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Abstract

The Cox proportional hazards model has become the model of choice to use in
analyzing the effects of covariates on survival data. However, this assumption has
significant restrictions on the behavior of the conditional survival function. The ac-
celerated failure time model, which models the survival time and covariates directly
through regression, provides an alternative approach to interpret the relationship be-
tween survival times and covariates. We consider here the estimation of the nonpara-
metric regression function in the accelerated failure time model under right random
censorship and investigate the asymptotic rates of convergence of estimators based on
thresholding of empirical wavelet coefficients. We show that the estimators achieve
nearly optimal minimax convergence rates within logarithmic terms over a large range
of Besov function classes Bα

pq
, α > 1/p, p ≥ 1, q ≥ 1, a feature not available for

the linear estimators when p < 2. The performance of the estimators is tested via
simulation and the method is applied to the Stanford Heart Transplant data.

Key Words: Adaptive estimation; censored data; minimax estimation; nonlinear
wavelet-based estimator; nonparametric regression; rates of convergence.

Résumé

Les modèles de Cox avec risques proportionels sont devenus les modèles de choix
pour l’analyse de l’effet des covariables sur des données de survie. Cependant, cette
hypothèse comporte des restrictions significatives sur le comportement de la fonction
de survie conditionnelle. Le modèle avec temps d’échec accéléré, qui modélise le temps
de survie et les covariables directement par la régression, fournit une approche alter-
native permettant d’interpréter la relation entre le temps de survie et les covariables.
Nous considérons ici l’estimation de la fonction de régression non paramétrique dans
ce dernier modèle avec la censure aléatoire à droite et nous investiguons le taux de con-
vergence asymptotique d’estimateurs basés sur les coefficients empiriques d’ondolettes
avec seuil. Nous montrons que les estimateurs atteignent des taux de convergence min-
imax presque optimaux “à l’intérieur de termes logarithmiques” sur un large intervalle
de classes de fonction de Besov Bα

pq
, α > 1/p, p ≥ 1, q ≥ 1, une caractéristique qui

n’est pas disponible pour les estimateurs linéaires lorsque p < 2. La performance des
estimateurs est évaluée par des simulations et la méthode est appliquée à des données
de greffe de coeur de Stanford.

Acknowledgments: The authors wish thank to Professors Jianqing Fan and Iréne
Gijbels for making their program code used for the local linear regression smoother
available to us for this research. The second author wishes to thank NSERC of Canada
for the partial support of this research.
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1 Introduction

The Cox proportional hazards model has become the most popular approach to analyze
the effects of covariates on survival data. However, this assumption has significant restric-
tions on the behavior of the conditional survival function (for instance, see Portnoy, 2003
and the references cited therein). The accelerated failure time model, which models the
survival time (or a transformation of the survival time) and covariates directly through
regression rather than modelling the conditional survival and hazard functions, provides a
valuable complement to interpreting the relationship between survival time and covariates.
Formally, let Y be a random variable representing the survival time of a subject taking
part in a medical or other experimental study and X be a random variable of covariate,
e.g., age, sex, blood pressure, etc. In regression analysis we want to estimate Y given X,
i.e., to estimate the mean regression function g(x) = E(Y |X = x), which is equivalent to
estimating the function g from the regression model: Y = g(X)+σ(X)ε, where σ(·) is the
conditional variance representing possible heteroscedasticity and ε represents the random
error, which is assumed to be i.i.d.

In industrial life-testing, medical research and other studies, the observation of the oc-
currence of a failure may be made impossible by the previous occurrence of a censoring
event, such as the termination of the study or withdrawal from the study. In this case only
some of the observations represent true failure times. More precisely, let Y1, Y2, · · · , Yn

denote the survival times and X1,X2, · · · ,Xn the associated covariates, and let us assume
that (Y1,X1), (Y2,X2), · · · , (Yn,Xn) are independent and have a joint distribution func-
tion (d.f.) F 0(x, y). Also let T1, T2, · · · , Tn denote the i.i.d. censoring times with a common
d.f. G. It is assumed that (Yi,Xi) is independent of Ti for each i. Rather than observing
(Y1,X1), (Y2,X2), · · · , (Yn,Xn), the variables of interest, in the randomly right-censored
model, (Zi, δi,Xi) is observed, where Zi = min(Yi, Ti) = Yi ∧ Ti and δi = I(Yi ≤ Ti),
i = 1, 2, · · · , n, where I(A) denotes the indicator function of the set A. We denote H as
the d.f. of Z1, and τH = inf{x : H(x) = 1} ≤ ∞ is the least upper bound for the support
of H.

Many authors have assumed that the mean of the log-lifetime is a linear function of the
covariate and have estimated the linear regression parameters α and β (see, e.g., Miller,
(1976); Buckley and James (1979); Koul et al. (1981); Miller et al. (1982)). Stute (1999)
extended the above linear model to a nonlinear one with parameter θ and proved the
consistency and asymptotic normality of the weighted least square estimator of θ.

Here, we consider the nonparametric regression problem :

Yi = g(Xi) + σ(Xi)εi, i = 1, 2, · · · , n, (1.1)

where ε1, · · · , εn are i.i.d. errors with mean 0. Our goal is to estimate the unknown
function g based on the observations {(Xi, Zi, δi) : i = 1, 2, · · · , n}, a random sample from
the population (X,Z, δ).
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Although there is a vast literature in nonparametric regression, (see, e.g., the books
of Härdle (1990), Fan and Gijbels (1996) and the references cited therein), these methods
are not directly applicable to censored data. Here we use ideas from Buckley and James
(1979), Koul et al. (1981) and Fan and Gijbels (1994) to transform the censored data in
an unbiased way. Once such a transformation is carried out, the regression function can
be estimated as if the complete data were observed. Fan and Gijbels (1994) considered
a local linear regression smoother and derive its asymptotic normality for a fixed smooth
regression function.

In many examples of survival data in the medical literature, however, the regression
function may exhibit spatially inhomogeneous smoothness or discontinuities. For com-
pletely observed data, it is well known that wavelet estimators can handle discontinuities,
have extraordinary local adaptability and typically achieve optimal convergence rates over
exceptionally large function spaces. (We cite Donoho et al. (1994, 1995, 1996), Donoho
and Johnstone (1998), Hall and Patil (1995, 1996a, b) and Hall et al. (1998, 1999a, b)) on
the performance of nonlinear wavelet estimators. In all of the above research it is assumed
that the observations are complete. For the censored nonparametric regression model here,
we adapt the wavelet estimators to right randomly censored data by first transforming the
data as in Fan and Gijbels (1994). We assume that the regression function g belongs to a
large function class of Besov spaces Bα

pq and then show that the wavelet estimators achieve
nearly optimal minimax convergence rates within logarithmic terms over Bα

pq.

In the next section, we give the necessary definitions and define the nonlinear wavelet-
based mean regression function estimators. The main results with proofs are described
in Section 3. Section 4 contains a modest simulation study and Section 5 illustrates the
wavelet estimator using the Stanford Heart Transplant data. Section 6 is the conclusion.
The proofs of some technical results are given in the Appendix.

2 Notation and Estimators

As is usual in the wavelet literature we assume that the regression function g(x) is defined
for x ∈ (0, 1). Our aim is to estimate g, by non-linear thresholding of the empirical wavelet
coefficients. We assume that the father and mother wavelets, φ(x) and ψ(x), are bounded
and compactly supported, and

∫

φ = 1. We call a wavelet ψ r-regular if ψ has r vanishing
moments and r continuous derivatives. Let

φj0k(x) = 2j0/2φ(2j0x− k), ψjk(x) = 2j/2ψ(2jx− k), x ∈ R, j0, j ∈ Z.

Then the collection {φj0k, ψjk, j ≥ j0, k ∈ Z} is an orthonormal basis (ONB) of L2(R).
(For the existence and properties of such wavelets, we cite Daubechies (1992) and Cohen
et al. (1993)). Therefore, for all f ∈ L2(R),

f(x) =
∑

k∈Z

αj0kφj0k(x) +
∑

j≥j0

∑

k∈Z

βjkψjk(x),
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where

αj0k =

∫

f(x)φj0k(x) dx, βjk =

∫

f(x)ψjk(x) dx.

Our goal is to study wavelet-based estimators’ asymptotic rates of convergence over
a large range of Besov function classes Bα

pq, α > 0, 1 ≤ p, q ≤ ∞. Besov spaces
form a very rich class of function spaces, (which include, in particular, the well-known
Sobolev and Hölder spaces of smooth functions Hm and Cs (Bm

22 and Bs
∞,∞ respectively),

as well as function classes of significant spatial inhomogeneity such as the Bump Alge-
bra and Bounded Variations Classes of Triebel (1992). We consider here the intersection
of B∞(A) = {g : ||g||∞ ≤ A} with the following subset of the Besov space Bα

pq (where
αp > 1, p, q ∈ [1, ∞]) :

Gα
pq(M) =

{

g : g ∈ Bα
pq, ||g||Bα

pq
≤M, suppg ⊆ [0, 1]

}

;

i.e., Gα
pq(M) is a subset of functions with fixed compact support and bounded in the norm

of the Besov space Bα
pq. Moreover, αp > 1 implies Gα

pq is a subset of the space of bounded
continuous functions. For a given r-regular mother wavelet ψ with r > α, we use the
sequence norm of the wavelet coefficients of a function f ∈ Bα

pq by

|f |Bα
pq

=

(

∑

k

|αj0k|p
)1/p

+







∞
∑

j=j0

[

2js
(

∑

k

|βjk|p
)1/p

]q






1/q

. (2.1)

where s = α+ 1
2 − 1

p , to evaluate ‖f‖Bα
p,q

, since Meyer (1992) has shown their equivalence.

For such a mother wavelet ψ, the wavelet expansion of g ∈ Gα
pq, is

g(x) =
2j0−1
∑

k=0

αj0kφj0k(x) +
∑

j≥j0

2j−1
∑

k=0

βjkψjk(x), x ∈ [0, 1], (2.2)

where

αj0k =

∫

g(x)φj0k(x) dx, βjk =

∫

g(x)ψjk(x) dx.

In order to define our threshold estimator and to use the approximation of the Kaplan-
Meier integral in Lemma 3.1, we must assume that the survival time Y is bounded by
a positive constant B. We also assume P (T > B) > 0, i.e., G(B) < 1. Under these
assumptions, we have τF = τH , where τF is the least upper bound for the support of F .
In most real life examples this boundedness assumption is valid.

The proposed nonlinear wavelet estimator of g(x) is

ĝ(x) =

2j0−1
∑

k=0

α̂j0kφj0k(x) +

j1
∑

j≥j0

2j−1
∑

k=0

β̂jkI(|β̂jk| > d
√
n−1 lnn)ψjk(x), (2.3)
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where the smoothing parameters j0, j1 satisfying 2j0 ≃ log2 n and 2j1 ≃ n(log2 n)−2,
where the notation 2j(n) ≃ h(n) indicates that j(n) is chosen to satisfy the inequalities
2j(n) ≤ h(n) < 2j(n)+1. (For the sake of simplicity, we always omit the dependence of j0
and j1 on n). The threshold constant d =

√

2(1 −G(B))−1B, where B is related to the

boundness of Y and α̂j0k and β̂jk are defined as follows:

α̂j0k =
1

n

n
∑

i=1

δiZiφj0k(Xi)

1 − Ĝn(Zi−)
, β̂jk =

1

n

n
∑

i=1

δiZiψjk(Xi)

1 − Ĝn(Zi−)
. (2.4)

Here Ĝn denote the Kaplan-Meier estimator of the d.f. G, i.e.,

Ĝn(x) = 1 −
n
∏

i=1

[

1 −
1 − δ(i)

n− i+ 1

]I(Z(i)≤x)

,

where, Z(i) is the i-th ordered Z-value and δ(i) is the concomitant of the i-th order Z
statistic, i.e., δ(i) = δj if Z(i) = Zj.

If there is no covariate, then the Kaplan-Meier estimator of the d.f. F based on (Zi, δi),
i = 1, 2, · · · , n is

F̂n(x) = 1 −
n
∏

i=1

[

1 −
δ(i)

n− i+ 1

]I(Z(i)≤x)

.

Note that δi/n(1 − Ĝn(Zi−)) is the jump of the Kaplan-Meier estimator F̂n at Zi. In the

presence of a covariate, Stute (1993) extends F̂n so as to obtain a consistent estimator F̂ 0
n

of the joint d.f. F 0(x, y) = P (X ≤ x, Y ≤ y) of (X,Y ) when Y is subject to censoring and
X is observable, i.e.,

F̂ 0
n(x, y) =

n
∑

i=1

δi

n(1 − Ĝn(Zi−))
I(X(i) ≤ x, Z(i) ≤ y), (2.5)

where X(i) is the concomitant variable associated with the i-th order statistic Zi. Hence

we may write the empirical wavelet coefficients as β̂jk =
∫

yψjk(x)F̂
0
n(dx, dy), which will

be used in the proof of Lemma 3.1.

3 Main results

In the main theorem below, we study the estimator defined by equations (2.3) and (2.4)
and establish its convergence rate over a large function class. Typically, one first constructs
a wavelet-based estimator of g1(x) =

∫

yf(x, y)dy = f(x)g(x), where f(x) and f(x, y) are
probability density functions of random variables X and (X,Y ) respectively. Then the
estimation of the mean regression function g can be obtained by dividing the estimator of
f , which can be estimated in a variety of ways. For simplicity of exposition, we assume
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the design variable X has a uniform density over (0, 1). Similar results, however, can be
derived for the non-uniform stochastic design case. The following theorem shows that the
wavelet-based estimator, based on simple thresholding of the empirical wavelet coefficients,
attains a nearly optimal convergence rates over a large range of Besov function classes and
is completely adaptive; i.e., it behaves as if it knows in advance in which class the function
lies.

Theorem 3.1. Suppose the wavelet ψ is r-regular. Then, there exists a constant D, such
that for all M,A ∈ (0,∞); 1/p < α < r; p, q ∈ [1,∞],

sup
g∈Gα

pq(M)∩B∞(A)
E

∫

(

ĝ − g
)2 ≤ D

( log2 n

n

)2α/(1+2α)
,

where ĝ is defined by equations (2.3) and (2.4).

The method of proof for the above theorem is similar to that of Theorem 3.1 of Li (2004),
which considers the density estimator with randomly censored data. The difference is that
here in the regression case, there exists a covariate yielding different estimators. The
overall proof of the theorem follows along the lines of Donoho et al. (1996) and Hall et al.
(1998) for the complete data case, while overcoming some technical difficulties encountered
from censored data. For complete data, the empirical wavelet coefficients would be defined
as β̂jk = n−1

∑n
i=1 Yiψjk(Xi), which is an average of n i.i.d. random variables. In this

case, it is easy to investigate the large deviation behavior of empirical coefficients β̂jk.
For the censored data case, the empirical wavelet coefficients are constructed through
the Kaplan-Meier estimators of the distribution functions as in (2.4). Hence they are no
longer sums of i.i.d. random variables. The key part of the proof is to approximate the
empirical coefficients β̂jk with an average of i.i.d. random variables with a sufficiently
small rate. Stute (1995) approximates the Kaplan-Meier integrals as an average of i.i.d.
random variables with a certain rate in probability. Nevertheless we are able to show that
the above approximations hold in L2 also, since mean integrated squared error considers
L2 error. In order to prove the theorem, we need the following lemma. This result allows
us to deal with empirical coefficients in censored data as in the complete data case.

Lemma 3.1. Let α̂j0k and β̂jk be defined as in equations (2.4). Also, let

ϕj0k(x, y) = y φj0k(x), k = 0, 1, 2, · · · , 2j0 − 1,

ϕjk(x, y) = y ψjk(x), j = j0, j0 + 1, · · · , j1; k = 0, 1, 2, · · · , 2j − 1,

ᾱj0k =
1

n

n
∑

i=1

δiϕj0k(Xi, Zi)

1 −G(Zi)
, k = 0, 1, 2, · · · , 2j0 − 1,

β̄jk =
1

n

n
∑

i=1

δiϕjk(Xi, Zi)

1 −G(Zi)
, j = j0, j0 + 1, · · · , j1; k = 0, 1, 2, · · · , 2j − 1.
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Then the following equations hold.

α̂j0k = ᾱj0k +W j0k +Rn,j0k, E(R2
n,j0k) = O

(

1

n2

)
∫

ϕ2
j0k dF

0,

β̂jk = β̄jk +W jk +Rn,jk, E(R2
n,jk) = O

(

1

n2

)
∫

ϕ2
jk dF

0,

where
Wj0k(Zi) = Uj0k(Zi) − Vj0k(Zi), Wjk(Zi) = Ujk(Zi) − Vjk(Zi),

W j0k =
1

n

n
∑

i=1

Wj0k(Zi), W jk =
1

n

n
∑

i=1

Wjk(Zi),

and

Uj0k(Zi) =
1 − δi

1 −H(Zi)

∫ τH

Zi

ϕj0k(x, y)F
0(dx, dy),

Ujk(Zi) =
1 − δi

1 −H(Zi)

∫ τH

Zi

ϕjk(x, y)F
0(dx, dy),

Vj0k(Zi) =

∫ τH

−∞

∫ τH

−∞

ϕj0k(x, y)I(v < Zi ∧ y)
[1 −H(v)][1 −G(v)]

G(dv)F 0(dx, dy),

Vjk(Zi) =

∫ τH

−∞

∫ τH

−∞

ϕjk(x, y)I(v < Zi ∧ y)
[1 −H(v)][1 −G(v)]

G(dv)F 0(dx, dy).

Proof of Lemma 3.1: The proof is analogous to that of Lemma 4.1 of Li (2003) for density
estimation. In order to shorten it, we will skip the detailed lengthy proof and adopt
facts from Stute (1993, 1995, 1996, 1999) and Li (2003), whenever it will be convenient.
When there is no covariate, Stute (1995) considered convergence in distribution for the

Kaplan-Meier integral
∫

ϕdF̂n and obtained the following result (Stute, 1995, p.434)

∫

ϕ(x)dF̂n(x) =

∫

ϕ(w)γ0(w)H̃1
n(dw) +

∫∫

I(v < w)ϕ(w)γ0(w)

1 −H(v)
H̃1(dw)H̃0

n(dv)

−
∫∫∫

I(v < u, v < w)ϕ(w)γ0(w)

[1 −H(v)]2
H̃0(dv)H̃1(dw)Hn(du) +Rn,

(3.1)

where |Rn| = op(n
−1/2). For details on the definitions of γ0, H̃

0, H̃0
n, H̃1, H̃1

n, etc, see
Stute (1995). If we replace ϕ(x) in (3.1) with ϕij(x) = ψij(x)I(x ≤ T ), T < τH , we obtain

b̂ij = b̃ij +W ij +Rn,ij, (3.2)
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where

b̂ij =

∫

ϕij(x)dF̂n(x) =
1

n

n
∑

k=1

δkϕij(Zk)

1 − Ĝn(Zk−)
,

b̃ij =

∫

ϕij(w)γ0(w)H̃1
n(dw) =

1

n

n
∑

k=1

δkϕij(Zk)

1 −G(Zk)
,

W ij =
1

n

n
∑

k=1

Wij(Zk) =
1

n

n
∑

k=1

(

Uij(Zk) − Vij(Zk)
)

,

Uij(Zk) =
1 − δk

1 −H(Zk)

∫ τH

Zk

ϕij(w)F (dw),

etc. For details on the other terms and proof, see Lemma 4.1 in Li (2003). Identity

(3.2) approximates the empirical wavelet coefficients (b̂ij) with an average of i.i.d. random

variables (b̃ij + W ij) and a sufficiently small error Rn,ij. Stute (1995) shows |Rn| =

op(n
−1/2) for his central limit theorem. Since we consider here the mean integrated square

error measure of the estimator, we need to control the second moment of the reminder term
Rn,ij. Lemma 4.1 in Li (2003) shows that b̃ij and W ij are dominating terms and Rn,ij is
a negligible term such that ER2

n,ij = O(n−2)
∫

ϕ2
ijdF . Based on this approximation, the

empirical wavelet coefficients b̂ij basically can be treated as b̃ij , which is an average of i.i.d.
random variables.

When a covariate is present, Stute (1993) extends F̂n(x) to obtain an estimator F̂ 0
n(x, y)

in (2.5) of the joint distribution function F 0(x, y) of (X,Y ) when Y is subject to censoring
and X is observable and derives an analogous result as follows:
∫

ϕ(x, y)F̂ 0
n(dx, dy) =

∫

ϕ(x,w)γ0(w)H̃11
n (dx, dw)

+

∫∫

I(v < w)ϕ(x,w)γ0(w)

1 −H(v)
H̃11(dx, dw)H̃0

n(dv)

−
∫∫∫

I(v < u, v < w)ϕ(x,w)γ0(w)

[1 −H(v)]2
H̃0(dv)H̃11(dx, dw)Hn(du) +Rn,

(3.3)

where |Rn| = op(n
−1/2). For details on the definitions of H̃0, H̃0

n, H̃11, H̃11
n and other

terms, see Stute (1996, p.463) and Stute (1999, p.1095). If we replace ϕ(x, y) in (3.3) with
ϕjk(x, y) = yψjk(x), we obtain

β̂jk = β̄jk +W jk +Rn,jk,

where

β̂jk =

∫

ϕjk(x, y)F̂
0
n(dx, dy) =

1

n

n
∑

i=1

δiZiψjk(Xi)

1 − Ĝn(Zi−)
,

β̄jk =

∫

ϕij(x,w)γ0(w)H̃11
n (dx, dw) =

1

n

n
∑

i=1

δiZiψjk(Xi)

1 −G(Zi)
,
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etc. Based on our assumption, Y ≤ B and 1 − G(B) > 0, we have Z = min{Y, T} ≤ B.
Thus all the denominators in β̄jk, W jk, and Rn,jk are bounded away from zero. Following

the proof of Lemma 4.1 in Li (2003) and noting that α̂j0k, ᾱj0k, β̂jk, β̄jk and 2j0 here play

roles of b̂j, b̃j, b̂ij, b̃ij and p there (similarly for U , V and W ), we can prove E(R2
n,jk) =

O
(

n−2
) ∫

ϕ2
jk dF

0.

Once we establish the above approximation for the empirical wavelet coefficients β̂jk as
an average of i.i.d. random variables, we are ready to provide the large deviation result on
β̂jk. The following lemma is needed for large deviation behavior on the empirical wavelet

coefficients β̂jk.

Lemma 3.2. (Bennett’s or Bernstein’s Inequality) (Härdle, et al., 1998, p243) Let X1,
X2, · · · , Xn be independent random variables such that E(Xi) = 0, |Xi| ≤ M , b2n =
∑n

i=1E(X2
i ). Then for any λ ≥ 0,

P
(

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ λ
)

≤ 2exp
(

− λ2

2(b2n + λM
3 )

)

, ∀ λ ≥ 0.

The following large deviation result is analogous to that of Lemma 4.4 in Li (2004)
for density estimation. The difference is that here because of the covariate we deal with
a triple of variables, instead of the bivariate case. Since the estimators are different, the
threshold constants are different also. The lemma basically says that there is a negligible
probability that the empirical coefficients and theoretical coefficients differ greatly. In the
proofs below, C represents a generic finite constant, the value of which may change from
line to line in the sequel.

Lemma 3.3. Let β̂jk be defined as in equation (2.4). Then

P
(
∣

∣

∣
β̂jk − βjk

∣

∣

∣
> d

√

lnn

n

)

= O(n−1),

for all j ∈ [j0, j1], 2j0 ≃ log n, 2j1 ≃ n(log2 n)−2, and k = 0, 1, · · · , 2j − 1.

Proof of Lemma 3.3: For any positive numbers r1, r2 and r3, such that r1 + r2 + r3 = 1,
from Lemma 3.1, we have

P
(
∣

∣

∣
β̂jk − βjk

∣

∣

∣
> d

√

lnn

n

)

≤ P
(

∣

∣β̄jk − βjk

∣

∣ > r1d

√

lnn

n

)

+ P
(

∣

∣W jk

∣

∣ > r2d

√

lnn

n

)

+ P
(

|Rn,jk| > r3d

√

lnn

n

)

=: P1 + P2 + P3.
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We want to show that Pi = O(n−1), i = 1, 2 and 3. From Lemma 3.1, we can write
β̄jk − βjk = n−1

∑

i ξjk,i, where ξjk,i = δiZiψjk(Xi)(1 − G(Zi))
−1 − βjk. Note that

|βjk| ≤
∫

|g| |ψjk(x)|dx ≤ A2j/2 sup |ψ|. Thus we have |ξjk,i| ≤ B2j/2 sup |ψ|(1−G(B))−1 +

A2j/2 sup |ψ| = C2j/2. By direct calculation, E(ξjk,i) = 0, and

V ar(ξjk,i) = E(ξ2jk,i) ≤ E
{

δ2i Z
2
i ψjk(Xi)

2(1 −G(Zi))
−2
}

≤ B2(1 −G(B))−1.

Hence, we can apply Lemma 3.2 with λ = nr1d
√
n−1 lnn, M = C2j/2, b2n = nB2(1 −

G(B))−1. Thus we have

P1 ≤ 2 exp

{

− r21d
2 lnn

2
(

B2(1 −G(B))−1 + 3−1Cr1d
√
n−1 lnn 2j/2

)

}

.

Based on our choice 2j1 ≃ n(log2 n)−2, we have
√
n−1 lnn 2j/2 → 0, ∀j ∈ [j0, j1]. Hence

we obtain, for all ǫ > 0,

P1 ≤ 2exp
{

− 1

2
(1 − ǫ)B−2(1 −G(B))r21d

2 lnn
}

.

Choose ǫ sufficiently small and r1 sufficiently large and close to 1. Based on our choice of
d, we have P1 = O(n−1), ∀j ∈ [j0, j1] and k. Applying the same argument as in Lemma
4.4 in Li (2004), we can show P2 = P3 = O(n−1) also.

Now we are ready to provide the outline of the proof of Theorem 3.1.

Proof of Theorem 3.1: We can break the proof of Theorem 3.1 into several parts. The
orthogonality of φ and ψ implies that

E||ĝ − g||22 = I1 + I2 + I3 + I4,

where

I1 =
2j0−1
∑

k=0

E
(

α̂j0k − αj0k

)2
, I2 =

jα
∑

j=j0

2j−1
∑

k=0

E
(

θ̂jk − βjk

)2
,

I3 =

j1
∑

j=jα+1

2j−1
∑

k=0

E
(

θ̂jk − βjk

)2
, I4 =

∞
∑

j=j1+1

2j−1
∑

k=0

β2
jk.

Here θ̂jk = β̂jkI(|β̂jk| > d
√
n−1 lnn) and d =

√

2(1 −G(B))−1B. The smoothing pa-

rameter jα is carefully chosen such that 2jα ≃
(

n(log2 n)−1
)1/(1+2α)

in order to bal-
ance the two terms I2 and I3. In order to complete the proof, it suffices to show that
I1 = o((n−1 log2 n)2α/(1+2α)), I2 ≤ C(n−1 log2 n)2α/(1+2α), I3 ≤ C(n−1 log2 n)2α/(1+2α) and
I4 = o((n−1 log2 n)2α/(1+2α)). Their proofs are very similar to Lemmas 4.5-4.8 in Li (2004)
for the density estimation case. In order to make the proof complete, we provide their
proofs in the Appendix.
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Remark 3.1. The above term-by-term hard thresholded wavelet estimator defined as in
(2.3) and (2.4) is adaptive in the sense that it does not depend on unknown parameters α, p
and q. Minimax theory indicates that the best convergence rate over Gα

pq(M) is n−2α/(2α+1).
Thus, the above estimator achieves optimal convergence rates up to a logarithmic term,
without knowing a priori the smoothness parameters. In the case p < 2, Donoho et
al. (1996) showes that the traditional linear estimator cannot achieve the rates stated in
Theorem 3.1. Hence non-linear wavelet estimators typically achieve better convergence
rates over large function spaces. The same result holds for an analogous soft thresholding
wavelet estimator. We conjecture that a block thresholded estimator similar to that in Hall
et al. (1998) or Cai (1999) can be constructed so that it attains exact minimax convergence
rates without the logarithmic penalty. The proof would likely follow the arguments of Hall
et al. (1998), but it would be too lengthy to discuss these details here.

Remark 3.2. The estimator defined by (2.3) and (2.4) is analogous to that of Hall and
Patil (1996a) for the complete data case. Without censoring, the two estimators would be
the same. The choices of the primary resolution level j0 and upper level j1 here are not
unique. For more on the choice of smoothing parameters and threshold, see Hall and Patil
(1996a, 1996b).

Remark 3.3. Our estimator ĝ in (2.3) corresponds to Koul’s transformation (Koul et

al., 1981), i.e., replacing observation Zi with Y ∗
i = δiZi[1 − Ĝn(Zi−)]−1. There are other

transformations available for the censored data, for example, Buckley and James (1979)
(henceforth BJ ), Fan and Gijbels (1994), McKeague et al. (2001), among others. The BJ
transformation replaces Zi with its conditional expectation Y ∗

i = E(Y |Y > Zi,Xi, δi). Fan
and Gijbel (1994) show that the BJ transformation has smaller variability than Koul’s
transformation. In the context of the conditional independence of Y and T given the
covariate X, we can propose the following corresponding wavelet estimator based on the
BJ transformation:

g̃(x) =
2j0−1
∑

k=0

α̃j0kφj0k(x) +

j1
∑

j≥j0

2j−1
∑

k=0

β̃jkI(|β̃jk| > d̃
√
n−1 lnn)ψjk(x),

where the empirical wavelet coefficients are defined

α̃j0k =
1

n

n
∑

i=1

{

Ziδi +
[

Zi +

∫∞

Zi
Ŝn(y, Xi)dy

Ŝn(Zi, Xi)

]

(1 − δi)

}

φj0k(Xi),

β̃jk =
1

n

n
∑

i=1

{

Ziδi +
[

Zi +

∫∞

Zi
Ŝn(y, Xi)dy

Ŝn(Zi, Xi)

]

(1 − δi)

}

ψjk(Xi).

Here Ŝn(y, x) is the local Kaplan-Meier estimator of the conditional survival function of

Y given X. Upon choosing proper smoothing parameters j0, j1 and threshold d̃, we would
expect the above estimator g̃ to behave better than ĝ and conjecture that we can obtain
convergence rates similar to Theorem 3.1. The proof would likely follow that of Theorem
3.1, but it would be too involved to discuss these details here.
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4 Simulation

To investigate the performance of the proposed wavelet estimator, we present a modest
simulation study. Since Fan and Gijbels (1994) have shown that the BJ transformation
has smaller variability than Koul’s transformation, we have used a wavelet estimator based
on the BJ transformation for comparison purposes in this simulation. However, since the
BJ transformation depends on the unknown regression, the computation of the empirical
wavelet coefficients would involve an iterative algorithm which is much too unwieldy to
use in practice. Therefore, we propose the use of the explicit local average transformation
provided by Fan and Gijbel (1994, p.562). The transformation replaces the censored ob-
servation Zi with Y ∗

i , which is a weighted average of all uncensored responses which are
larger than Zi within a small neighborhood of Xi, i.e.,

Y ∗
i =

∑

j:Zj>Zi
ZjK

(

Xi−Xj

(Xi+k−Xi−k)/2

)

δj
∑

j:Zj>Zi
K
(

Xi−Xj

(Xi+k−Xi−k)/2

)

δj
,

where K is a nonnegative kernel function and k plays the role of bandwidth. The value of
k can be determined by cross-validation.

In order to compare our wavelet estimator to Fan and Gijbel’s local linear regression
smoother (henceforth local linear), we use the same functions in the simulation study
as in Fan and Gijbel (1994), i.e., Yi = 4.5 − 64X2

i (1 − Xi)
2 − 16(Xi − 0.5)2 + 0.25ǫi,

ǫi ∼ i.i.d. N(0, 1). For the convenience of the discrete wavelet transform, we let Xi =
i/n, i = 1, 2, · · · , n, where n is the sample size. We consider three different sample sizes:
n = 256, 512 and 1024. As in Fan and Gijbels (1994), the censoring time Ti is conditionally
independent of the survival time Yi given Xi and is distributed as (Ti|Xi = x) ∼ exp(t(x)),
where t(x) is the mean conditional censoring time given by

t(x) =

{

3
(

1.25 − |4x− 1|
)

, if 0 ≤ x ≤ 0.5;

3
(

1.25 − |4x− 3|
)

, if 0.5 < x ≤ 1.

For the above censoring variable, approximately 40% of the data are censored. We also
consider another censoring variable (Ti|Xi = x) ∼ exp(2.2 ∗ t(x)) which results in approxi-
mately 20% of data are censored. For numerical comparisons we consider the average norm
(ANorm) of the estimators at the sample points

ANorm =
1

N

N
∑

l=1

(

n
∑

i=1

(

f̂l(xi) − f(xi)
)2
)1/2

,

where f̂l is the estimate of f in l-th replication and N is the total number of replications.
Since different wavelets yield very similar results, we only use Daubechies’s compactly
support wavelet Symmlet 8. Using the idea of cross-validation, we select the threshold
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based on the minimum value of the average norm. The associated estimator with this
minimum turns out to be very close to the Stein Unbiased Risk Estimator (Donoho et al.
(1995)). The simulation results for different sample sizes and different censoring proportion
are summarized in Table 1. Based on these results, our wavelet estimator has a very similar
averge norm which is usualy slighly smaller than that of the local linear smoother.

Table 1: Average Norm from N = 100 replications.

20% censored 40% censored
n=256 n=512 n=1024 n=256 n=512 n=1024

Local Linear 3.844 5.549 7.886 3.869 5.497 7.860
Wavelet 3.867 5.519 7.774 3.850 5.463 7.780

The second example we considered is the following model: Yi = g(Xi) + ǫi, where
ǫi ∼ i.i.d. N(0, 1) i = 1, ..., n, (n = 256, 512), and g(x) is a piece-wise HeaviSine function:

g(x) =











4sin(4πx) + 20, if 0 ≤ x < 0.3;

4sin(4πx) + 18, if 0.3 ≤ x < 0.7;

4sin(4πx) + 20, if 0.7 ≤ x ≤ 1;

We also considered the censoring time Ti to be conditionally independent of the survival
time Yi given Xi and to be distributed as (Ti|Xi = x) ∼ exp(t(x)), where t(x) = 4g(x)
results in approximately 40% censoring and t(x) = 2g(x) results in approximately 20%
censoring. The average norm for two estimators for different sample sizes and censoring
are summarized in Table 2. Based on the above simulation results, we found that for
light censoring (approximately 20%) and moderate sample sizes, our wavelet estimator
does slightely better than Fan and Gijbel’s local linear estimator. However, for heavier
censoring, this advantage is lost.

Table 2: Average Norm from N = 100 replications.

20% censored 40% censored
n=256 n=512 n=256 n=512

Local Linear 7.691 9.199 8.540 10.721
Wavelet 7.332 8.941 9.421 11.851

5 Data Analysis

In this section, we apply our method to the Stanford Heart Transplant data, which has
previously been analyzed by Fan and Gijbel (1994) and others. (For more information
about this data set, see Miller and Halpern (1982)). This data consists of 184 patients who
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received a heart transplant between October 1967 and February 1980. Of these, 119 died
during the follow-up period and 65 (those patients who lived beyond February 1980) were
censored. We consider all 184 cases, their survival times which are log-transformed, as well
as their age at transplant. The following figure includes two estimators: the smooth one is
the local linear estimator, while the rough one is wavelet estimator. We can see these two
estimators are very close. The wavelet estimator is obviously not as smooth as the local
linear one found in Fan and Gijbels (1994). However, it clearly shows the same trend. It is
evident that, because of the adaptability of the wavelet estimator to many different type of
non-smoothness, a price will be paid on the estimation of a truly smooth curve. However,
in this case whether or not the true curve is smooth is unknown. It is possible that the
Fan-Gijbels method oversmooths and/or the wavelet method undersmooths.
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Figure 1: Stanford Heart Transplant data with log-survival time plotted against age. The
symbol + indicates survival time is censored and symbol * indicates survival time is ob-
served. Two estimators are plotted.
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6 Conclusion

For the problem of nonparametric regression function estimation with randomly right cen-
sored data, we have shown that wavelet estimators based on thresholding the empirical
wavelet coefficients can achieve nearly optimal rates within logarithmic terms over a large
range of Besov function classes Bα

pq, α > 1/p, p ≥ 1, q ≥ 1. In general, wavelets outperform
other methods when analysing functions with non-smooth features or discontinuities. For
randomly right censored regression problems wavelet analysis, when combined with the
proper data transformation such as those used by Fan and Gijbels (1994), provides results
that are consistent with those using local linear smoothers. It is perhaps surprising that the
wavelet estimators did not perform significantly better with heavier censoring than these
smoothers in the simulation studies but the results could possibly be improved by using
different types of wavelet coefficient thresholding such as a block thresholded estimator
analogous to that of Hall et al. (1998) or Cai (1999). Another approach would be to use
coefficient dependent thresholding as advocated by Kovac and Silverman (2000) and Von
Sachs and MacGibbon (2000). These are interesting subjects to pursue in further studies.

A Appendix

First we need the following norm inequality to bound the term I4 in Lemma A.3. Its proof
is straight forward and therefore omitted.

Lemma A.1. Let u ∈ R
n, and 0 < p1 ≤ p2 ≤ ∞. Then the following inequalities hold:

||u||p2 ≤ ||u||p1 ≤ n
1

p1
− 1

p2 ||u||p2 .

Lemma A.2. Let α̂j0k be defined as in equation (2.4). Then

I1 =

2j0−1
∑

k=0

E
(

α̂j0k − αj0k

)2
= o
(

(n−1 log2 n)2α/(1+2α)
)

.

Proof. From the approximation to α̂j0k in Lemma 3.1 and an elementary inequality, we
have

I1 ≤ 3
[

2j0−1
∑

k=0

E(ᾱj0k − αj0k)
2 +

2j0−1
∑

k=0

EW
2
j0k +

2j0−1
∑

k=0

ER2
n,j0k

]

=: 3(I11 + I12 + I13).

Applying the same arguments as in Lemma 4.2 in Li (2003, p42-43) and noticing that the
primary level 2j0 plays the role of p in Li (2003), we can have

I11 = O(n−12j0), I12 = o(n−12j0), and I13 = O(n−22j0).

Based on our choice j0 with 2j0 ≃ log2 n, the lemma is proved.
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Lemma A.3. Let βjk be defined as in expansion (2.2). Then

I4 =

∞
∑

j=j1+1

2j−1
∑

k=0

β2
jk = o

(

(n−1 log2 n)2α/(1+2α)
)

.

Proof. From the wavelet expansion (2.2), the wavelet coefficients βjk =
∫

g(x)ψjk(x)dx.
Because suppg ⊂ [0, 1] and suppψ ⊂ [−v, v], we have, for any level j, there are at most C2j

non-zero coefficients βjk’s. In order to bound the above term I4, we use the equivalence
of the Besov norm and the wavelet coefficients sequence norm in (2.1). For this purpose,
we need to separate the cases p ≤ 2 and p > 2. First, let’s consider p ≤ 2. From Lemma

A.1 and (2.1), we have ||βj.||2 ≤ ||βj.||p ≤ M2−js. Thus
∑2j−1

k=0 β2
jk ≤ M22−2js. Since

αp > 1 and s > 1/2, we have I4 ≤∑∞
j=j1+1M

22−2js = M22−2j1s2−2s(1 − 2−2s)−1. Based

on our choice j1 with 2j1 ≃ n(log2 n)−2 and 2s = 1 + 2(α − 1/p) > 2α/(2α + 1), we

obtain I4 = o
(

(n−1 log2 n)2α/(1+2α)
)

. For p > 2, from Lemma A.1, we have ||βj.||2 ≤

(C2j)
1
2
− 1

p ||βj.||p ≤ C2−jα. Thus we have

I4 ≤ C

∞
∑

j1+1

2−2jα = C2−2j1α2−2α(1 − 2−2α)−1 = C(n−1(log2 n)2)2α.

Since α > 0, we have I4 = o
(

(n−1 log2 n)2α/(1+2α)
)

. Together with p ≤ 2, this completes

the proof of the lemma.

Lemma A.4. Let β̂jk be defined as in equation (2.4) and θ̂jk = β̂jkI(|β̂jk| > d
√
n−1 lnn).

Then

I2 =

jα
∑

j=j0

2j−1
∑

k=0

E
(

θ̂jk − βjk

)2 ≤ C(n−1 log2 n)2α/(1+2α),

where jα = jα(n), such that 2jα ≃
(

n−1 log2 n
)1/(1+2α)

.

Proof. We write

I2 ≤ 2

jα
∑

j=j0

2j−1
∑

k=0

E
[

β2
jkI
(

|β̂jk| ≤ d
√
n−1 lnn

)

]

+ 2

jα
∑

j=j0

2j−1
∑

k=0

E
[

(

β̂jk − βjk

)2
I
(

|β̂jk| > d
√
n−1 lnn

)

]

=: 2(I21 + I22).
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As for the first term I21, we write

I21 ≤
jα
∑

j=j0

2j−1
∑

k=0

β2
jkI
(

|βjk| ≤ 2d
√
n−1 lnn

)

+

jα
∑

j=j0

2j−1
∑

k=0

β2
jkP

(

|β̂jk − βjk| > d
√
n−1 lnn

)

=: I211 + I212.

Since there are at most C2j non-zero terms of βjk’s for each level j, we have

I211 ≤
jα
∑

j=j0

2j−1
∑

k=0

4d2 lnn

n
≤ C

log2 n

n

jα
∑

j=j0

2j ≤ C(n−1 log2 n)2α/(1+2α).

As for term I212, applying the large deviation result in Lemma 3.3, we have I212 ≤
Cn−1

∑jα

j=j0

∑2j−1
k=0 β2

jk. Applying the same argument as in Lemma A.3 for both p ≤ 2

and p > 2, it is easy to obtain I212 = o((n−1 log2 n)2α/(1+2α)). Therefore we obtain

I21 ≤ C(n−1 log2 n)2α/(1+2α). As for term I22, from the approximation of β̂jk in Lemma
3.1, we have

I22 ≤ 3
[

jα
∑

j=j0

2j−1
∑

k=0

E
(

β̄jk − βjk

)2
+

jα
∑

j=j0

2j−1
∑

k=0

EW
2
jk +

jα
∑

j=j0

2j−1
∑

k=0

ER2
n,jk

]

=: 3
(

I221 + I222 + I223
)

.

By direct calculation, we can obtain E(β̄jk − βjk)
2 = O(n−1). Since there are at

most C2j non-zero terms for each j, we have I221 ≤ ∑jα

j=j0
Cn−12j = Cn−1(2jα−j0) ≤

Cn−1(n(log2 n)−1)1/(1+2α) = C(log2 n)−1(n−1 log2 n)2α/(1+2α) = o((n−1 log2 n)2α/(1+2α)).
By a computation analogous to that in Lemma 4.2 in Li (2003), we can obtain EU2

jk(Z1) =

EV 2
jk(Z1) = O(1). Noticing that there are at most C2j non-zero terms of Ujk’s and Vjk’s

for each j, we have I222 =
∑jα

j=j0

∑2j−1
k=0 n−1EW 2

jk(Z1) ≤ ∑jα

j=j0
Cn−12j . By the exact

same argument as for I221, we have I222 = o((n−1 log2 n)2α/(1+2α)). For term I223, from
lemma 3.1, we have

I223 =

jα
∑

j=j0

2j−1
∑

k=0

C

n2

∫

ϕ2
jkdF

0 ≤ C

n2

jα
∑

j=j0

22j ≤ C

n2
22jα = o

(

(n−1 log2 n)2α/(1+2α)

)

.

Together with I221 and I222, this completes the proof of the Lemma.
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Lemma A.5. Let β̂jk be defined as in equation (2.4) and θ̂jk = β̂jkI(|β̂jk| > d
√
n−1 lnn).

Then

I3 =

j1
∑

j=jα+1

2j−1
∑

k=0

E
(

θ̂jk − βjk

)2 ≤ C(n−1 log2 n)2α/(1+2α).

Proof. As in Lemma A.4, we have

I3 ≤ 2

j1
∑

j=jα+1

2j−1
∑

k=0

E
[

β2
jkI
(

|β̂jk| ≤ d
√
n−1 lnn

)

]

+ 2

j1
∑

j=jα+1

2j−1
∑

k=0

E
[

(

β̂jk − βjk

)2
I
(

|β̂jk| > d
√
n−1 lnn

)

]

=: 2(I31 + I32).

For the first term I31, we have

I31 ≤
j1
∑

j=jα+1

2j−1
∑

k=0

β2
jkI
(

|βjk| ≤ 2d
√
n−1 lnn

)

+

j1
∑

j=jα+1

2j−1
∑

k=0

β2
jkP

(

|β̂jk − βjk| > d
√
n−1 lnn

)

=: I311 + I312.

In order to deal with term I311, we need to separate p ≥ 2 and p < 2. Let’s first consider
p ≥ 2. Applying the same argument as in Lemma A.3, we have

I311 ≤
j1
∑

j=jα+1

2j−1
∑

k=0

β2
jk ≤ C

j1
∑

j=jα+1

2−2jα ≤ C2−2αjα ≤ C(n−1 log2 n)2α/(1+2α).

For the case p > 2, we have

I311 =

j1
∑

j=jα+1

2j−1
∑

k=0

β2
jkI
(

β2
jk ≤ 4d2 lnn

n

)

≤
j1
∑

j=jα+1

2j−1
∑

k=0

β2
jk ∧ 4d2 lnn

n

=

j1
∑

j=jα+1

2j−1
∑

k=0

β2
jk ∧ 4d2 C

log2 n

n
,
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where a ∧ b = min{a, b}. Noticing that (1 + 2α)−1 < p/2, for all α and p, we can choose
a positive number t ∈ (0, 1), such that (1 + 2α)−1 < t < p/2. Therefore we have

I311 ≤
j1
∑

j=jα+1

2j−1
∑

k=0

(

β2
jk ∧ C log2 n

n

)t
·
(

β2
jk ∧ C log2 n

n

)1−t

≤
j1
∑

j=jα+1

2j−1
∑

k=0

β2t
jk ·
(

C
log2 n

n

)1−t

≤ C
( log2 n

n

)1−t
j1
∑

j=jα+1

2j−1
∑

k=0

β2t
jk.

Since 2t < p, from Lemma A.1, we have

||βj.||2t ≤ C(2j)
1
2t
− 1

p ||βj.||p ≤ C(2j)
1
2t
− 1

pM2−js.

Hence,

I311 ≤ C
( log2 n

n

)1−t
j1
∑

j=jα+1

M2t2−2jts2
j( 1

2t
− 1

p
)2t

= CM2t
( log2 n

n

)1−t
j1
∑

j=jα+1

2j(1−t−2tα)

= C
( log2 n

n

)2tα
= o

(

(n−1 log2 n)2α/(1+2α)

)

,

where the last equality follows from (1+2α)−1 < t. For the term I312, from Lemma 3.3, we

have I312 ≤ Cn−1
∑j1

j=jα+1

∑2j−1
k=0 β2

jk. Analogous to term I212, using the same argument

as in Lemma A.3, we can obtain I312 = o((n−1 log2 n)2α/(1+2α)). For the term I32, for any
η ∈ (0, 1), we have

I32 ≤
j1
∑

j=jα+1

2j−1
∑

k=0

E
[

(

β̂jk − βjk

)2
I
(

|βjk| > ηd
√
n−1 lnn

)

]

+

j1
∑

j=jα+1

2j−1
∑

k=0

E
[

(

β̂jk − βjk

)2
I
(

|β̂jk − βjk| > (1 − η)d
√
n−1 lnn

)

]

=: I321 + I322.
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Let’s consider I321 first. From Lemma 3.1, applying the same argument as in I22, we can

obtain E(β̂jk − βjk)
2 = O(n−1). Since β2

jk > η2d2C log2 n
n in I321, we have

I321 ≤ C

n

j1
∑

j=jα+1

2j−1
∑

k=0

(

β2
jk

n

η2d2C log2 n

)p/2
=

Cnp/2−1

(log2 n)p/2

j1
∑

j=jα+1

2j−1
∑

k=0

βp
jk

≤ Cnp/2−1

(log2 n)p/2

j1
∑

j=jα+1

Mp2−jsp =
CMpnp/2−1

(log2 n)p/2
2−jαsp

=
CMp

log2 n
(n−1 log2 n)2α/(1+2α)

= o
(

(n−1 log2 n)2α/(1+2α)
)

.

For the term I322, using completely analogous argument as in s22 in Lemma 4.3 of Li
(2003, p45-46), we can show I322 = o((n−1 log2 n)2α/(1+2α)). Combining the above terms
I311, I312 and I321 together, this proves the Lemma.
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Härdle, W. (1990). Applied Nonparametric Regression. Boston: Cambridge University
Press.
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