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Montréal (Québec) Canada H3T 2A7
georges.zaccour@gerad.ca

February 2006

Les Cahiers du GERAD

G–2006–07

Copyright c© 2006 GERAD





Abstract

In this paper, we model a two-period electricity market with interrelated demand,
where oligopolistic generators make investments in peak- and base-load capacities. Dif-
ferent prices are obtained in the two periods, and residential consumers can react to
prices across demand periods. We characterize the Cournot equilibrium obtained as a
function of price and cross-price effects and present a numerical illustration based on
the Ontario (Canada) electricity market.

Key Words: Interdependent Demand, Electricity, Nash Equilibrium, Oligopoly, On-
tario (Canada).

Résumé

Cet article propose un modèle du marché de l’électricité caractérisé par deux types
d’interactions : (1) interaction oligopolistique entre les générateurs et (2) interaction
entre les demandes résidentielles d’électricité durant les périodes de pointe et de base.
Cette seconde interaction est liée à l’élasticité croisée entre les demandes de pointe et
de base. L’équilibre unique de Cournot est étudié, représentant les capacités de pointe
et de base que les générateurs mettent sur le marché. L’application numérique basée
sur le marché ontarien de l’électricité illustre le réalisme du modèle, ainsi que les im-
pacts sur les capacités et les prix que des changements d’élasticité prix et d’élasticité
croisée peuvent avoir.

Mots clés : Demandes interdépendantes, électricité, équilibre de Nash, oligopole,
Ontario (Canada).
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1 Introduction

The absence of price signals in retail markets has been identified as one of the main
determinants of the crises that occurred in some deregulated markets such as those of
California or Ontario (see, e.g., Sweeney (2002) for the California case and Trebilcock
and Hrab (2005) for the Ontario one, as well as for a comparative perspective1). The
necessity of developing pricing schemes that could provide incentive for consumers, in order
to manage demand efficiently is by no means a new topic. Indeed, Boiteux developed the
ideas of marginal-cost and peak-load pricing long ago2 (Boiteux (1949)). Since then, other
significant contributions have been made, notably by Steiner (1957), Williamson (1966) and
Turvey (1968). For a review of more recent contributions, the interested reader may consult
Crew et al. (1995). The institutional framework in this literature is, unsurprisingly, one of
a regulated, vertically integrated monopoly utility. It is probably not an overstatement to
say that the recommendations made in such context are of marginal relevance to players
engaged in a competitive electricity industry. In the latter context, the level of investment
in production capacity, as well as the prices are expected to follow a market logic, i.e., to
be endogenous to consumer behavior and to the degree of competition.

The economics and operations research literatures have long traditions modelling inter-
dependent firms’ choices of production capacities and outputs (or prices) in oligopolistic
industries. In the electricity context, the change of competitive structure, from a regulated
monopoly to a (de facto) oligopoly, triggered literature on the new problems that appeared
and helped to design the market mechanisms that were put in place. Competition in spot
markets has undoubtedly been an important issue. Contributions in this area include,
among many others, those of Bohn et al. (1984), Green and Newbery (1992) and Bolle
(1992). Given the nature of the object under investigation, their models ignored invest-
ment decisions, which are actually relevant only in a long-term perspective. Murphy and
Smeers (2002) and Pineau and Murto (2003) are examples of the long-term perspective,
where the models deal with both production and investment decisions. In these papers, the
demands in different market segments, i.e., base-load and peak-load segments, are indepen-
dent. This amounts to saying that the cross-price elasticity is zero. Such an assumption
is also made in some recent models of the long-term impacts of real-time pricing (e.g.,
Boreinstein (2005)).

In this paper, we wish to study output (also to be interpreted as production capaci-
ties) decisions in an oligopolistic electricity industry, in which players serve two market
segments, namely, base-load and peak-load segments, with two different production tech-
nologies characterized by different cost structures. Our main objective is to shed light
on production strategies when the demands in both segments are interdependent, and
more specifically, when they exhibit positive cross-price elasticities. This assumption has

1Lafferty et al. (2001) present the regulator’s views on the importance of sending correct price signals
to consumers to promote efficient investment.

2This theory had been presented in a half-century-old report of the Organisation for European Economic
Co-operation (OEEC (1958)).
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been documented in the econometric literature dealing with time-of-use tariffs. Indeed,
Lawrence and Aigner (1979), Manning et al. (1979), Tishler and Ye (1993), Aigner et al.
(1994), Filippini (1995), Mountain and Lawson (1995) and Matsukawa (2001) all depicted
significant positive cross-price elasticities between price periods (segments).

The reaction of consumption patterns to price clearly has an impact on technology
choices and on investments, even if this is not yet fully understood in the new deregu-
lated environment. These issues are of strategic importance to electricity firms in terms
of the technology mix of base-load and peak-load capacities. They are also relevant to
governments facing environmental constraints and politically sensitive to price levels.

In this paper, we present a model of an electricity market, characterized by n investors-
suppliers, two technologies (base- and peak-load technologies) and two interdependent
market segments (base- and peak-load) with different own- and cross-price parameters.
Using this parsimonious model, we will characterize equilibrium output strategies and in-
vestigate their sensitivity with respect to key parameters. Our main contribution lies in the
study of this equilibirum with respect to price and cross-price parameters. We show that
positive cross-price elasticities reduce capacity in both market segments and lead to oppo-
site price changes in each segment. Variations in price elasticities have opposite impacts
in each market segment, but result in overall greater (lower) capacity when price elastic-
ity increases (decreases). An empirical application illustrates these results in a realistic
setting.

The rest of the paper is organized as follows: In Section 2, we introduce the model. In
Section 3, we derive the unique Nash equilibrium in output strategies and present some
comparative statics results. In Section 4, we apply the model to the Ontario (Canada)
market. In Section 5, we briefly conclude.

2 The Model

2.1 Demand Characterization

Consider n electricity producers (players) competing à la Cournot in a given market. Each
player has at her disposal two types of production technology, to which we shall generically
refer as base-load and peak-load capacities. Denote by qib, i = 1, . . . , n, the hourly quantity
produced by the base-load capacity and similarly by qip its peak-load counterpart. Let
Qb =

∑n
i=1

qib and Qp =
∑n

i=1
qip be the total quantity put on the market by all producers

during the base-load and peak-load periods, respectively.

Denote by Tb the tariff (or price) of a kilowatthour (kWh) during the base-load period
and by Tp the tariff during the peak-load period. Both tariffs are endogenous and are
assumed to be given by the following inverse demands

Tb = αb − βbQb − γbQp, (1)

Tp = αp − βpQp − γpQb, (2)
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where αj, βj and γj , j ∈ {base, peak} , are positive parameters. This linear specification is
rather standard in economics and implicitly assumes that the (nonnegative) quantities and
parameters’ values are such that prices in equilibrium are nonnegative. It is easy to verify
that the above system of inverse demands can be equivalently written as

Qb =

(

αbβp − αpγb

βbβp − γbγp

)

−

(

βp

βbβp − γbγp

)

Tb +

(

γb

βbβp − γbγp

)

Tp, (3)

Qp =

(

αpβb − αbγp

βbβp − γbγp

)

−

(

βb

βbβp − γbγp

)

Tp +

(

γp

βbβp − γbγp

)

Tb. (4)

We make the following assumptions:

A1: βj > max {γb, γp} , j ∈ {b, p} ,

A2: αp > αb,

A3:
γb

βp

<
αb

αp

A4: γb > γp.

Assumption A1 implies that βbβp − γbγp > 0 and hence, that the total quantities in (1)
and (2) are, as they should be, decreasing in own price and increasing in the price of
the substitute. This assumption also says that the direct-price effect is greater than the
cross-price effect, i.e., βb > γb and βp > γp. In terms of inverse demand, A1 states that
the price in one period is more sensitive to the quantity supplied during that period than
to the quantity supplied in the other period. The parameter αb, respectively αp, can be
interpreted as the maximum price consumers are willing to pay for a unit Qb (respectively
Qp). By the very nature of the peak-load demand, it is intuitive to assume that αp is
higher than αb. These constant terms in (1) and (2) represent the levels of demand when
both prices are zero. Hence, they must be positive. By A1 and A2, the constant term in
(4) is clearly positive. By assumption A3, we ensure that the constant term in (3) is also
positive. Finally, assumption A4 states that base-load demand is more sensitive to the
peak-load tariff than the other way around.

2.2 Cost Characterization

Each type of production capacity is characterized by an operating cost and a capital (or
acquisition) cost. To keep things simple, we assume, not unrealistically, that all players
are using the same base-load technology and the same peak-load technology, and hence
face the same cost structure. Let the marginal operating cost be denoted by vj and the
annualized capital cost be denoted by Kj , j = b, p. We assume that the base-load capacity
is in operation all the time. Let t be the given duration of the base-load reference period,
i.e., t = 8, 760 hours in a year (and 8, 784 in leap years such as 2004). The total cost of
the base-load capacity per unit of energy (kilowatthour or kWh) is therefore given by

cb = vb + kb,
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where kb = Kb

t
. We assume, naturally, that the unit cost is less than the consumer’s

maximum willingness-to-pay price, i.e., cj < αj , j = b, p.

Let τ represent the proportion of the reference period in which the peak-load capacity
is needed. Thus, τt is the number of hours per year of operation at the peak-load capacity,
i.e., the duration of the period during which the annualized capacity cost Kb is recovered.
The total cost per unit of energy (kWh) is therefore given by

cp = vp + kp,

where kp =
Kp

τt
.

It is well known (see, e.g., Crew et al. (1995)) that the marginal operation cost of the
base-load technology is lower than its peak-load counterpart, and that it is the other way
around for capital cost, i.e.,

vb < vp, Kb > Kp.

The choice between base- and peak-load technologies depends on how much a technology
is used. This is measured by the capacity factor cf , which varies between 0 and 1. In a
given period (a year, for instance), if cf = 0, only the capital cost Kj has to be paid because
there is no production. When cf = 1, production happens all the time, so in addition to
Kj, cj times the total number of hours in the period (t) has to be paid. Figure 1 is a
screening curve (see Stoft (2002)), depicting the total cost of using the base- and peak-load
technologies when the capacity factor varies from 0 to 1. The screening curve in Figure 1 is
based on cost parameters presented in Table 1 and used later in the numerical illustration
(costs are based on Ayres et al. (2004)).

The screening curve should be interpreted as follows. The two curves intersect at a
capacity factor cf∗ = 0.4377 = τ , where both technologies have the same total cost. As
long as a power plant is used less than 43.77% of the time, the peak technology is cheaper.
If a plant is used more than 43.77% of the time, then the base technology is cheaper. The
threshold cf∗ where technologies have the same cost is

cf∗ =
(Kp − Kb)

(vb − vp) t
= τ.

Finally, we assume profit maximization behavior. Player i’s, i = 1, . . . , n, objective
function reads as follows:

πi = (αb − βbQb − γbQp) qib + (αp − βpQp − γpQb) qip − cbqib − cpqip.

Table 1: Technology Costs

Technology Investment cost ($/MW) Kj vj

Base-load 2, 000, 000 179, 420 10
Peak-load 500, 000 44, 860 45
Values of Kj are for a 25-year amortization period and a 7.5% discount rate.
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Figure 1: Screening Curve

Although the model just introduced is simple and parsimonuous, it allows us to capture
the main features of interest in our context, namely the interdependency between base-
load and peak-load demands, and the strategic interaction between players in term of
production decisions or capacity choices3.

3As the duration of base and peak loads are exogenous to the model (and given by cost characteris-
tics), quantity and capacity choices are equivalent. The following relationship links quantity and capacity:

Capacitybase = Qb

T
and Capacitypeak =

Qp

t
.
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3 Equilibrium Results

To focus on the interplay between the two types of demand and the impact of the number of
players on output (or production capacity), we shall confine our interest to the analysis of
symmetric equilibria. The following proposition characterizes the unique Nash equilibrium.

Proposition 1 Assuming an interior solution, the unique Nash equilibrium is given by

q∗b =
(n + 1) βp [αb − cb] − (γbn + γp) [αp − cp]

(n + 1)2βpβb − (γpn + γb) (γbn + γp)
, (5)

q∗p =
(n + 1) βb [αp − cp] − (γpn + γb) [αb − cb]

(n + 1)2βpβb − (γpn + γb) (γbn + γp)
. (6)

Proof. The first-order conditions for a Nash equilibrium are given by

∂π

∂qib

= (αb − βbQb − γbQp) − βbqib − γpqip − cb = 0,

∂π

∂qip

= (αp − βpQp − γpQb) − βpqip − γbqib − cp = 0.

Under the symmetry assumption where qib = qb and qip = qp for i = 1, . . . , n, the above
conditions become

∂π

∂qb

= αb − (n + 1) βbqb − (γbn + γp) qp − cb = 0

∂π

∂qp

= αp − (n + 1)βpqp − (γpn + γb) qb − cp = 0

Which leads to (5)-(6).

Finally, it is easy to verify that each player’s optimization problem is strictly concave in
her decision variables. Therefore the optimality conditions are necessary and sufficient. 2

The equilibrium quantities q∗b and q∗p depend on all of the model’s parameters, namely,
on the number of players, the demand and the cost parameters. The derivation of this
equilibrium is based on some (implicit) conditions that induce restrictions on the param-
eters’ values. First, we have assumed that the solution is interior. It is easy to verify
that, under assumption A1, the denominators of q∗b and q∗p are strictly positive. Hence, if
the numerators in (5) and (6) were strictly positive, then the solution would be interior.
Positiveness of these numerators translates into the following condition:

(n + 1) βp

(γbn + γp)
>

[αp − cp]

[αb − cb]
>

(γpn + γb)

(n + 1) βb

. (7)
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Given the definition of base-load and peak-load demands, the total equilibrium quantities
must be such that Q∗

b > Q∗

p. In terms of the model’s parameters, this condition is equivalent
to

[αp − cp]

[αb − cb]
<

(n + 1) βp + (γpn + γb)

(n + 1) βb + (γbn + γp)
. (8)

Further, we require the equilibrium tariffs to be strictly positive, and the peak-load tariff
to be higher than its base-load counterpart. We shall verify that the empirical results
do indeed satisfy this, and the above, condition. To simplify the notation, we denote the
denominator of the equilibrium quantities by

D = (n + 1)2 βpβb − (γpn + γb) (γbn + γp) .

The following propositions provide some sensitivity analysis with respect to the model’s
parameters.

Proposition 2 Each equilibrium quantity is decreasing in its production cost and increas-
ing in the cost of the alternative technology.

Proof. It suffices to differentiate (5) and (6) to get

∂q∗b
∂cb

=
−βp (n + 1)

D
< 0,

∂q∗p

∂cp

=
−βb (n + 1)

D
< 0,

∂q∗b
∂cp

=
γbn + γp

D
> 0,

∂q∗p

∂cb

=
γpn + γb

D
> 0.

2

The proposition says that increasing the cost of a technology leads to a decrease in
production (or capacity to be installed of this technology). Increasing the cost of the
alternative technology leads to an increase in the production of the technology under
consideration. These results are rather intuitive. Indeed, increasing the cost leads to an
increase in the price, which translates into less demand and hence less production.

Proposition 3 Equilibrium quantities satisfy

∂q∗i
∂αi

> 0,
∂q∗i
∂αj

< 0, i, j = b, p, i 6= j.

∂q∗i
∂βi

< 0,
∂q∗i
∂βj

> 0, i, j = b, p, i 6= j.

Proof. Derivations of (5) and (6), and taking into account the condition for interior solu-
tion in (7) lead straightforwardly to:

∂q∗b
∂αb

=
βp (n + 1)

D
> 0,

∂q∗p

∂αp

=
βb (n + 1)

D
> 0,
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∂q∗b
∂αp

= −
γbn + γp

D
< 0,

∂q∗p

∂αb

= −
γpn + γb

D
< 0,

∂q∗b
∂βb

=
βp (n + 1)2

D2
[(αp − cp) (γbn + γp) − βp (n + 1) (αb − cb)] < 0

∂q∗b
∂βp

= −
(n + 1) (γbn + γp)

D2
[(αb − cb) (γpn + γb) − βb (n + 1) (αp − cp)] > 0,

∂q∗p

∂βp

=
βb (n + 1)2

D2
[(αb − cb) (γpn + γb) − βb (n + 1) (αp − cp)] < 0,

∂q∗p

∂βb

= −
(n + 1) (γpn + γb)

D2
[(αp − cp) (γbn + γp) − βp (n + 1) (αb − cb)] > 0.

2

The results show that increasing the parameter αi, i = b, p, leads to an increase in the
supply in segment i and to a decrease in the alternative segment. The conclusions with
respect to variations of βi, i = b, p, are the other way around. Given that the parameter αi

represents the consumer’s willingness to pay, and βi the consumer’s price sensitivity, the
results are not surprising. In terms of the magnitude of the effects in the two segments,
note that, by assumption A1, the following relationships hold true

∣

∣

∣

∣

∂q∗i
∂αi

∣

∣

∣

∣

>

∣

∣

∣

∣

∂q∗j

∂αi

∣

∣

∣

∣

,

∣

∣

∣

∣

∂q∗i
∂βi

∣

∣

∣

∣

>

∣

∣

∣

∣

∂q∗j

∂βi

∣

∣

∣

∣

, i, j = b, p, i 6= j.

The above inequalities say that the direct impact is higher, in absolute terms, than the
indirect one for both parameters. This leads, among other things, to the following observa-
tion. If the consumer is willing to pay more for electricity in the peak-load market, then the
demand would increase in this segment without decreasing in the same magnitude in the
alternative base-load market. Hence a higher total production capacity would be required
to meet total demand. If the latter cannot be increased instantaneously (in our model
it can), then an excess demand can result. This is one possible reading of the California
crisis.

The important item in our model is the introduction of the cross-elasticity terms in the
demand functions. Performing a sensitivity analysis on the equilibrium quantities with
respect to γi, i = b, p, leads to large expressions without a clear sign (unless we introduce
additional restrictions on the parameters). An interesting result can nevertheless be ob-
tained by comparing the polar cases of positive and zero cross-price elasticities. Indeed,
computing the differences in equilibrium quantities gives

q∗b (γ > 0) − q∗b (γ = 0) =
(γbn + γp) [(γpn + γb) (αb − cb) − (n + 1) βb (αp − cp)]

D(n + 1)βb

,

q∗p (γ > 0) − q∗p (γ = 0) =
(γpn + γb) [(γbn + γp) (αp − cp) − (n + 1) βp (αb − cb)]

D (n + 1) βp

,
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where γ = (γb, γp). Under the assumption of interior solution in (7), it is easy to see
that both differences are negative. Thus, if the two market segments were connected,
then in both segments the required capacity would be lower than in they were isolated.
Governments facing environmental constraints and interested in reducing the total capacity
of electricity production (or at least, reducing the rate of increase of this capacity) should
encourage the fluidity between the two segments by encouraging consumers to become
switchers. This behavior can occur if tariffs are lower. Recall that the tariffs are given by
(1) and (2). Again comparing the two polar situations, we get

T ∗

b (γ > 0) − T ∗

b (γ = 0) =
(n + 1)βb (αp − cp) − (γpn + γb) (αb − cb)

D

(

n (γp − γb)

n + 1

)

,

T ∗

p (γ > 0) − T ∗

p (γ = 0) =
(n + 1)βb (αp − cp) − (γpn + γb) (αb − cb)

D

(

n (γb − γp)

n + 1

)

.

Noting that γb > γp (by assumption A4), clearly, the first difference is negative and the
second one is positive. This means that if the demands in the two segments were connected,
then the tariff in the base-load segment would decrease and the tariff in the peak-load
segment would increase. These results are illustrated and further discussed in the next
section.

4 Empirical Application

We shall illustrate our model and the type of insight it can provide with, the case of
Ontario, Canada.

4.1 Model Calibration

In September 2004, Ontario had 30,922 MW of available generation capacity (IESO, 2005a).
The load duration curve in Figure 2 shows how much of this capacity was used in 2004 (a
leap year with 366 days or t = 8, 784 hours). About 12,000 MW were used all the time,
while about 6,000 MW were never used. More precisely, the lowest load was 11,983 MW
(which took place at 4:00 a.m. on May 24) and the highest load was 24,979 MW (at 6:00
p.m. on December 20), see IESO (2005b).

Although loads in Figure 2 were supplied by various technologies using different fuels
(see Table 2), we use the simplifying assumption than only two similar technologies are
used, as presented in Table 1. This assumption is a close approximation of reality because
nuclear, hydro and coal have low production cost and high capacity costs, while the other
technologies have (relatively) high production costs and low capacity costs. See Ayres et al.
(2004) or Royal Academy of Engineering (2004) for recent empirical studies on electricity
production costs with various technologies.

Using the value cf∗ = 0.4377 on the actual Ontario 2004 load duration curve, we find
that it corresponds to a capacity of 18,115 MW. This means that, in Ontario, 18,115 MW
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Figure 2: Ontario 2004 Load Duration Curve

were used more than 43.77% of the time in 2004, while the remaining capacity was used
less than 43.77% of the time. In Figure 2, 18,115 MW is represented by the points where
the vertical bold line intersects with the load duration curve.

If actual technology choices were to be made based on the technologies presented in
Table 1 and on the load duration curve in Figure 2, then there should be 18,115 MW of base-
load capacity and 6,864 MW of peak-load capacity.4 However, for modelling purposes, as
we only define two demand curves-one for each period-we assume that the average capacity
is used all the time in its respective period. This corresponds to 15,652.66 MW during the
base-load period and 19,799.35 MW during the peak-load period, so that 15,652.66 MW of
base technology is required and used all the time, while 4,146.69 MW of peak technology
is only used 43.77% of the time. Using these average capacities and load durations (the
bold line in Figure 2), exactly the same amount of energy is obtained for the 2004 Ontario
market: 153.47 TWh (see Tables 3 and 4).

4This is obtained by using the maximum load of 24,979 MW and planning for no reserve capacity
(another simplifying assumption, less realistic this time).
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Table 2: Generation Capacities in Ontario, by Fuel Type

Fuel Type Capacity (MW)
Nuclear 10, 823.0
Hydro 7, 894.9
Coal 7, 205.0
Natural Gas 2, 674.4
Oil/Gas 2, 100.0
Wood Waste 224.6

Total 30, 921.9

Table 3: Capacity, Energy Used and Price per Period

Period
Number
of Hours

Average
Capacity (MW)

Energy Used
(MWh)

Average Price
($ per MWh)

Base 4, 939 15, 652.66 77, 308, 469 40.08
Peak 3, 845 4, 146.69 76, 128, 501 64.58
Total 8, 784 19, 799.35 153, 436, 970 52.21

Table 4: Energy Generated by Type of Technology

Technology
Percentage

of time
Number
of Hours

Capacity
(MW)

Energy Generated
(MWh)

Base 100.00% 8, 784 15, 652.66 137, 492, 932.11
Peak 43.77% 3, 845 4, 146.69 15, 944, 037.89

Total 19, 799.35 153, 436, 970

The spot market prices of electricity ranged from $5.25/MWh (at 6:00 a.m. on July 6) to
$340.45/MWh (at 6:00 p.m. on January 14) with an average of $52.21/MWh.5 During the
peak hours, the average price was $64.52/MWh and only $40.08/MWh during the base-load
hours.

In the following, we consider that the demand for electricity is based on the actual
energy used during the base- and peak-load periods. We assume that this energy is used
uniformly in each period, over a length of t hours during the base-load period, and for the
peak-load period, over a total of cf∗t hours. Table 4 illustrates this by providing the total
energy generated by each technology.

Given the technologies described in Table 1 and the value of cf∗, the cost parameters
can be assessed and are given in Table 5.

5This is the weighted average price, or the price paid on average, for each MWh of electricity sold
and bought on the spot market. The unweighted average price, not taking quantity into account, was
$49.95/MWh in 2004.
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Table 5: Cost parameters

Technology Number of Hours Costs
t Kj kj vj cj

Base 8, 784 $179, 420 $20.42 $10 $30.42
Peak 3, 845 $44, 860 $11.66 $45 $56.66

Table 6: Residential Price Elasticities
Short Run Long Run

Base εb Peak εp Base εb Peak εp

Taylor and Schwarz
(1990)

−0.26 to −0.29 −1.02 to −1.93

Filippini
(1995)

−2.3 to −2.36 −1.25 to −1.29

Mountain and Lawson
(1995)

−1.01 to −1.49 −0.61 to −0.99

Stevens and Lerner
(1996)

−0.06 to −0.49 −0.51 to −1.82

4.1.1 Demand Parameters In order to estimate the parameters αj , βj and γj of in-
verse demand curves in (1) and (2), we shall essentially rely on published studies. Table 6
reports different estimates for short- as well as long-term price elasticities in the residential
market. As we can see, the estimates differ, sometimes greatly, from one study to another.
This is not really surprising and is generally attributed to the following factors. First,
climate and type of appliances have a significant impact on price (and cross-price) elas-
ticities (Caves et al. (1984)). Second, different methodologies and experimental designs
lead to different contexts, not necessarily comparable. In any event, we shall conduct some
sensitivity analyses to see the impact of varying this on the output (or capacity) strategies.
Note, however, that the estimates in Table 6 share the following features: (i) as expected,
long-run elasticities are greater than shorter ones; and (ii) base-load demand is more elastic
than peak-load demand, especially in the short run (Taylor and Schwarz (1990), however,
find that, in the long run, peak demand is more elastic). See Stevens and Lerner (1996)
for a more general discussion on the price elasticities of electricity.

The interrelationship between the quantities and prices of peak and base loads can be
studied through the cross-price elasticity and the elasticity of substitution. The cross-price
elasticity of base-load demand with respect to peak-load electricity is given by:

εbp =
∂Qb

∂Tp

·
Tp

Qb

.

The cross-price elasticity of peak- to base-load electricity is symmetrically defined as
εpb. The elasticity of substitution in our context “measures the percentage reduction in
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the [peak] to [base] usage ratio for each one percent [increase] in the [peak] to [base] price
ratio” (Baladi et al. 1998:238-239). See Stern (2004) for a general and thorough survey
of various types of elasticities of substitution. Table 7 presents various estimates of cross-
price elasticities and elasticities of substitution for peak- and base-load electricity from
residential time-of-use experiments.

The estimates given in Table 7 show that demand for electricity across periods is inter-
dependent, and that the main impact is a substitution of base-load demand to peak-load
demand as price in the peak-load period increases. A shift to peak-load period also hap-
pens (cross-price elasticity of peak- to base-load period, εpb) but to a much lower extent,
as shown in Mountain and Lawson (1995) and Filippini (1995).

Based on the values for price and cross-price elasticities shown above, on actual quan-
tities Qb and Qp purchased in Ontario in 2004 (see Table 4) and on the uniform price
of $52.21/MWh in both periods (as most consumers faced in Ontario in 2004), we can
estimate the parameters for demand curves (3) and (4). Table 8 presents the assumptions
of price and cross-price elasticities, and Table 9, the resulting inverse demand function
parameters. It can easily be verified that these values satisfy assumptions A1-A4.

Table 7: Cross-Price Elasticities and elasticities of Substitution
Cross-Price elasticity Elasticity of Substitution

Lawrence and Braithwait (1979) εbp 0.08 to 0.15
Caves, et al. (1984) 0.07 to 0.194
Filippini (1995) εpb 0.34 2.56

εbp 0.97
Mountain and Lawson (1995) εpb 0.009 to 0.088

εbp 0.03 to 0.141
Baladi et al. (1998) 0.127 to 0.173

Table 8: Direct- and Cross-Price Elasticities (Reference Case)

Period
Price

Elasticity
Cross-Price
Elasticity

(

αbβp−αiγj

βbβp−γbγp

)

−
(

βi

βbβp−γbγp

) (

γj

βbβp−γbγp

)

Base −1.2 0.05 295.61 −3.1602 0.1317
Peak −0.8 0.01 28.54 −0.2443 0.0031

Table 9: Inverse Demand Functions Parameters (Reference Case)

Period αj βj γj

Base 98.46 0.3166 0.1706
Peak 118. 05 4.0953 0.0039
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Table 10: Capacities, Prices and Profits for Different Number of Players

Capacity
MW

Price
($)

Total Profit
(106 $)

2004 Values Base 15,652 40.08
(Average Regulated Price) Peak 4,147 64.58

n = 1 Base 12,068 64.00 3,767
Peak 1,361 96.19

n = 2 Base 15,981 52.65 3,346
Peak 2,068 84.92

n = 3 Base 17,909 47.03 2,821
Peak 2,468 78.56

n = 4 Base 19,056 43.67 2,406
Peak 2,722 74.51

n = 7 Base 20,760 38.67 1,643
Peak 3,124 68.13

n = 100 Base 23,339 31.06 146
Peak 3,787 57.60

4.2 Simulation Results

Using the retained parameters’ values in our model, we obtain the equilibrium results pre-
sented in Table 10 for capacity, prices and profits. These results are the reference case
results for different numbers of players. These are results with cross-price elasticities, a
characteristic that is not relevant for actual 2004 values, as consumers faced a uniform
average price (despite the existence of a hourly spot price). With three players and pos-
itive cross-price elasticities, the total production capacity is comparable to the 2004 one
(20,337 MW against 19,799 MW), but with more base-load and less peak-load capacity,
as consumption adjustments have been made by consumers. If both cross-price elastcities
were set equal to zero in the three-player case, then peak-load capacity would increase
to 2,923 MW and base-load capacity would also increase to 18,349 MW (see Table 11),
for a total of 21,272 MW. This illustrates the impact on peak-load capacity of positive
cross-price elasticity, as formally established in Section 3.

It can be interesting to note that at the “competitive” level of n = 100, prices are
almost at the cost level cj , with levels of production much higher for base-load demand,
but still below current peak-load demand.

Finally, if keeping price levels at the 2004 level were a (political) concern, it would
require seven symmetric players under the model’s parameters. With seven players, base-
load price is slightly lower than the current one (at $38.67 per MWh) and peak-load
price, slightly higher (at $68.13). However, base-load consumption would be much higher
(requiring more than 5,000 MW of additional base-load capacity).
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Table 11: Sensitivity Analysis for n=3

Capacity
MW

Price
($)

Total Profit
(106 $)

Reference Case εb = −1.2; εbp = 0.05 17,909 47.03 2,821
εp = −0.8; εpb = 0.01 2,468 78.56

No Cross-Price εb = −1.2; εbp = 0 18,349 47.43 2,914
Elasticity εp = −0.8; εpb = 0 2,923 72.01
Elastic εb = −1.2; εbp = 0.05 17,743 46.88 2,851
Demand εp = −1.1; εpb = 0.01 3,400 78.50
Inelastic εb = −0.9; εbp = 0.05 13,414 47.01 2,156
Demand εp = −0.8; εpb = 0.01 2,582 76.92

These numerical results illustrate the complexity of simultaneously (1) introducing ef-
fective competition; (2) providing time-sensitive price signals to consumers; and (3) lim-
iting capacity requirements. Indeed, effective competition requires a very large number
of players. Competitive price signals (under realistic parameter values) quickly result in
additional base-load capacity, along with a peak-load capacity reduction. However, the
overall effect may require more base-load than under a system with no incentives to adjust
consumption between demand segments. In our simulation, with limited competition (only
three players) and therefore high prices, total capacity was already higher than the 2004
situation.

Table 11 presents numerical results for various elasticity scenarios. It illustrates propo-
sition 3, showing how a change in parameters βi or βj(and consequently in elasticities)
affects quantity qi. In a case were both segments would be elastic (illustrated here by a
change of εp from −0.8 to −1.1), capacity in peak periods increases by almost 1,000 MW
while price goes down in both segments (in comparison to the reference case). Base-load
capacity decreases by a much smaller quantity (less than 200 MW). This illustrates the
somehow paradoxical situation where increasing cross-price elasticities leads to an overall
reduction of capacity, while an increase in price-elasticity leads to increased capacity.

The reverse situation is illustrated by the last case considered, where price-elasticity
decreases (in the base-load segment, from −1.2 to −0.9, with all other parameters remaining
constant). This leads to a drastic reduction of base-load capacity (more than 4,000 MW),
while only slightly increasing peak-load capacity (by a little more than 100 MW), and
leaving prices almost unchanged compared to the reference case.

The policy advice for governments interested in reducing overall capacity (or in limiting
capacity growth) would therefore be to reduce price elasticity and to increase the cross-price
elasticity of demand. This could be done by creating disincentives for energy substitutions
away from electricity, while making inter-temporal substitution of electricity consumption
easier. As natural gas and oil prices increase and as technology allows a better control over
the time of use of many appliances (dryers, water heaters, etc.), this set of disincentives and
incentives could naturally lead to changes in market outcomes. Players’ profits, however,
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are directly in opposition with these changes. Profits decrease with the development of
cross-price elasticities and increase with a more elastic demand. (See Table 11 for an
illustration of this).

5 Conclusion

The contribution of this paper is to study the oligopolistic equilibrium in an electricity
market characterized by two interdependent demands. Despite the fact that the fluctuation
of tariffs over time is an important characteristic of liberalized electricity markets, it is the
first time such a question is studied in the literature. We establish the unique equilibrium
under a realistic set of assumptions and study its sensitivity with respect to its parameters.
Our main result, besides characterizing the equilibrium, is to show that an increased cross-
price elasticity leads to an overall decrease of total capacity. Price-elasticity changes,
reflected by a variation in parameter βi’s value, change quantities in both market segments,
but more so in the segment where the elasticity changes. Our empirical application using
the Ontario market shows how realistic the model is and illustrates how relatively small
variations in elasticity and cross-price elasticity can affect the market equilibrium.

These results illustrate the significant implications of changing competition and tariff
policies in electricity markets. This is especially relevant for governments trying to manage
the growth of their electricity industry. Initiatives favoring cross-price elasticities but
reducing price-elasticity could be pursued, but the difficult political implications related
to price levels and producers’ profits may make these changes more complex to implement
in practice.
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