01 45.87
Nonlinear MA(1) 6 28.25 25.77 25.35 27.71 34.80 24.93 16.84 40.42
Threshold AR(1) 2 8.68 9.24 6.97 9.51 54.77 48.24 34.36 44.52
Threshold AR(1) 3 9.42 8.63 7.00 9.41 48.39 30.04 16.84 38.82
Threshold AR(1) 4 9.20 8.33 7.79 9.02 38.27 20.10 9.81 32.32
Threshold AR(1) 5 8.81 8.30 8.13 8.93 31.49 14.57 7.49 26.57
Threshold AR(1) 6 8.76 7.86 8.08 8.86 23.39 11.46 6.42 23.70
Fractional AR(1) 2 6.62 8.07 7.39 7.85 43.63 44.30 37.92 40.19
Fractional AR(1) 3 7.09 7.38 6.86 7.78 37.13 36.49 29.32 37.64
Fractional AR(1) 4 7.23 7.14 7.35 7.57 29.64 30.13 22.59 33.97
Fractional AR(1) 5 7.02 7.17 7.07 7.43 25.25 24.91 18.37 30.86
Fractional AR(1) 6 6.84 6.80 6.91 7.43 19.75 21.24 15.30 28.33
Sign AR(1) 2 32.06 33.92 32.03 34.03 57.59 59.15 58.42 59.57
Sign AR(1) 3 35.43 38.03 37.19 37.75 58.22 59.63 59.18 60.38
Sign AR(1) 4 37.11 39.61 39.79 39.75 57.65 59.92 59.71 60.38
Sign AR(1) 5 37.75 40.90 40.91 40.79 57.60 59.93 60.17 60.09
Sign AR(1) 6 38.13 40.92 40.74 41.43 56.63 59.70 60.29 60.22

Second, based on the results of Tables 3–7, observe that among the statistics S̃n, Ĩn,
M̃n, and T̃n, the test based on Ĩn is most often the best (or close to best) choice. While

T̃n performs quite well also, its computational complexity makes it much less attractive.
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Table 5: List of models used for the second experiment

Model Equation
AR(1) Gaussian Xt = θXt−1 + εt, with Gaussian innovations εt

AR(1) Laplace Xt = θXt−1 + εt, with Laplace innovations εt

AR(1) Cauchy Xt = θXt−1 + εt, with Cauchy innovations εt

MA(1) Xt = εt − θεt−1, with Gaussian innovations εt

GARCH(1, 1) Xt = h
1/2

t εt, with h2
t = 1 + θh2

t−1
+ 2θX2

t−1

ARCH(1) Xt = h
1/2

t εt, with ht = 1 + θX2
t−1

Threshold AR(1) Xt = −θXt−1 sign(Xt−1 − 0.5) + εt,
with innovations εt ∼ U(0, 1)

(Randomized) Tent Map Xt = (1 − ηt)εt + ηt(1 − |2Xt−1 − 1|),
with i.i.d. εt ∼ U(0, 1), independent
of the i.i.d. Bernoulli ηt ∼ B(4θ)

Clayton copula Xt is Markovian, with (Xt−1, Xt) ∼ Cθ,
with the Clayton copula, defined for u, v ∈ (0, 1)

by Cθ(u, v) =
`

u−θ + v−θ − 1
´

−1/θ
.

Among the other group of statistics based on B⋆
n, Ĩ⋆

n and T̃ ⋆
n are the top choices in terms

of performance, with S̃⋆
n not that far behind.

Last but not least, the simulation results suggest that there is a large difference be-
tween the performance of test statistics based on B̃n versus B̃⋆

n, depending on the type of
alternatives. In fact:

a) For most alternatives with constant conditional variance given the past, e.g., AR(1),

MA(1), Fractional AR(1), Threshold AR(1), the tests based on statistics S̃n, Ĩn, M̃n,

and T̃n perform much better in general, than those based on S̃⋆
n, Ĩ⋆

n, M̃⋆
n and T̃ ⋆

n .

b) For alternatives with non-constant conditional variance given the past, e.g.,
ARCH(1), GARCH(1, 1), and Threshold GARCH(1, 1), the tests based on statis-

tics S̃⋆
n, Ĩ⋆

n, M̃⋆
n and T̃ ⋆

n , are much more powerful in general, than those based on S̃n,

Ĩn, M̃n, and T̃n.

In practice, of course, the nature of the alternative being faced is usually unknown. For
the statistic Tn of Hong and White (2005), this is not a concern since the simulations indi-
cate that it performs equally well whether the conditional variance is constant or not. For
the statistics proposed herein, however, this might be problematic. Luckily, the following
general strategy can be used to circumvent the problem.

Consider a statistic Dn = φ(B̃n), calculated from a continuous functional φ of B̃n, and

its parent statistic D⋆
n = φ(B̃⋆

n). Let Pn and P ⋆
n represent respectively the (approximate)

P -values of Dn and D⋆
n, as calculated using a method analogous to the one described

in Algorithm 3 for T̃n. A combined test of approximate level α is then obtained by the
following rule:

Reject H0 ⇔ min (Pn, P
⋆
n) < α.
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Table 6: Percentage of rejection, at level α = 5%, of the second set of alternatives with
θ ∈ {0, 1/32, 1/16, 1/8, 1/4}, for the test based on statistic S̃n with δ = 0.3, as estimated
with 10, 000 replicates of series of length n = 100.

Model m θ = 0 θ = 1/32 θ = 1/16 θ = 1/8 θ = 1/4

AR(1) Gaussian 2 4.71 4.96 5.66 9.52 34.73
AR(1) Gaussian 3 4.83 4.86 5.97 8.95 30.11
AR(1) Gaussian 4 4.59 4.35 5.30 7.52 23.83
AR(1) Gaussian 5 4.82 4.73 5.46 7.17 20.41
AR(1) Gaussian 6 4.19 4.35 4.71 6.03 15.78
AR(1) Laplace 2 5.17 5.01 6.77 14.49 53.46
AR(1) Laplace 3 5.29 5.31 6.41 11.94 46.97
AR(1) Laplace 4 4.90 5.08 5.52 9.40 37.80
AR(1) Laplace 5 5.08 5.33 6.03 8.85 32.21
AR(1) Laplace 6 4.37 4.93 5.27 7.05 25.16
AR(1) Cauchy 2 4.90 10.01 20.83 54.47 96.34
AR(1) Cauchy 3 5.07 9.56 18.56 47.86 93.60
AR(1) Cauchy 4 4.60 7.77 13.99 39.34 88.35
AR(1) Cauchy 5 5.05 7.45 12.42 32.82 82.23
AR(1) Cauchy 6 4.65 6.23 9.88 25.15 73.26
MA(1) Gaussian 2 4.69 5.87 7.35 13.54 38.09
MA(1) Gaussian 3 4.73 5.89 7.15 12.03 33.08
MA(1) Gaussian 4 4.60 5.34 6.20 9.13 25.58
MA(1) Gaussian 5 4.96 5.63 6.05 8.50 21.09
MA(1) Gaussian 6 4.43 4.83 5.31 7.26 16.26
GARCH(1, 1) 2 4.60 7.17 10.49 21.37 55.38
GARCH(1, 1) 3 4.96 7.13 10.38 21.34 58.95
GARCH(1, 1) 4 4.67 6.18 8.72 17.51 54.38
GARCH(1, 1) 5 4.87 6.50 8.65 15.55 49.93
GARCH(1, 1) 6 4.51 5.57 6.95 11.98 42.31
ARCH(1) 2 5.01 6.00 6.96 10.44 21.30
ARCH(1) 3 5.30 6.25 6.58 9.71 19.76
ARCH(1) 4 4.53 5.37 5.65 8.23 15.40
ARCH(1) 5 4.81 5.77 5.90 7.71 13.02
ARCH(1) 6 4.26 5.01 5.34 6.40 10.52
Tent map 2 4.60 11.23 32.22 90.41 100.00
Tent map 3 4.81 10.07 26.43 85.13 100.00
Tent map 4 4.54 7.78 19.28 76.01 100.00
Tent map 5 4.77 7.27 16.06 66.32 100.00
Tent map 6 4.23 6.28 12.06 53.71 100.00
Threshold AR(1) 2 5.10 5.85 8.38 19.27 59.87
Threshold AR(1) 3 5.12 5.66 8.24 16.72 54.09
Threshold AR(1) 4 4.55 5.09 6.37 12.94 44.39
Threshold AR(1) 5 5.07 5.24 6.18 11.93 37.09
Threshold AR(1) 6 4.60 4.60 5.18 9.47 28.98
Clayton 2 4.83 5.11 5.67 8.94 21.89
Clayton 3 4.47 5.21 5.65 8.47 19.61
Clayton 4 4.30 4.59 4.85 7.06 15.50
Clayton 5 4.52 5.07 5.21 6.89 13.29
Clayton 6 4.07 4.19 4.71 5.85 10.50
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Table 7: Percentage of rejection, at level α = 5%, of the second set of alternatives with
θ = 1/4, for test based on statistics S̃n, S̃⋆

n, (both with δ = 0.3), T̃n, T̃ ⋆
n , M̃n, M̃⋆

n, Ĩ⋆
n and

Ĩn, as estimated with 10, 000 replicates of series of length n = 100.

Model m S̃⋆
n Ĩ⋆

n M̃⋆
n T̃ ⋆

n S̃n Ĩn M̃n T̃n

AR(1) Gaussian 2 10.15 10.75 9.46 10.63 34.73 38.38 36.18 36.07
AR(1) Gaussian 3 10.13 9.72 8.68 9.91 30.11 33.94 30.65 34.07
AR(1) Gaussian 4 9.35 8.89 8.79 9.38 23.83 29.59 26.10 31.06
AR(1) Gaussian 5 9.07 8.85 8.55 9.07 20.41 26.19 23.15 28.54
AR(1) Gaussian 6 8.77 8.28 8.40 8.85 15.78 23.95 20.97 26.80
AR(1) Laplace 2 27.98 25.59 18.27 25.99 53.46 63.34 59.40 61.35
AR(1) Laplace 3 25.26 21.20 17.16 22.50 46.97 56.69 54.28 58.50
AR(1) Laplace 4 22.50 18.13 16.75 19.58 37.80 51.24 49.22 53.83
AR(1) Laplace 5 20.17 17.17 16.61 17.73 32.21 46.46 45.37 49.55
AR(1) Laplace 6 18.91 15.15 16.00 16.83 25.16 43.04 41.71 46.18
AR(1) Cauchy 2 84.34 84.96 79.33 85.69 96.34 98.35 96.80 97.90
AR(1) Cauchy 3 79.27 77.79 73.72 79.51 93.60 97.12 94.52 97.23
AR(1) Cauchy 4 72.75 70.46 68.67 72.40 88.35 95.03 91.45 95.64
AR(1) Cauchy 5 66.60 64.48 63.88 66.12 82.23 92.24 88.09 93.56
AR(1) Cauchy 6 61.17 57.96 58.38 61.11 73.26 89.41 83.95 91.89
MA(1) Gaussian 2 10.74 11.38 9.49 11.06 38.09 42.27 38.03 38.98
MA(1) Gaussian 3 10.52 10.42 8.95 9.85 33.08 37.11 31.82 36.96
MA(1) Gaussian 4 10.04 9.76 9.05 9.15 25.58 32.38 26.81 33.38
MA(1) Gaussian 5 9.83 9.70 9.02 8.98 21.09 27.72 23.06 29.67
MA(1) Gaussian 6 9.63 9.03 8.91 8.90 16.26 24.67 20.92 26.99
GARCH(1, 1) 2 81.25 81.83 75.49 82.47 55.38 69.18 70.05 70.36
GARCH(1, 1) 3 84.92 83.95 80.10 84.79 58.95 76.59 77.37 74.80
GARCH(1, 1) 4 84.18 82.79 81.18 84.03 54.38 78.21 78.28 74.67
GARCH(1, 1) 5 82.04 81.46 80.66 82.51 49.93 76.94 77.90 73.07
GARCH(1, 1) 6 80.09 78.84 79.26 80.56 42.31 75.69 76.83 70.52
ARCH(1) 2 41.89 43.06 35.18 43.42 21.30 29.12 29.70 29.56
ARCH(1) 3 39.26 37.39 32.48 39.47 19.76 29.82 29.59 27.18
ARCH(1) 4 35.23 32.95 30.77 34.95 15.40 29.07 28.25 24.36
ARCH(1) 5 31.62 30.27 28.96 31.72 13.02 26.63 26.56 21.78
ARCH(1) 6 29.04 26.38 26.82 29.31 10.52 25.08 25.06 20.63
Tent map 2 100.00 89.08 15.59 99.69 100.00 100.00 100.00 100.00
Tent map 3 99.85 55.94 76.78 96.45 100.00 100.00 100.00 100.00
Tent map 4 96.28 41.42 80.29 83.00 100.00 100.00 100.00 100.00
Tent map 5 88.15 37.58 79.17 70.42 100.00 100.00 83.34 100.00
Tent map 6 78.93 33.83 75.71 60.88 100.00 86.42 18.84 100.00
Threshold AR(1) 2 5.17 5.82 4.83 5.51 59.87 63.87 48.56 58.47
Threshold AR(1) 3 5.04 5.26 4.50 5.28 54.09 50.12 36.59 56.79
Threshold AR(1) 4 5.17 5.26 4.73 5.05 44.39 40.49 28.02 51.47
Threshold AR(1) 5 5.06 5.46 4.98 5.19 37.09 32.17 22.78 46.96
Threshold AR(1) 6 5.00 5.19 4.82 5.16 28.98 26.86 19.50 43.24
Clayton 2 11.39 11.56 9.57 11.72 21.89 24.64 22.61 21.56
Clayton 3 11.22 10.64 8.92 11.27 19.61 22.18 19.65 20.35
Clayton 4 10.48 10.29 9.15 10.81 15.50 19.79 17.05 18.83
Clayton 5 10.07 9.85 9.37 10.54 13.29 17.70 15.22 17.18
Clayton 6 9.86 8.96 9.23 10.38 10.50 16.70 14.56 16.32
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To see that the limiting level of this decision rule is α, note that under H0, both statistics
converge in law to the same random variable D = φ(B). Accordingly, both Pn and P ⋆

n
converge to the same random variable U ∼ U(0, 1). Hence

lim
n→∞

P {min (Pn, P
⋆
n) < α} = P (U ≤ α) = α.

5.4 Comparison between statistics based on B̃n and B̃⋆
n

As remarked before, there are really two different groups of statistics: those based either
on B̃n or on B̃⋆

n. According to Theorem 2, their asymptotic behavior is the same under
the null hypothesis of randomness. However, under an alternative making εt dependent
but stationary and ergodic with common continuous distribution F , their power should
depend respectively on

√
n µ(t) and

√
n µ⋆(t), µ and µ⋆ being given respectively by

µ(t) = B̃(t) −
m
∏

k=1

G(tk) and µ⋆(t) = B⋆(t) − 2

m
∏

k=1

G(tk),

where

B̃(t) = P

(

m
⋂

k=1

{|Uk − Vk| ≤ tk}
)

and

B̃⋆(t) = 2P

(

m
⋂

k=1

{|Uk −Wk| ≤ tk}
)

are defined in terms of three independent random vectors U , V , and W with uniform
marginals. Here, U and V are from the copula C associated with (ε1, . . . , εm), i.e., C is
the joint distribution function of F (ε1), . . . , F (εm). As for W , its elements are taken to be
mutually independent.

Under the assumptions of stationarity and ergodicity, B̃n and B̃⋆
n are convergent esti-

mators of B̃ and B̃⋆. Therefore, one could use Monte Carlo simulations to find out the
value of δ for which the maximum distance between B̃(δ, . . . , δ) and (2δ− δ2)m is achieved.
Having done such simulations, it turns out that for many models of alternatives of the
second list, δ = 0.3 is almost always close to the optimum value.

6 An illustrative example

To illustrate the use of the proposed statistics, consider “Series G” of Box et al. (1994),
which consists of 144 monthly totals xt of thousands of international airline passengers.
The series extends from January, 1949, to December, 1960. As a variance-stabilizing
transformation, these authors consider the series zi = log(xi), for which they arrive at the
model ∇∇12zi = (1 − θB)(1 − ΘB12)εi, written explicitly as

zi − zi−1 − zi−12 − zi−13 = εi − θεi−1 − Θεi−12 + θΘεi−13,
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with θ̂ = 0.402, Θ̂ = 0.557, and σ̂2
ε = 1.34 × 10−3. These estimates were obtained by the

method of maximum likelihood, assuming that the εi are normally distributed. Based on
the Ljung–Box statistic, Box et al. (1994) arrive at the conclusion that “the check does
not provide any evidence of inadequacy in the model.” The same conclusion is reached by
Brockwell and Davis (1991).

The above model for Yi = ∇∇12zi is an MA(1) × MA12(1). Assumptions I and II can
easily be seen to hold in this case, provided that second-order moments of εi exist and
that their density is continuous, bounded and symmetric (as would be the case, e.g., under

normality). Under these conditions, the statistics S̃n, Ĩn, M̃n and T̃n and S̃⋆
n, Ĩ

⋆
n, M̃

⋆
n and

T̃ ⋆
n provide alternative checks for the model.

Table 8 provides estimated P -values for the new statistics, based on 10,000 replicates.
As can be seen from it, the null hypothesis of independence for m consecutive innovations
of the fitted model is readily rejected at the 1% level for p ≥ 6, for all statistics but S̃n.
Curiously, however, the rank-based version S̃n of the BDS statistic does not lead to the
rejection of H0 for any 2 ≤ m ≤ 10.

Table 8: P -values (%) for the model proposed by Box et al. (1994), using 10,000 replicates

Order m
Statistic 2 3 4 5 6 7 8 9 10

S̃⋆
n 1.54 1.98 1.96 1.91 0.95 0.73 0.57 0.48 0.39

Ĩ⋆
n 2.23 2.98 2.60 1.86 0.98 0.57 0.47 0.40 0.41

M̃⋆
n 3.25 3.76 2.84 1.88 1.16 0.98 1.06 0.80 0.65

T̃ ⋆
n 1.80 2.12 2.05 1.63 0.81 0.50 0.44 0.36 0.29

S̃n 22.21 57.13 75.73 46.91 27.07 30.18 37.01 26.23 12.78

Ĩn 6.12 7.42 4.96 1.76 0.81 0.62 0.58 0.48 0.38

M̃n 5.74 3.87 2.78 1.27 0.92 1.21 0.95 0.66 0.49

T̃n 3.80 6.10 5.60 2.40 1.30 0.80 0.70 0.80 0.80

7 Models satisfying Assumption II

Univariate stationary time series models can be divided into two major classes, according
as the conditional variance given the past is constant or not. Many time series models (Yi)
from the first group can be represented in the form

Yi = φ(Zi−1, θ) + εi, (8)

in terms of (possibly exogenous) random vectors (Zi) and innovations (εi). Here, it is
assumed that for j > i the innovation εj is independent of Zi, that (Zi)i≥1 is a stationary

and ergodic series, and that the parameter space O ⊂ Rd is open. For example, AR(p) and
threshold AR(p) models are of this form. One could also enlarge that family and consider
“recursive” models of the form

Yi = φ(Zi−1, εi−1, , . . . , εi−q, θ) + εi, (9)



22 G–2006–23 Les Cahiers du GERAD

whereof the standard ARMA(p, q) models are well-known representatives. The popular
econometric model described below provides another example.

Example 1 Consider the ARCH(p) model

Xi =



ω +

p
∑

j=1

ajX
2
i−j





1/2

ǫi,

in which the innovations ǫi are N (0, 1) and the components of the parameter θ = (ω,
a1, . . ., ap) satisfy ω > 0, a1 ≥ 0, . . . , ap ≥ 0 together with the second order stationarity
condition

p
∑

j=1

aj < 1.

Note that the latter condition is also sufficient (but not necessary) to ensure strong sta-

tionarity. Setting Yi = log
(

X2
i

)

, Zi−1 =
(

X2
i−1, . . . ,X

2
i−p

)

and εi = log
(

ǫ2i
)

, it follows

that
Yi = φ(Zi−1, θ) + εi, i ≥ 1

with φ(z, θ) = φ(z, ω, a) = log
(

ω + a⊤z
)

.

Note that the density f of εi is given by f(x) = exp(−ex/2)ex/2/
√

2π. It it clearly
continuous and its square integrates to 1/(2π). However, f is not symmetric. Nevertheless,
since F is known and the estimation of θ behaves well. Furthermore, Assumption 2 holds
true, so Theorem 2 can be applied to test the independence in the series |εi|.

Incidentally, one can also check that G(x) = (2/π) arctan
(

ex/2
)

, since ε1 − ε2 =
2 log (|ǫ1/ǫ2|) and ǫ1/ǫ2 has standard Cauchy distribution.

It is shown in Lemma 2 below that, under weak regularity conditions including Assump-
tion I, time series models defined by (8) satisfy Assumption II. Moreover, building on the
work of Bai (1994), one can show that Assumption II holds true for ARMA(p, q) models.
The exact hypotheses are stated in Lemma 3, which in proven in Ghoudi and Rémillard
(2006). It is likely that Assumption II also holds for time series models satisfying (9); this
problem is currently under investigation.

Concerning time series models with non-constant conditional variance, the situation is
quite different. In fact, unless these models can be transformed into models of the form
(8) or (9), as done in Example 1 above for the ARCH(p) model, there is no hope that
Assumption II could be satisfied. See, e.g., Berkes and Horváth (2003) for results on
GARCH models restricted to m = 1.

Example 2 Consider the ARCH(p) model defined by

yi = µ+

√

√

√

√a+

p
∑

j=1

bj(yi−j − µ)2 ǫi = µ+ σiǫi.
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For this model, it can be shown, e.g., using the techniques developed by Ghoudi and
Rémillard (2004), that if

ei,n = (yi − µ̂n)
/







ân +

p
∑

j=1

b̂jn(yi−j − µ̂n)2







1/2

and
Θn =

√
n (θn − θ) =

√
n
(

µ̂n − µ, ân − a, b̂n − b
)

 Θ = (M,A,B),

then Kn  K in D([−∞,∞]m), where for any t = (t1, . . . , tm) ∈ Rm,

K(t) = α(t) +
m
∑

j=1

F ′(tj)βj(t)

with

βj(t) =







∏

ℓ>j

F (tl)







E

[{

M
σj

+
tj
σ2

j

A +
tj
σ2

j

p
∑

ℓ=1

Bℓ(Yj−ℓ − µ)2

−2
tj
σ2

j

p
∑

ℓ=1

Bℓ(Yj−ℓ − µ)

}

∏

ℓ<j

1(ǫℓ ≤ tℓ)



 .

It is clear that βj depends on tj, even if µ = 0, so Assumption II is not met. As seen
before, however, Assumption II holds true when µ = 0 and εi = log(|ǫi|) is considered
instead of ǫi.

Appendices

A Auxiliary results

This appendix contains a series of lemmas that will be used to prove the main convergence
results. Suppose w1, . . . , wn are random vectors in Rm, and for any x = (x1, . . . , xm) ∈ Rm,
set

Kn(x) =
1

n

n
∑

i=1

1(wi ≤ x) =
1

n

n
∑

i=1

m
∏

k=1

1(wik ≤ xk)

and

Fk,n(xk) =
1

n

n
∑

i=1

1(wik ≤ xk), k = 1, . . . ,m.
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Assume that Kn is an estimation of an arbitrary distribution function K with con-
tinuous margins F1, . . . , Fm. Then there exists a unique copula C such that for all x =
(x1, . . . , xm) ∈ Rm,

K(x1, . . . , xm) = C {F1(x1), . . . , Fm(xm)} .
Accordingly, the so-called empirical copula

Cn(u1, . . . , um) = Kn

{

F−1
1,n(u1), . . . , F

−1
m,n(um)

}

is an estimation of C(u1, . . . , um) for every u = (u1, . . . , um) ∈ [0, 1]m.

Further set, for all x ∈ Rm,

K⋆(x) =

m
∏

k=1

Fk(xk). (10)

Finally, assume that for each k = 1, . . . ,m, w1k, . . . , wnk are mutually distinct with
probability one. It is then a simple exercise to show that

sup
0<u<1

∣

∣

∣Fk ◦ F−1
k,n(u) − u

∣

∣

∣ = sup
0<u<1

∣

∣Fk,n ◦ F−1
k (u) − u

∣

∣ . (11)

This fact is instrumental in establishing the weak convergence of the processes Fk,n =√
n (Fk,n − Fk) and Cn =

√
n (Cn − C), which is stated next.

Lemma 1 Suppose that Kn =
√
n(Kn −K) K in D([−∞,∞]m) as n→ ∞. Then also

Fk,n  Fk in D([−∞,∞]), where

Fk(xk) = K(∞, . . . ,∞, xk,∞, . . . ,∞).

Moreover, if C has continuous derivatives of order one on [0, 1]m, then Cn  C in
D ([0, 1]m) as n→ ∞, where

C(u) = K
{

F−1
1 (u1), . . . , F

−1
m (um)

}

−
m
∑

k=1

Fk ◦ F−1
k (uk)

∂

∂uk
C(u), (12)

for any u = (u1, . . . , um) ∈ [0, 1]m.

Proof: First, the convergence of Fk,n follows from the convergence of Kn. Next, using
(11) and the convergence of Fk,n, one can see that for any k ∈ {1, . . . ,m},

sup
0<u<1

∣

∣

∣
Fk ◦ F−1

k,n(u) − u
∣

∣

∣

P→ 0 as n→ ∞.

Consequently,

Kn

{

F−1
1,n(u1), . . . , F

−1
m,n(um)

}

 K
{

F−1
1 (u1), . . . , F

−1
m (um)

}

in D ([0, 1]m) .
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Next, note that for any u = (u1, . . . , um) ∈ [0, 1]m,

Cn(u) = Kn

{

F−1
1,n(u1), . . . , F

−1
m,n(um)

}

+
√
n
[

C
{

F1 ◦ F−1
1,n(u1), . . . , Fm ◦ F−1

m,n(um)
}

− C(u)
]

.

Also, the same kind of arguments used to show (11) yields the tightness of Qk,n(uk) =√
n {Fk ◦ F−1

k,n(uk) − uk} for any k = 1, . . . ,m. Furthermore, it is easy to check that the

finite-dimensional distributions of Qk,n converge to those of −Fk ◦ F−1
k . Hence, one may

conclude that

√
n
[

C
{

F1 ◦ F−1
1,n(u1), . . . , Fm ◦ F−1

m,n(um)
}

− C(u)
]

 −
m
∑

k=1

Fk ◦ F−1
k (uk)

∂

∂uk
C(u),

which completes the proof.

Remark 4 The conclusion of Lemma 1 is well known to hold in the special case where the
observations w1, . . . , wn on which Kn is based form a random sample from an m−variate
distribution. See, e.g., Gänßler and Stute (1987) or Fermanian et al. (2004). The ex-
tension provided here, however, shows that the result remains valid in the more frequent
contexts where the wi are not identically distributed or even serially dependent.

Let Sm be the set of all subsets of {1, . . . ,m}. For A ∈ Sm, let tA ∈ Rm be such that

(tA)k =

{

−tk if k ∈ A;
tk if k 6∈ A.

For any t ∈ [0,∞]m, set

Bn(t) =
1

n2

n
∑

i=1

n
∑

j=1

m
∏

k=1

1(|wjk − wik| ≤ tk).

Next, for any h ∈ D([−∞,∞]m), define the mappings ψ(h) and ψ⋆(h), by

ψ(h)(t) =
∑

A∈Sm

(−1)|A|

∫

h(x+ tA)dK(x), (13)

ψ⋆(h)(t) =
∑

A∈Sm

(−1)|A|

∫

h(x+ tA)dK⋆(x). (14)
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It is easy to check that both ψ and ψ⋆ are continuous linear mappings from D([−∞,∞]m)
to D ([0,∞]m). Further set Bn =

√
n (Bn −B), where

B(t) = ψ(K)(t) =
∑

A∈Sm

(−1)|A|

∫

K(x+ tA)dK(x), t ∈ [0,∞]m.

Next, set B⋆
n = 2ψ⋆(Kn). Then, using the multinomial formula

m
∏

k=1

(xk + yk) =
∑

A⊂Sm

(

∏

k∈A

xk

)

×





∏

j∈Sm\A

yj



 ,

it is easy to check that

B⋆
n(t) =

2√
n

n
∑

i=1

[

m
∏

k=1

{Fk(wik + tk) − Fk(wik − tk)} −
m
∏

k=1

Gk(tk)

]

, (15)

where

Gk(tk) =

∫

{Fk(xk + tk) − Fk(xk − tk)} dFk(xk), k = 1, . . . ,m.

The asymptotic behaviors of Bn and B⋆
n are given next.

Proposition 2 Suppose that Kn  K in D([−∞,∞]m) as n→ ∞. Then

sup
t∈Rm

|Bn(t) − 2ψ(Kn)(t)| P−→ 0 as n→ ∞.

Moreover, Bn  B = 2ψ(K) and B⋆
n  B⋆ = 2ψ⋆(K) in D ([0,∞]m).

Proof: First, using the weak convergence of Kn to K, it follows that

sup
t∈[0,∞]m

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Kn(wi + t) −
∫

Kn(x+ t)dK(x)

∣

∣

∣

∣

∣

P−→ 0 as n→ ∞.

Next, an application of the multinomial formula yields

Bn(t) =
1

n2

n
∑

i=1

n
∑

j=1

m
∏

k=1

1(|wjk − wik| ≤ tk)

=
1

n2

n
∑

i=1

n
∑

j=1

m
∏

k=1

{1(wik ≤ wjk + tk) − 1(wik < wjk − tk)}

=
∑

A∈Sm

(−1)|A|

n2

n
∑

i=1

n
∑

j=1

{

m
∏

k∈A

1(wik < wjk − tk)

}
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×
m
∏

k∈Sm\A

1(wik ≤ wjk + tk)

=
∑

A∈Sm

(−1)|A|

n2

n
∑

i=1

n
∑

j=1

{

m
∏

k∈A

1(wik ≤ wjk − tk)

}

×
m
∏

k∈Sm\A

1(wik ≤ wjk + tk) + oP (1)

=
∑

A∈Sm

(−1)|A|

n2

n
∑

i=1

n
∑

j=1

1(wi ≤ wj + tA) + oP (1)

=
∑

A∈Sm

(−1)|A|

n

n
∑

j=1

Kn(wj + tA) + oP (1)

=
1√
n

∑

A∈Sm

(−1)|A|

n

n
∑

j=1

Kn(wj + tA)

+
∑

A∈Sm

(−1)|A|

n

n
∑

j=1

K(wj + tA) + oP (1).

Next, one has
∑

A∈Sm

(−1)|A|1(x ≤ wj + tA) = 1{|x− wj | ≤ t} =
∑

A∈Sm

(−1)|A|1(wj ≤ x+ tA),

almost surely, so that

∑

A∈Sm

(−1)|A|

n

n
∑

j=1

K(wj + tA) =
n
∑

j=1

∑

A∈Sm

(−1)|A|

n

∫

1(x ≤ wj + tA)dK(x)

=
∑

A∈Sm

(−1)|A|

n

n
∑

j=1

∫

1(wj ≤ x+ tA)dK(x)

=
∑

A∈Sm

(−1)|A|

∫

Kn(x+ tA)dK(x)

=
1√
n

∑

A∈Sm

(−1)|A|

∫

Kn(x+ tA)dK(x)

+
∑

A∈Sm

(−1)|A|

∫

K(x+ tA)dK(x)

=
∑

A∈Sm

(−1)|A|

√
n

∫

Kn(x+ tA)dK(x) +B(t).
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Hence the following chain of identities holds uniformly in t ∈ [0,∞]m:

Bn(t) =
∑

A∈Sm

(−1)|A| 1

n

n
∑

j=1

Kn(wj + tA)

+
∑

A∈Sm

(−1)|A|

∫

Kn(x+ tA)dK(x) + oP (1)

= 2
∑

A∈Sm

(−1)|A|

∫

Kn(x+ tA)dK(x) + oP (1)

= 2ψ(Kn)(t) + oP (1).

To complete the proof, one may then invoke the continuous mapping theorem to conclude
that ψ(Kn) ψ(K) and ψ⋆(Kn) ψ⋆(K) in D ([0,∞]m). Hence the result.

The main result of this Appendix can now be stated.

Theorem 3 Suppose that the margins F1, . . . , Fm of K admit continuous and square inte-
grable derivatives F ′

1, . . . , F
′
m, respectively. Further assume that the copula associated with

K is the independence copula and that there exist processes α, β1, . . . , βm ∈ D([−∞,∞]m)
with the property that βk(x) does not depend on xk and such that Kn  K in D([−∞,∞]m)
as n→ ∞, where

K(x) = α(x) −
m
∑

k=1

F ′
k(xk)βk(x), x ∈ [−∞,∞]m.

Then

sup
t∈Rm

|Bn(t) − B⋆
n(t)| P−→ 0 as n→ ∞

and Bn  B = 2ψ(α) in D ([0,∞]m).

Proof: First, note that because of the independence hypothesis, ψ⋆ = ψ. Next, it follows
from Proposition 2 that sup

t∈Rm
|Bn(t) − B⋆

n(t)| converges in probability to zero and

Bn  B = 2ψ(K) = 2ψ(α) − 2

m
∑

k=1

ψ(F ′
kβk).

Thus to complete the proof, it suffices to show that for any k = 1, . . . ,m, ψ(F ′
kβk) ≡ 0.

As the argument is the same for all k ∈ {1, . . . ,m}, one takes k = m for sake of simplicity.
Then for any t ∈ [0,∞]m,

ψ(F ′
mβm)(t) =

∑

A∈Sm

(−1)|A|

∫

F ′
m{xm + (tA)m}βm(x+ tA)dK(x)
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=
∑

A∈Sm−1

(−1)|A|

{∫

{F ′
m(xm + tm) − F ′

m(xm − tm)}dFm(xm)

}

×
∫

βm(x+ tA)dF1(x1) · · · dFm−1(xm−1),

since βm(x) does not depend on xm. That the whole expression vanishes then follows from
the fact that

∫

{F ′
m(xm + tm) − F ′

m(xm − tm)}dFm(xm) = 0, (16)

which is a simple consequence of the square integrability of F ′
m.

Now for every k ∈ {1, . . . ,m} and t = (t1, . . . , tm) ∈ [0,∞]m, set

Gk,n(tk) = Bn(∞, . . . ,∞, tk,∞, . . . ,∞) =
1

n2

n
∑

i=1

n
∑

j=1

1(|wjk − wik| ≤ tk)

and define

Dn(t) =
√
n

{

Bn(t) −
m
∏

k=1

Gk,n(tk)

}

.

As shown below, the weak convergence of the process Dn is then a consequence of
the previous result. Before stating this fact precisely, define for any k ∈ {1, . . . ,m} the
mapping ψk by

ψk(h)(tk) =

∫

{h(xk + tk) − h(xk − tk)} dFk(xk), tk ∈ [0,∞], h ∈ D([−∞,∞]).

Corollary 1 Suppose that the conditions of Theorem 3 hold true. For every k ∈ {1,
. . . ,m} and x = (x1, . . . , xm) ∈ Rm, set

αk(xk) = α(∞, . . . ,∞, xk,∞, . . . ,∞).

Then Dn  D in D ([0,∞]m) as n→ ∞, and for all k ∈ {1, . . . ,m}, Gk,n  Gk = 2ψk(αk)
in D([0,∞]), where

D = 2ψ(α) − 2
m
∑

k=1

ψk(αk)(tk)
∏

j 6=k

Gj(tj), t = (t1, . . . , tm) ∈ [0,∞]m.

Proof: First note that for every k ∈ {1, . . . ,m} and x = (x1, . . . , xm) ∈ Rm,

Fk,n  Fk(xk) = αk(xk) − F ′
k(xk)βk(∞, . . . ,∞)
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as n→ ∞. It follows from Proposition 2 that

Gk,n(tk) = 2ψk(Fk,n)(tk) + oP (1),

so
Gk,n  2ψk(Fk) = 2ψk(αk) in D([0,∞]),

in view of (16).

To complete the proof, note that, uniformly in t ∈ Rm
+ ,

Dn(t) = Bn(t) +
√
n

{

m
∏

k=1

Gk,n(tk) −B(t)

}

= Bn(t) +

m
∑

k=1

Gk,n(tk)







∏

j 6=k

Gj(tj)







+ oP (1).

The next result pertains to the weak convergence of rank-based analogues of Dn and
Bn. To this end, define for every i ∈ {1, . . . , n},

w̃i = (w̃i1, . . . , w̃im) = (F1,n(wi1), . . . , Fm,n(wim)) .

Note that for every t ∈ [−∞,∞]m, one has

Cn(t) =
1

n

n
∑

i=1

1(w̃i ≤ t).

Suppose that C is the independence copula. For u ∈ [0, 1]m, define

B̃n(u) =
1

n2

n
∑

i=1

n
∑

j=1

1 (||w̃i − w̃j|| ≤ u)

and define the mappings ψ̃ : h ∈ D([−∞,∞]m) 7→ ψ̃(h) ∈ D ([0, 1]m) and ψ̃1 : h1 ∈
D([−∞,∞]) 7→ ψ̃1(h1) ∈ D ([0, 1]), by

ψ̃(h)(u) =
∑

A∈Sm

(−1)|A|

∫

[0,1]m
h(x+ uA)dx

and

ψ̃1(h1)(u1) =

∫ 1

0
{h1(s + u1) − h1(s− u1)} ds.
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Next, set B̃⋆
n = 2ψ̃(Cn). It follows that for every u ∈ [0, 1]m, one has

B̃⋆
n(u) = 2ψ̃(Cn)(u) = 2

∑

A∈Sm

(−1)|A|

∫

[0,1]m
Cn(x+ uA)dx

=
2√
n

n
∑

i=1

[

m
∏

k=1

{F̃ (w̃ik + uk) − F̃ (w̃ik − uk)} −
m
∏

k=1

G̃(uk)

]

,

with F̃ (x) = max{0,min(x, 1)} = P (U1 ≤ x) for every x ∈ R and

G̃(s) = P (|U2 − U1| ≤ s) = ψ1(F̃ )(s) =

∫ 1

0
{F̃ (u+ s) − F̃ (u− s)}du = 2s− s2,

for all s ∈ [0, 1], where U1, U2 ∼ U(0, 1) are independent. Finally, set B̃n =
√
n (B̃n − C).

The stage is now set for the final result of this Appendix.

Corollary 2 Assume that the conditions of Theorem 3 hold true. For every k ∈ {1,
. . . ,m}, let αk be defined as in Corollary 1. For all u = (u1, . . . , um) ∈ [0, 1]m, set

α̃k(uk) = αk ◦ F−1
k (uk)

and define
α̃(u) = α

{

F−1
1 (u1), . . . , F

−1
m (um)

}

.

Then

sup
u∈[0,1]m

∣

∣

∣
B̃n(u) − B̃⋆

n(u)
∣

∣

∣

P−→ 0 as n→ ∞

and B̃n  B̃ = 2ψ̃(C) in D ([0, 1]m). Moreover, if F1, . . . , Fm are symmetric (not neces-
sarily with respect to the origin), then for all u = (u1, . . . , um) ∈ [0, 1]m,

B̃(u) = 2ψ̃(α̃)(u) − 2

m
∑

k=1

ψ̃1(α̃k)(uk)
∏

j 6=k

G̃j(uj).

Proof: Let u = (u1, . . . , um) ∈ [0, 1]m be given. First, note that from Lemma 1, Cn  C

as n→ ∞, and using (12), one has

C(u) = K
{

F−1
1 (u1), . . . , F

−1
m (um)

}

−
m
∑

k=1

Fk ◦ F−1
k (uk)

∂

∂uk
C(u)

= α̃(u) −
m
∑

k=1

α̃k(uk)
∏

j 6=k

uj
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−
m
∑

k=1

F ′
k ◦ F−1

k (uk)







β̃k(u) − β̃k(1, . . . , 1)
∏

j 6=k

uj







,

with β̃k(u) = βk

{

F−1
1 (u1), . . . , F

−1
m (um)

}

. It then follows from Proposition 2 that

sup
u∈[0,1]m

∣

∣

∣
B̃n(u) − B̃⋆

n(u)
∣

∣

∣

P−→ 0 as n→ ∞

and that Bn  B = 2ψ̃(C) in D ([0, 1]m).

Since β̃k(u) does not depend on uk, the proof will be complete if one can show that

ψ̃1(F
′
k ◦ F−1

k ) ≡ 0 on [0, 1] for all k ∈ {1, . . . ,m}. To this end, note that for all x ∈ (0, 1),
one has

ψ̃1(F
′
k ◦ F−1

k )(x) =

∫ 1

0

{

F ′
k ◦ F−1

k (s+ x) − F ′
k ◦ F−1

k (s− x)
}

ds

=

∫ 1

x
F ′

k ◦ F−1
k (s)ds −

∫ 1−x

0
F ′

k ◦ F−1
k (s)ds

=

∫ ∞

F−1

k (x)

{

F ′
k(y)

}2
dy −

∫ F−1

k (1−x)

−∞

{

F ′
k(y)

}2
dy.

Set Qk(s) = F−1
k (s), s ∈ (0, 1). Then Q′

k(s) = 1/F ′
k ◦ F−1

k (s), so that ψ̃1(F
′
k ◦ F−1

k ) ≡ 0 is
satisfied if and only if Q′

k(s) = Q′
k(1 − s) for all s ∈ (0, 1), meaning that Fk is symmetric.

Hence the result.

B Proof of the main results

Since Proposition 1 is a particular case of Theorem 1, only the latter is proved. Further
note that although it is convenient to define the last m− 1 values of ẽi in a circular way as
in (3), this does not affect the limiting distribution of any statistic based on ẽ1, . . . , ẽn+m−1.
Therefore, arguments in this section are presented as if a sample of size n+m− 1 (rather
than n) had been collected.

B.1 Proof of Theorem 1

First, set

◦
Bn (t) =

1

n2

n
∑

i=1

n
∑

j=1

m
∏

k=1

1(|εj+k−1 − εi+k−1| ≤ tk), t ∈ [0,∞]m,

and define
◦
B

⋆

n= 2ψ(αn). Using the multinomial formula, one can write

◦
B

⋆

n (t) =
2√
n

n
∑

i=1

[

m
∏

k=1

{F (εi+k−1 + tk) − F (εi+k−1 − tk)} −
m
∏

k=1

G(tk)

]

.
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Next, by hypothesis, αn  α in D([−∞,∞]m) as n → ∞, so
◦
B

⋆

n= 2ψ(αn)  2ψ(α) = B⋆

and
◦
Bn B⋆ in D ([0,∞]m) as a consequence of Proposition 2. The weak convergence of

Bn to B = 2ψ(α) then follows directly from Theorem 3.

The formula for the covariance of B can thus be recovered from the relation B = 2ψ(α),

together with the fact that the limiting covariance of
◦
B

⋆

n is the covariance of B. The validity

of Algorithm 2 is also a consequence of the weak convergence of
◦
Bn to B.

Finally, the weak convergence of Dn follows from Corollary 1. Moreover, one can write

D(t) = 2ψ(α) − 2

m
∑

k=1

ψ1(α1)(tk)
∏

j 6=k

G(tj)

for all t ∈ [0,∞]m. This is because for every s ∈ [0,∞], one has

α1(s) = α(s,∞, . . . ,∞) = α2(s) = · · · = αm(s).

To complete the proof, one can easily check that for all s ∈ [0,∞] and t ∈ [0,∞]m,

cov {ψ1(α1)(s), ψ(α)(t)} = cov {ψ1(α1)(s), ψ1(α1)(t1)} = γ(s, t1) −G(s)G(t1).

B.2 Proof of Theorem 2

The weak convergence of D̃n and B̃n follows from Corollary 1. The validity of Algorithm 3
is a consequence of the weak convergence of α̃n to α̃, together with the fact that B̃ depends
only on α̃. Moreover, since B̃ has the same form as D when F and G are replaced by F̃
and G̃, the formula for the covariance given in Theorem 1 remains valid.

C Conditions for the validity of Assumption II

This appendix gives precise conditions under which Assumption II holds for models (8)
or ARMA models. Consider first the time series model (8). One needs some regularity
conditions on F and φ. Suppose that the density F ′ of εi is uniformly continuous and that
in addition, φ(z, θ) is continuously differentiable with respect to θ and φ̇(z, θ) = ∇θφ(z, θ)
is the d-dimensional row vector.

Assume that for any fixed θ ∈ O ⊂ Rd,

E

{

∥

∥

∥φ̇(Z1, θ)
∥

∥

∥

2
}

<∞

and that

lim
δ→0

E

{

sup
|θ′−θ|<δ

∥

∥

∥φ̇(Z0, θ
′) − φ̇(Z0, θ)

∥

∥

∥

2
}

= 0. (17)
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Suppose that the estimator θn of θ is such that Θn =
√
n (θn − θ) converge in law to

some variable Θ. Next, set ei,n = Yi − φ(Zi−1, θn), i.e., the ei,n are the residuals. Recall
that for all t = (t1, . . . , tm) ∈ Rm,

Kn(t1, . . . , tm) =
1

n

n
∑

i=1

1(ei,n ≤ t1, . . . , ei+m−1,n ≤ tm)

and

αn(t) =
√
n

{

1

n

n
∑

i=1

1 (εi ≤ t1, . . . , εi+m−1 ≤ tm) −K(t)

}

,

where K(t) =
∏m

j=1 F (tj). The following lemma is proved at the end of the section.

Lemma 2 Suppose that (αn,Θn)  (α,Θ) in D([−∞,∞]m) × Rd. Under the above as-
sumptions, Kn  K, where

K(t) = α(t) +

d
∑

j=1

F ′(tj)







∏

ℓ>j

F (tℓ)







E







φ̇(Zj−1, θ)
∏

ℓ<j

1(εℓ ≤ tℓ)







Θ.

It is then clear from this lemma that Assumption II is satisfied since, for any j ∈
{1, . . . ,m},

βj(t) =







∏

ℓ>j

F (tℓ)







E







φ̇(Zj−1, θ)
∏

ℓ<j

1(εℓ ≤ tℓ)







Θ

does not depend on tj .

Next, consider ARMA(p, q) models of the form

Yi − µ−
p
∑

k=1

φk(Yi−k − µ) = εt −
q
∑

j=1

ϕjεi−j , i ≥ 1 (18)

where the innovations (εi) have mean zero and finite variance σ2
ε , and the coefficients

φ = (φ1, . . . , φp)
⊤ and ϕ = (ϕ1, . . . , ϕq)

⊤ satisfy the usual conditions, i.e., the (complex)

roots of the polynomials 1−∑p
k=1 φkz

k and 1−∑q
k=1 ϕkz

k all lies outside the unit circle.

Let θn =
(

µ̂n, φ̂n, ϕ̂n

)

denote an estimation of (µ, φ, ϕ), and set Θn =
√
n (θ̂n − θ).

Lemma 3 Suppose that for the ARMA model (18),

(αn,Θn) (α,Θ) in D([−∞,∞]m) × R × Rp × Rq, (19)

where (α,Θ) is a centered Gaussian process. If in addition the density F ′ of εi is continuous
and bounded, then Assumption II is satisfied, i.e., Kn  K as n → ∞ with K having
representation (4).
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Lemma 3 follows easily from results in Ghoudi and Rémillard (2006). The conclusion is
not surprising anyway, since an ARMA(p, q) model can be seen as an AR(∞) model, and
AR(p) models are covered by Lemma 2.

Note that the convergence condition (19) holds true for OLS estimators or MLE esti-
mators provided the density F ′ is sufficiently smooth.

C.1 Proof of Lemma 2

First note that proving the weak convergence of Kn on D([−∞,∞]m) is equivalent to
show that En = Kn

(

F−1, . . . , F−1
)

 E = K
(

F−1, . . . , F−1
)

on D ([0, 1]m). For each
i ∈ {1, . . . , n}, introduce Ui = F (εi) and ui,n = F (ei,n) = F {Yi − φ(Zi−1, θn)}.

With these new definitions, one has En =
√
n(En − E), where

En(u) =
1

n

n
∑

i=1

1(ui,n ≤ u1, . . . , ui+m−1,n ≤ um) and E(u) =

m
∏

k=1

uk

for all u = (u1, . . . , um) ∈ [0, 1]m. Furthermore,

α̃n(u) =
√
n







1

n

n
∑

i=1

1(Ui ≤ u) −
m
∏

j=1

uj







and

E(u) = α̃(u) +
d
∑

j=1

F ′ ◦ F−1(uj)





∏

ℓ>j

uℓ



E







φ̇(Zj−1, θ)
∏

ℓ<j

1(Uℓ ≤ uℓ)







Θ, (20)

where α̃ = α
(

F−1, . . . , F−1
)

and φ̇(z, θ) = ∇θφ(z, θ) is a d–dimensional row vector.

The proof uses the asymptotic theory of empirical processes based on pseudo-observa-
tions developed by Ghoudi and Rémillard (2004). In particular, the convergence of En will
follow from their Theorem 2.4, once its assumptions have been checked. To simplify this
operation, it will be convenient to cast the problem in their notation. To do so, set

Xi = (Yi, Zi−1, Yi+1, Zi, . . . , Yi+m−1, Zi+m−2) ∈ X =
(

[−∞,∞]1+p
)⊗m

,

and write ǫi = (Ui, . . . , Ui+m−1) for every integer i ≥ 1. Further set X = X1 and ǫ = ǫ1.
Next, for all x = (y1, z0, . . . , ym, zm−1) ∈ X, define

Hn(x) = (H(1)
n (x), . . . ,H(m)

n (x)),

where for any j ∈ {1, . . . ,m}, H
(j)
n (x) =

√
n
{

H
(j)
n (x) −H(j)(x)

}

with

H(j)(x) = F {yj − φ(zj−1, θ)} and H(j)
n (x) = F {yj − φ(zj−1, θn)} .
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Now, set r =
(

r(1), . . . , r(m)
)

where for j ∈ {1, . . . ,m}, and any x ∈ X,

r(j)(x) = 1 + ‖φ̇(zj−1, θ)‖ + ϕ(zj−1, δ0),

where δ0 is such that {θ′ : ‖θ′ − θ‖ < δ0} ⊂ O, and

ϕ(x, δ) = sup
|θ′−θ|<δ

∥

∥

∥φ̇(Z0, θ
′) − φ̇(Z0, θ)

∥

∥

∥ , (x, δ) ∈ X × [0, δ0].

Finally, let Cr be the set of all Rm-valued functions on X × Rd such that

f (j)(x, a) = −F ′ {yj − φ(zj−1, θ)} φ̇(zj−1, θ)a, 1 ≤ j ≤ m.

Observe that since F ′ is uniformly continuous, there exists a non-decreasing bounded
function c on [0,∞) such that c(0) = 0 and such that

∣

∣F (x) − F (y) − (x− y)F ′(y)
∣

∣ ≤ |x− y| c(|x− y|).
Next, √

n |φ(z, θn) − φ(z, θ) −∇θ(z, θ)Θn| ≤ ‖Θn‖ϕ (z, ‖θn − θ‖) .

Setting d
(j)
n (x) = φ(zj−1, θn) − φ(zj−1, θ), for any j ∈ {1, . . . ,m}, it follows that
∣

∣

∣H
(j)
n (x) − f (j)(x,Θn)

∣

∣

∣ ≤ √
n |d(j)

n (x)| c
{

|d(j)
n (x)|

}

+‖Θn‖ϕ (zj−1, ‖θn − θ‖) ,
so, an n→ ∞,

sup
x

∣

∣

∣H
(j)
n (x) − f (j)(x,Θn)

∣

∣

∣

/

r(j)(x)
P→ 0,

using the weak convergence of Θn and condition (17).

Therefore, if (αn,Θn) (α,Θ) in D([−∞,∞]m)×Rd, and given that condition (17) is
satisfied, then (α̃n,Hn) converges in D([0, 1]m) ×D([−∞,∞]p) to (α̃,H), where

H(j)(x) = −f (j)(x,Θ), j ∈ {1, . . . ,m}.
In view of the above, and given that E

{

‖r(X)‖2
}

< ∞ by hypothesis, Lemma 7.2 of
Ghoudi and Rémillard (2004) now implies that Hypothesis II of their paper is verified.

Next, for f ∈ Cr, it follows that for j ∈ {1, . . . ,m}, µj

{

u, f (j)(·, a)
}

is given by

µj

{

u, f (j)(·, a)
}

= F ′ ◦ F−1(uj)







∏

ℓ>j

uℓ







E







φ̇(Zj−1, θ)
∏

ℓ<j

1(Uℓ ≤ uℓ)







a.

Hence Hypothesis I is also verified and because the density of Ui is uniform on [0, 1],

Hypothesis III is not needed. Thus one may conclude that En  Ẽ in D([0, 1]m), where E

has representation (20).
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