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Montréal (Québec) Canada H3C 3A7
nikolaj@crt.umontreal.ca

November 2005
Revised: September 2006

Les Cahiers du GERAD

G–2005–89

Copyright c© 2006 GERAD





Abstract

Given a simple connected graph G = (V, E) the geodetic closure I[S] ⊂ V of a
subset S of V is the union of all sets of nodes lying on some geodesic (or shortest
path) joining a pair of nodes vk, vl ∈ S. The geodetic number, denoted by g(G), is the
smallest cardinality of a node set S∗ such that I[S∗] = V . In “The geodetic number of
a graph”, Mathematical and Computer Modelling 17 (June 1993) 89–95, F. Harary, E.
Loukakis and C. Tsouros propose an incorrect algorithm to find the geodetic number
of a graph G. We provide counterexamples and show why the proposed approach must
fail. We then develop a 0-1 integer programming model to find the geodetic number.
Computational results are given.

Key Words: Graph, Geodetic number, Maximal Geodetic closure, Algorithm.

Résumé

Étant donné un graphe G = (V, E) simple et convexe, la fermeture géodésique
I[S] ⊂ V d’un sous-ensemble S de V est l’union de tous les ensembles de sommets situés
sur une géodésique (ou plus court chemin) joignant une paire de sommets vk, vl ∈ S. Le
nombre géodétique, noté g(G), est la plus petite cardinalité d’un ensemble de sommets
S∗ tel que I[S∗] = V . Dans l’article “The geodetic number of a graph”, Mathematical
and Computer Modelling 17 (juin 1993) 89–95, F. Harary, E. Loukakis et C. Tsouros
proposent un algorithme incorrect pour déterminer le nombre géodétique d’un graphe
G. Nous présentons des contre-exemples et montrons pourquoi l’approche proposée
ne peut réussir. Nous développons ensuite un modèle de programmation entière en
variables 0-1 pour déterminer le nombre géodétique et donnons des résultats de calcul.

Mots clés : Graphe, nombre géodétique, fermeture géodésique maximale, algo-
rithme.
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1 Introduction

We start by giving some definitions. Let G = (V,E) be a connected graph with node
set V and edge set E. Denote the number of nodes by n = |V | and the number of edges
by m = |E|. A geodesic between two nodes u and v is a shortest path between these
two nodes. A maximal geodesic is a geodesic that cannot be extended. In other words, it
is a geodesic that is not properly contained in any other geodesic. Denote by the closed
interval I[u, v] the set of all nodes of G lying on any geodesic between the nodes u and v.
In a similar way, denote by I[S] the union of all I[u, v] for all u and v in S ⊂ V . I[S] is
called the geodetic closure of the set S ⊂ V . So,

I[S] = {x ∈ V ⊢ ∃ u, v ∈ S, x ∈ I[u, v]}.

When the geodetic closure of a set S is V itself, S is a geodetic set. The smallest
cardinality of a geodetic set is the geodetic number g(G) of the graph G:

g(G) = min{|S| ⊢ S ⊂ V and I[S] = V }.

The set S itself, i.e., one with the property that |S| = g(G), is called a minimum geodetic
set.

The geodetic number was first introduced in 1990 (see [4]) and is further studied in [1,
2, 3, 5, 6, 7, 8] and [9]. Several classes of graphs and their geodetic number are presented
in [8]. To the best of our knowledge, only one algorithm for finding the geodetic number
has been proposed, by F. Harary, E. Loukakis and C. Tsouros [8], but no computational
results were given.

The complexity of the problem of finding the geodetic number has been studied in [1]
where Atici has shown that the corresponding GEODETIC SET decision problem, namely
“given a nontrivial connected graph G = (V,E) and an integer k 6 |V |, is there a set S ⊂ V
with |S| = k and such that I[S] = V ?”, is NP-Complete.

Several generalizations were made. In a natural way, the definition extends to the
directed case which is studied in [7]. Let D = (V,A) be a connected, directed graph with
node set V and arc set A. For two nodes u and v of V , let I[u, v] denote the set of
nodes either on a directed u − v geodesic or on a directed v − u geodesic. Extension of
the definitions of geodetic closure I[S] of S ⊂ V , geodetic sets, minimum geodetic set and
geodetic number to the directed case is straightforward. Do different orientations of a graph
lead to different geodetic numbers ? The answer is yes and the set of all the values g(D)
for all possible orientations is called the geodetic spectrum of a graph. Among them, the
minimum and the maximum received special attention and are called the lower orientable
geodetic number g−(D) and the upper orientable geodetic number g+(D) respectively. The
geodetic spectrum of a graph is further studied in [5].

Many graph concepts have an edge and a node version. Atici defined and studied the
edge version of the geodetic number in [2] and in [3] with Vince. Define ε(u, v) as the set
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of all edges lying on some u − v geodesic of G. For a non-empty subset S ⊂ V define

ε(S) =
⋃

u,v∈S

ε(u, v).

A subset S ⊂ V is called an edge geodetic set if ε(S) = E. An edge geodetic set of minimum
cardinality is called a minimum edge geodetic set and this cardinality is the edge geodetic
number of G, denoted by ge(G).

A number of lower and upper bounds have been proposed. Of course, 2 6 g(G) 6 n.
The set of the two end-nodes of a path Pn is a geodetic set and so g(Pn) = 2 while the
only graph G with g(G) = n is Kn. Because every simplicial node, i.e., a node all pairs
of neighbors of which are adjacent, has to be in any geodetic set ([10]), the number of
simplicial nodes gives a lower bound on g(G). On the other hand, every cutnode, i.e., a
node whose deletion disconnects G, has to be excluded from any minimum geodetic set ([4],
page 137), so we have an upper bound given by the number of nodes that are not cutnodes.
Chartrand et al. show in [6] that g(G) 6 n− d+1 where d is the diameter of the graph G,
i.e., the largest distance between a pair of nodes of G. Atici and Vince follow a completely
different approach in [3] to find a lower bound on ge(G), i.e., ge(G) > ⌈3 log3(ω(G))⌉ where
ω(G) is the clique number of G, i.e., the cardinality of a maximum complete induced
subgraph.

Here is the outline of this paper. We first define maximal geodetic closures in Section 2
because it is a key concept in the algorithm of Harary et al. Then, in Section 3, we show
by counter-examples that and why this algorithm may fail to find the geodetic number.
Moreover, we indicate why the proposed approach itself cannot yield a correct algorithm.
We then give, in Section 4, a 0−1 integer programming model for determining the geodetic
number together with computational results. Brief conclusions are drawn in Section 5.

2 Maximal geodetic closures

To compute the geodetic number of a graph, Harary et al. [8] introduce the concept of
maximal geodetic closure induced by a pair of nodes of V. A pair of nodes {x, y} induces a
maximal geodetic closure denoted by MGC(x, y) if the geodetic closure of {x, y} is maximal,
i.e., it is not properly contained in any other geodetic closure of a pair of nodes.

On Figure 1 we can see, on the one hand, that {v1, v4} does not induce a maximal geode-
tic closure because I({v1, v4}) = {v1, v2, v4} $ I({v1, v3}) = {v1, v2, v3, v4, v5}. On the
other hand, {v1, v3} gives a maximal geodetic closure and so we can write MGC(v1, v3) =
{v1, v2, v3, v4, v5}. All other pairs that induce a maximal geodetic closure are {v1, v3},
{v1, v6}, {v1, v8}, {v4, v5}, {v3, v6} and their symmetrical counterpart starting with v8 in
place of v1.

In the cited article, Harary et al. propose a simple but redundant way to produce
all maximal geodetic closures. They introduce the set MGC(x) of all maximal geode-
tic closures containing node x. For example, on the graph of Figure 1, MGC(v3) =
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Figure 1: A graph G to illustrate the maximal geodetic closure concept.
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Figure 2: The layered graph G(v3) of the graph of Figure 1. TV (v3) = {v1, v6, v8}.

{I[v1, v3], I[v3, v8]}. To compute MGC(x), they transform the initial graph G into an iso-
morphic layered graph G(x). Only the node x is in layer 0 and every other node y at a
distance k > 0 from x is placed in layer k for k = 1, 2, . . .. The edges of G(x) are the same
as the edges of G. Figure 2 shows the layered graph G(v3) rooted at node v3 of the graph
of Figure 1. The terminal nodes of G(x) are denoted by TV (x).

Harary et al. state that “MGC(x) is the set of MGC(x,y) where y is a terminal node
of G(x)” ([8] page 90). This is not always true because not all nodes x can be matched
with another node y to induce a maximal geodetic closure. For example, on Figure 2,
{v3, v6} does not induce a maximal geodetic closure because I[v3, v6] = {v3, v4, v5, v6} $
I[v4, v5] = {v2, v3, v4, v5, v5, v6, v7}. Figure 3 shows the layered graph G(v2) of the graph
of Figure 1 but {v2, v8} does not induce a maximal geodetic closure since I[v2, v8] =
{v2, v4, v5, v7, v8} $ I[v1, v8] = {v1, v2, v4, v5, v7, v8}.

If a pair {x, y} of nodes induces a maximal geodetic closure then the two nodes x and
y must be the end nodes of a maximal geodesic, otherwise one can extend the geodesic
which implies that the pair {x, y} is not inducing a maximal geodetic closure. This is
the case for the pair {v2, v8} of Figure 3 because geodesic v2 − v8 can be extended to
the geodesic v1 − v8. For the same reason, {v2, v1}, {v2, v6} and {v2, v3} do not induce
maximal geodetic closures. Note that maximality of the geodesic x − y is a necessary but
not sufficient condition to obtain a maximal geodetic closure. To find all maximal geodetic
closures and them only, one can compute G(x) for all x ∈ V and then compare two by two
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Figure 3: The layered graph G(v2) of the graph of the Figure 1.

the resulting geodetic closures of {x, y a terminal node of G(x)} for all x and y, keeping
only maximal ones.

3 Counter-examples for the algorithm of Harary et al.

Further in the same article, Harary et al. state that “From the structure of G(x), it follows
that the geodetic closure of {x} ∪ TV (x) is the node set V of G” ([8] page 91). In our
example of Figure 3, I[{v2} ∪ {v1, v3, v6, v8}] = V . From there, they conclude hastily
that “ we can reduce the problem of determining g(G) into that of finding a minimum
dominating set in the bipartite graph G = (V1, V2, A)” ([8] page 91). This bipartite graph
is constructed as follows. Let V1 be the node set V of G. Take for V2 the set of all node
pairs {x, y} which induce a maximal geodetic closure. Define a relation A between V1

and V2 that maps each node pair {x, y} to all the nodes of the induced maximal geodetic
closure:

A : V2 → V1 : {x, y} 7→ w ∈ MGC(x,y)

For each x ∈ V there is an edge going from every element of MGC(x) to x, i.e., each
pair that induces a maximal geodetic closure is connected to each of the nodes of V it
geodetically covers. To illustrate this bipartite graph concept, consider the small graph
depicted on Figure 4.

There are only 4 pairs inducing maximal geodetic closures: {v1, v3}, {v1, v5}, {v3, v5}
and {v2, v4}. Since I[{v2, v4}] = V , the geodetic number for this graph is 2. Figure 5 shows
the bipartite graph of the graph of Figure 4.

Extend the definition of the relation A to whatever subset of nodes of V2:

∀ S ⊂ V2 : A(S) =
⋃

{x,y}∈S

MGC(x, y).

A subset S ⊂ V2 is called a dominating set of the bipartite graph (V1, V2, A) if A(S) = V1 =
V . Harary et al. propose then “ that the problem of determining the geodetic number of a
graph is reduced to that of determining a smallest size subset of V2 which dominates V1”
([8] page 92). Unfortunately, this is not always true. Figure 6 depicts a counter-example.
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Figure 4: A small graph to illustrate the bipartite graph (V1, V2, A) concept.
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Figure 5: The bipartite graph of Figure 4.

•
v10

•v9

•
v7

•
v6

•
v8

•v4
•v5

•
v1

•
v2

•
v3

Figure 6: A counter-example for the algorithm of Harary et al.

There are 6 pairs that induce maximal geodetic closures: {v1, v3}, {v1, v10}, {v3, v10},
{v1, v8}, {v3, v7} and {v2, v10}. The corresponding bipartite graph (V1, V2, A) is represented
on Figure 7.

We have a subset of size 2 of V2 that dominates V1: S = {{v2, v10}, {v1, v3}} and because
none of the elements of V2 alone dominates V1, this is an optimal solution following the
algorithm of Harary et al. There are two more “optimal” solutions: {{v1, v8}, {v3, v10}} and
{{v3, v7}, {v1, v10}}. All of them consist in a solution of 4 different nodes for a minimum
geodetic set and so, following the algorithm of Harary et al. we have g(G) = 4. But S =
{v1, v3, v10} also covers geodetically V and has only 3 elements which shows that g(G) 6 3.

One might object that a modified version of the algorithm of Harary et al. would have
considered {{v1, v3}, {v1, v10}, {v3, v10}} and would have found the solution {v1, v3, v10}.
But as the counter-example on Figure 8 shows, the maximal geodetic closure approach
cannot in itself lead to a correct algorithm.
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Figure 7: Bipartite graph (V1, V2, A) for the graph of Figure 6.
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Figure 8: Another counter-example. One cannot only consider pairs that induce maximal
geodetic sets.

Node v6 does not belong to any pair that induces a maximal geodetic closure. To
see this, we only need to consider the pairs {v, v6} with v = v1, v2, v3 and v5 by sym-
metry. In the three last cases, it is easy to see that {v, v6} does not induce a maximal
geodetic closure. For the first one, I[{v1, v6}] = {v1, v2, v3, v4, v5, v6, v7} & I[{v1, v8}] =
{v1, v2, v3, v4, v5, v6, v7, v8, v10}.

Nevertheless we need node v6 to construct the smallest geodetic set, i.e., S = {v1, v6, v11}
with g(G) = 3.

4 A 0-1 integer programming model to find g(G)

We have developed a 0-1 integer programming model to find the geodetic number of a
graph. To do this, we simply construct a minimum geodetic set S. For each node vk ∈ V ,
let us characterize all the geodesics going through that node vk by collecting their pairs of
initial and end nodes in a set Pk:

Pk = {(vi, vj) ⊢ d(vi, vk) + d(vk, vj) = d(vi, vj)} .

The model is the following:

min z =

n
∑

k=1

xk



Les Cahiers du GERAD G–2005–89 – Revised 7

subject to

∀ vk 1 − xk 6
∑

(vi,vj)∈Pk

yij (i < j) (1)

i = 1..n yij 6 xi (i < j) (2)

j = 1..n yij 6 xj (i < j) (3)

i, j = 1..n xi + xj − 1 6 yij (i < j) (4)

and all variables are binary variables.

The main decision variables are the Boolean indicators xk for each node:

xk =

{

1 if vk ∈ S
0 if vk /∈ S.

They are used in combination with secondary variables that are completely determined
when the xk are chosen:

yij =

{

1 if vi and vj ∈ S
0 otherwise.

We can restrict ourselves to i < j.

In the objective function we want to minimize the number of elements in the geodetic
set. Inequality (1) ensures that all nodes of V are covered in a geodetic sense by the
subset S. Inequalities (2), (3) and (4) force yij to be 1 or 0 depending on the values of xi

and xj .

Table 1 shows the performance of CPLEX 7.1 (http://www.ilog.com) in solving the
model on a Ultra Sparc III with a 1,2 Ghz processor and 2 Gb of RAM. For each n,
90 graphs were randomly generated, i.e., 15 graphs for each size of 20%, 40%, 50%, 60%,
80%, 95% of the maximum number of edges. The computational results were compiled
as follow: the average (t_ave), the maximum (t_max) and minimum (t_min) computing
time of CPLEX 7.1 are given in the second column and the average (z_ave), the maximum
(z_max) and minimum (z_min) of the objective function in the third column. Times do
not include the fraction of a second necessary to generate the model. All instances are
solved to optimality. One can see that augmenting the number of nodes by 5 multiplies
approximatively the computing time by 5. This illustrates the fact that the problem of
finding the geodetic number is NP-Hard. No tuning has been made to improve the results.

Table 2 presents the case n = 30 in more detail. One interesting result that we could
observe in all cases is that the geodetic number is dropping down on average with the
augmentation of the number of edges. Even with 95% of the edges (m = 413), the average
geodetic number is 2.6, i.e., close to 3 and the maximum geodetic number seen in this
experiment was 3 ! But it is known ([8]) that a complete graph has all its nodes in a
geodetic set and so g(Kn) = n.
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Table 1: Results from the processing of the 0-1 integer programming model using CPLEX.
For each n, 90 graphs (15 graphs with 20%, 40%, 50%, 60%, 80%, 95% of the maximum
number of edges) were randomly generated. In the second column, the time is measured
in seconds.

n m min ≤ m ≤ m max t ave t max t min z ave z max z min

10 9 ≤ m ≤ 45 0.1465 0.25 0.02 3.8 7 2
15 14 ≤ m ≤ 105 1.2295 2.38 0.09 4.0113 7 2
20 19 ≤ m ≤ 190 6.3875 16.34 0.2 4.089 7 2
25 24 ≤ m ≤ 300 29.0235 143.74 0.58 4.4333 8 2
30 29 ≤ m ≤ 435 99.2343 341.51 1.42 4.6778 7 2
35 34 ≤ m ≤ 595 433.3908 2136.8 2.61 4.6888 8 2
40 39 ≤ m ≤ 780 1939.0728 12901.46 15.56 4.9333 8 2

Table 2: Results from the processing of the 0-1 integer programming model using CPLEX
on 90 graphs with n = 30. Each line is representing the compilation of data for 15
randomly generated graphs corresponding respectively to 20%, 40%, 50%, 60%, 80%, 95%
of the maximum number of edges. In the second column, the time is measured in seconds.

29 ≤ m ≤ 435 t ave t max t min z ave z max z min

87 163.933 341.51 72.94 6.4 7 5
174 145.627 240.24 80.69 5.867 6 5
217 157.629 272.1 72.09 5.267 6 5
261 87.433 140.89 31.42 4.6 5 4
348 27.279 39.63 14.11 3.333 4 3
413 13.505 23.49 1.42 2.6 3 2

5 Conclusions

Counter-examples are provided for the only algorithm proposed in the literature for com-
puting the geodetic number of a graph. Moreover, it is shown that maximal geodetic sets
do not suffice to build a correct algorithm. A 0 − 1 integer programming model is pro-
posed, which can solve to optimality, using CPLEX 7.1, instances with up to 40 nodes for
all densities. If the density is very small or very large, a few further experiments show that
instances with n ≤ 70 can also be solved to optimality in moderate computing time.

This last approach generalizes in a straightforward way to determination of the edge
geodetic number and the directed geodetic number.
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