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recherche sur la nature et les technologies.





H∞ Stabilization of Markovian Jumping

Singularly Perturbed Delayed Systems

Huaping Liu, Fuchun Sun

Department of Computer Science and Technology
State Key Laboratory of Intelligent Technology and Systems

Tsinghua University
Beijing, P.R. China, 100084

{hpliu00;chunsheng}@mails.tsinghua.edu.cn
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Abstract

This paper deals with the class of Markovian singularly perturbed linear continuous-
time systems with time varying and mode-dependent time-delay. The stochastic stabil-
ity and H∞ performance and the H∞ state feedback stabilization are tackled. Sufficient
conditions in the LMI setting are established for both the problems. A numerical ex-
ample is provided to show the effectiveness of the developed results.

Résumé

Cet article traite de la classe des systèmes linéaire à sauts markoviens, perturba-
tion singulière et retard dépendant du temps et du mode du système. La stabilité et
la commande H∞ sont considérées. Des conditions dépendantes du retard en forme
d’inégalités linéaires matricielles sont établies pour la stabilité et la stabilisation H∞.
Un exemple numérique est présenté pour montrer l’éfficacité des résultats développés.
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1 Introduction

Deterministic and stochastic systems with time-delay have received considerable attention
in the last two decades and for more details on this subject we refer the reader to Boukas and
Liu [5] and the references therein. Many problems have been tackled and interesting results
have been reported in the literature. Among these results we quote those related to H∞

state feedback stabilization. Boukas and Liu [5] and Cao and Lam [3] have considered the
H∞ state feedback stabilization for Markovian jumping systems with time-delay. In these
two references we can find LMI-based delay-independent and delay-dependent conditions.

On the other hand, most physical systems inherently contain multiple time-scale phe-
nomena and the singularly perturbation approach has proven to be a powerful analytic tool
for such systems. In a singularly perturbed system, a small positive parameter multiplies
the time derivatives of some of the states in the state model. The presence of the small
parameter makes the system stiff and unwieldy. During recent years a large amount of
attention has been paid to the problem of analysis and synthesis of singularly perturbed
systems (see [11, 13, 23]). H∞ control problem for standard singularly perturbed sys-
tems has been extensively studied for the past decade. A popular approach is based on
the exact decomposition of the full-order Riccati equation [12]. The zero-sum differential
game approach was proposed in [20]. Shi and Dragan [25] investigated the H∞ control
problem for singularly perturbed systems with parametric uncertainty. For non-standard
singularly perturbed systems, Tan [27] proposed a descriptor system approach to design
the dynamic output feedback controller. Another paper that dealt with the non-standard
case is [19], which proposed an iterative algorithm with quadratic convergence property
to solve the Riccati equation related H∞ control problem. Recently, several authors used
the linear matrix inequality (LMI) approach for the analysis and synthesis of singularly
perturbed systems (see [13, 14, 15]). It is well known that the LMI approach seems to have
a promising perspective due to its efficiency in computations.

The control of Markovian jumping singularly perturbed systems has been a research sub-
ject and attracted a lot of interest during the past decade. [24] gave a recursive algorithm
for the regulator design, and [2] proposed a parallel algorithm for the optimal controller
design, which can yield arbitrary orders of accuracy. In the case of H∞ control, [21] stud-
ied the design of robust reduced-order controllers in the context of piecewise-deterministic
systems exhibiting distinguishable slow and fast modes via standard reduced-order tech-
niques. In [11], the authors discussed H∞ control using the bounded real property, but
the results are in the form of a set of coupled algebraic Riccati equations that is difficult
to solve. Moreover, their results apply only to standard cases. Recently, an LMI approach
is developed to study the control problem [1]. However, we can see that in [1], the matrix
in Eq. (15) is not symmetric and the results are very difficult to use. Furthermore, nei-
ther of the above literatures investigated the time-delayed cases. Ref. [6] has proposed an
approach, but in that literature, the input matrix is required to be square and invertible,
which is a very strong constraint.
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The goal in this paper is to study the combination of the class of Markovian jumping
systems with time-delay and the class of singularly perturbed systems that we call the class
of Markovian jumping singularly systems delayed systems (MJSPDS). The time-delay in
the system is assumed to dependent on the system mode. This idea has been used for the
first time by Boukas and Liu [5] for the continuous-time systems and [4] for the discrete-
time systems. Similar works can also been found in [9], [8], [30] and [18].

To the best of our knowledge the case we are treating here has never been studied.
And the proposed approach is different from that of [6] since in this paper, the input
matrices are not required to be square. We will focus of the stochastic stability and the
H∞ performance. The H∞ state feedback stabilization is also considered.

The rest of this paper is organized as follows. In Section 2, the problem is stated and
some definitions are given. Section 3 contains the results on stochastic stability and H∞

performance for our class of systems. The results are in the LMI setting. In Section 4,
the design of memoryless state feedback controller is performed and LMIs conditions are
developed for this purpose.

Notation. Throughout this paper, R
n and R

n×m denote, respectively, the n dimen-
sional Euclidean space and the set of all n×m real matrices. The superscript “T” denotes
matrix transposition and the notation X ≥ Y (respectively, X > Y ) where X and Y are
symmetric matrices, means that X −Y is positive semi-definite (respectively, positive def-
inite). I is the identity matrices with compatible dimensions. L2 is the space of integral
vector over [0,∞). ‖ · ‖ will refer to the Euclidean vector norm whereas ‖ · ‖ denotes the
L2-norm over [0,∞) defined as ‖f‖2 =

∫ ∞

0 fT (t)f(t) dt. For a symmetric block matrix,
we use “*” as an ellipsis for the terms that are introduced by symmetry. Finally, diag{}
stands for a block-diagonal matrix.

2 Problem formulation

The Markovian jumping singularly perturbed delayed system (MJSPDS) is a class of sin-
gularly perturbed systems with Markovian jumping parameters and time-delays. Here we
will consider the MJSPDS with mode-dependent singular perturbation parameters and
time-delays.

Given a probability space (Ω,F ,P), where Ω is the sample space, F is the algebra of
events and P is the probability measure defined on F . We consider a class of Markovian
jump singularly perturbed systems with mode-dependent delays:























E(r(t))ẋ(t) = A(r(t))x(t) + Ad(r(t))x(t − τ(r(t)))

+ B(r(t))u(t) + D(r(t))w(t)

z(t) = G(r(t))x(t) + H(r(t))u(t) + L(r(t))w(t)

x(t) = ϕ(t), t ∈ [−µ, 0]

(1)
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where E(r(t)) = diag{In1
, ε(r(t))In2

}, x(t) ∈ R
n is the state variable (n = n1 + n2);

u(t) ∈ R
m is the control input, w(t) ∈ R

q is the disturbance input, which is a square
integrable vector function over [0, +∞); z(t) ∈ R

p is the output. The parameter r(t) is
a continuous-time Markovian process taking values in a finite set S ={1, 2, . . . , s}, with
transition matrix Π := {πij} and the transition probability is given by

Pr{r(t + ∆) = j|r(t) = i} =

{

πij∆ + o(∆), i 6= j,

1 + πii∆ + o(∆), i = j,

where ∆ > 0, πij ≥ 0 for i 6= j and πii = −∑s
j=1,j 6=i πij for each mode i. It is assumed

that the jump process is accessible for every t > 0. For each possible value of r(t) = i ∈ S

, we have ε(r(t)) = εi and A(r(t)) = Ai, Ad(r(t)) = Adi, B(r(t)) = Bi, D(r(t)) =
Di, G(r(t)) = Gi, H(r(t)) = Hi, L(r(t)) = Li which are known constant matrices of
appropriate dimensions. Also, we have τ(r(t)) = τi(t), which satisfy

0 < τi(t) ≤ µi < +∞, τ̇i(t) ≤ hi < 1, ∀i ∈ S

where µi and hi are known constants, and µ = max{µi, i ∈ S}.
For singularly perturbed systems, there exists a small scalar ε0 > 0 satisfying εi < ε0 ≪

1.

Remark 2.1 System (1) is called a standard MJSPDS when the matrix A22i, for all i ∈ S

is invertible, otherwise it is called nonstandard MJSPDS.

For r(t) = i, i ∈ S, we can rewrite (1) as











Eεiẋ(t) = Aix(t) + Adix(t − τi(t)) + Biu(t) + Diw(t)

z(t) = Gix(t) + Hiu(t) + Liw(t)

x(t) = ϕ(t), t ∈ [−µ, 0]

where Eεi = diag{In1
, εiIn2

}.
In this paper, we will assume that the state variables, x(t), and the mode system, r(t),

are accessible for feedback.

Definition 2.1 ([3, 5]) The unforced system (1) (setting u(t) = 0 and w(t) = 0) is said
to be stochastically stable if, for all continuous function ϕ(t) defined on [−µ, 0] and initial
mode r0 ∈ S, there exists one positive constant ρ, such that

lim
Tf→∞

E

{
∫ Tf

0
xT (t, ϕ(t), r0)x(t, ϕ(t), r0)dt|ϕ(t), r0

}

≤ ρ

Definition 2.2 ([3, 5]) For a given real number γ > 0, the system (1) is said to be stochas-
tically stable with γ-disturbance attenuation if, for all continuous function ϕ(t) defined on
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[−µ, 0] and initial mode r0 ∈ S , it is stochastically stable and in the case of ϕ(t) = 0, the
signal z(t) satisfies

E

{
∫ Tf

0
zT (t)z(t)dt

}

< γ2

∫ Tf

0
wT (t)w(t)dt

for all Tf ∈ (0, +∞).

Remark 2.2 In Definition 2.2, we assume that the initial conditions are equal to zero. If
the initial conditions are not equal to zero, the reader is invited to consult Boukas and Liu
[5] how we treat such case.

In the next sections we will treat the stochastic stability and the H∞ performance and
the H∞ state feedback stabilization. The sufficient conditions in the LMI setting will be
established.

3 Stochastic stability and H∞ performance

In this section, a set of sufficient conditions on the stochastic stability and H∞ performance
for MJSPDS (1) are provided.

Theorem 3.1 Given the open-loop system (1) (setting u(t) ≡ 0), if for i = 1, 2, · · · , s,
there exist matrices P11i > 0, P22i > 0, P21i, Qi > 0 and Q > 0 with appropriate dimensions
satisfying

Hi ≡









Ξi ∗ ∗ ∗
AT

diPi −(1 − hi)Qi ∗ ∗
DT

i Pi 0 −γ2I ∗
Gi 0 Li −I









< 0

Qi < Q (2)

where

Ξi = AT
i Pi + P T

i Ai + Qi + ηµQ +
s

∑

j=1

πijEPj

Pi =

[

P11i 0
P21i P22i

]

, E =

[

In1
0

0 0

]

and η = max{|πii|, i ∈ S}, then there exists an ε∗ > 0

such that the open-loop system (1) is stochastically stable with γ-disturbance attenuation
for εi ∈ (0, ε∗].

Proof: Since we have P11i > 0 and P22i > 0, we have that there exists an ε̂∗0 > 0 such
that P11i − εiP

T
21iP

−1
22iP21i > 0 for εi ∈ (0, ε̂∗0], which is equivalent to

EεiPεi = P T
εiEεi =

[

P11i εiP
T
21i

εiP21i εiP22i

]

> 0
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where

Pεi =

[

P11i εiP
T
21i

P21i P22i

]

Note that {(x(t), r(t)), t ≥ 0} is not a Markov process. to cast this model into the
framework of Markov process, we define a new process {(xt, r(t)), t ≥ 0} by

xt(s) = x(t + s) t − τr(t)(t) ≤ s ≤ t.

Then, similar to [10] and [29], we can verify that {(xt, r(t)), t ≥ 0} is a Markov process
with initial state (ϕ(t), r0).

Let the mode at time t be i; that is, r(t) = i ∈ S. Take the stochastic Lyapunov
functional to be

V (xt, r(t) = i) = xT (t)EεiPεix(t) +
t
∫

t−τi(t)

xT (σ)Qix(σ)dσ

+ η
0
∫

−µ

t
∫

t+θ

xT (σ)Qx(σ)dσdθ

Let A be the weak infinitesimal operator of the stochastic process {xt, rt), t ≥ 0}, then
we have

AV (xt, r(t) = i)

= xT (t)[AT
i Pεi + P T

εiAi +
s

∑

j=1
πijEεiPεj ]x(t)

+ 2xT (t)P T
εiAdix(t − τi(t))

+ wT (t)DT
i Pεix(t) + xT (t)P T

εiDiw(t)
+ xT (t)Qix(t)
− (1 − τ̇i(t))x

T (t − τi(t))Qix(t − τi(t))

+
∑s

j=1 πij

∫ t
t−τj(t)

xT (σ)Qjx(σ)dσ

+ ηµxT (t)Qx(t) − η
∫ t
t−µ xT (σ)Qx(σ)dσ

It is obvious that

2xT (t)P T
εiAdix(t − τi(t))

≤ (1 − hi)x
T (t − τi(t))Qix(t − τi(t))

+ (1 − hi)
−1xT (t)P T

εiAdiQ
−1
i AT

diPεix(t)
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Noting τj(t) ≤ µ, Qi < Q, πij ≥ 0 for i 6= j, and −η ≤ πii ≤ 0, we have

s
∑

j=1
πij

t
∫

t−τj(t)

xT (σ)Qjx(σ)dσ

≤
s

∑

j=1
πij

t
∫

t−µ

xT (σ)Qjx(σ)dσ

≤
s

∑

j=1,j 6=i

πij

t
∫

t−µ

xT (σ)Qjx(σ)dσ

≤
s

∑

j=1,j 6=i

πij

t
∫

t−µ

xT (σ)Qx(σ)dσ

= −πii

t
∫

t−µ

xT (σ)Qx(σ)dσ

≤ η
t
∫

t−µ

xT (σ)Qx(σ)dσ

Then,

AV (xt, r(t) = i) ≤ xT (t)Λεix(t) + wT (t)DT
i Pεix(t)

+xT (t)P T
εiDiw(t)

where

Λεi = AT
i Pεi + P T

εiAi +
s

∑

j=1

πijEεiPεj + Qi + ηµQ

+(1 − hi)
−1P T

εiAdiQ
−1
i AT

diPεi

Define

J(Tf ) ≡ E

{
∫ Tf

0
[zT (t)z(t) − γ2wT (t)w(t)]dt

}

From Dynkin’ formula, we have

E
{

V (xTf
, r(Tf ))

}

− V (x0, r0)

= E

{
∫ Tf

0
AV (xt, r(t))dt

}
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Assume the initial condition ϕ(t) = 0, then, V (x0, r0) = 0 and therefore,

J(Tf )

= E
{

∫ Tf

0 [zT (t)z(t) − γ2wT (t)w(t) + AV (xt, r(t))]dt
}

− E
{

V (xTf
, r(Tf ))

}

≤ E
{

∫ Tf

0 [zT (t)z(t) − γ2wT (t)w(t) + AV (xt, r(t))]dt
}

= E
{

∫ Tf

0 xT
w(t)Mεixw(t)dt

}

where xw(t) = [xT (t), wT (t)]T , and

Mεi =

[

Mε11i ∗
DT

i Pεi + GT
i Li −γ2I + LT

i Li

]

with

Mε11i = AT
i Pεi + P T

εiAi +
s

∑

j=1

πijEεiPεj + Qi + ηµQ

+(1 − hi)
−1P T

εiAdiQ
−1
i AT

diPεi + GT
i Gi

On the other hand, define

Hεi ≡









Hε11i ∗ ∗ ∗
AT

diPεi −(1 − hi)Qi ∗ ∗
DT

i Pεi 0 −γ2I ∗
Gi 0 Li −I









where

Hε11i = AT
i Pεi + P T

εiAi + Qi + ηµQ +
s

∑

j=1

πijEεiPεj

It is obvious that Hεi = Hi + ∆Hεi, where ∆Hεi is the product of the small parameter
εi and some matrix with appropriate dimension[17].

Since Hi < 0, by continuity, there exists an ε̂∗ > 0 such that Hεi < 0 for i = 1, 2, · · · , s

and εi ∈ (0, ε̂∗]. Using Schur complement, it is equivalent to Mεi < 0.

Therefore, we have J(Tf ) < 0 for all Tf > 0, that is

E

{
∫ Tf

0
zT (t)z(t)dt

}

< γ2

∫ Tf

0
wT (t)w(t)dt

for εi ∈ (0, ε∗], where ε∗ = min{ε̂∗0, ε̂∗}.
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On the other hand, when we consider the stochastic stability, we can set w(t) = 0. In
this case, we have

AV (xt, r(t) = i) ≤ xT (t)Λεix(t)

Obviously Mεi < 0 implies Λεi < 0. Let λ0 = min{λmin(−Λεi), i ∈ S}. Then, by using
Dynkin’ formula, we can get

E{V (xTf
, r(Tf ))} − V (x0, r0)

= E

{
∫ Tf

0
AV (xσ, r(σ))dσ

}

≤ −λ0E

{
∫ Tf

0
||x(σ)||2dσ

}

Taking the limit as Tf → +∞ , we have

lim
Tf→+∞

E

{
∫ Tf

0
||x(σ)||2dσ

}

≤ 1

λ0
V (x0, r0)

which implies that the open-loop system (1) is stochastically stable for ε ∈ (0, ε∗]. This
completes the proof. 2

Remark 3.1 Notice that we don’t have to assume that the initial conditions are zero. In
this case we will have for the disturbance attenuation the following expression (see Boukas
and Liu [5]):

‖z‖2
2 ≤ γ2‖w‖2

2 + V (x0, r0)

Remark 3.2 In the Lyapunov functional (3), V1 and V2 are mode-dependent functionals,
whereas V3 is a mode-independent functional.

Remark 3.3 The conditions in (2) are LMIs and can be solved efficiently by the famous
interior-point algorithm.

Remark 3.4 In this paper, no assumption is made regarding whether A22i is invertible or
not, so the results proposed in this paper apply not only to standard, but also to nonstandard
MJSPDS.

4 Controller design

In this section, we consider the design of a memoryless H∞ state-feedback controller

u(t) = K(r(t))x(t) (3)
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such that the closed-loop system






















Eε(r(t))ẋ(t) = (A(r(t)) + B(r(t))K(r(t)))x(t)

+ Ad(r(t)x(t − τ(r(t))) + D(r(t))w(t)

z(t) = (G(r(t)) + H(r(t))K(r(t)))x(t) + L(r(t))w(t)

x(t) = ϕ(t), t ∈ [−µ, 0]

(4)

is stochastically stable with γ-disturbance attenuation for sufficiently small εis, where
K(r(t)) is a matrix function of the random jumping process {r(t)} and K(r(t)) = Ki ∈
R

m×n when r(t) = i.

Theorem 4.1 If for i = 1, 2, · · · , s, there exist matrices X11i > 0, X22i > 0, X21i, Si > 0,
S > 0 and Wi > 0 with appropriate dimensions satisfying













Φi ∗ ∗ ∗ ∗
XT

i AT
di −(1 − hi)Si ∗ ∗ ∗

DT
i 0 −γ2I ∗ ∗

GiXi + HiYi 0 Li −I ∗
Ni 0 0 0 −Mi













< 0

Si < S

EXi < Wi

(5)

where
Φi = AiXi + XT

i AT
i + BiYi + Y T

i BT
i + Si + ηµS + πiiX

T
i E,

Xi =

[

X11i 0
X21i X22i

]

, E =

[

In1
0

0 0

]

,

η = max{πii, i ∈ S},

Ni =
[√

πi1X
T
i , · · ·√πi,i−1X

T
i ,

√
πi,i+1X

T
i ,

√
πi,i+1X

T
i , · · ·√πisX

T
i

]T

and

Mi = diag
[

X1 + XT
1 − W1, · · ·Xi−1 + XT

i−1 − Wi−1,

· · ·Xs + XT
s − Ws

]

then there exists an ε∗ > 0 such that the closed-loop system (4) under the controller (3)
is stochastically stable with γ -disturbance attenuation for εi ∈ (0, ε∗], where the controller
gains are given as Ki = YiX

−1
i .

Proof: From the structure of Xj we can see EXj = XT
j E < Wj , and therefore EXj <

X−T
j WjXj . Further, using the relation:

XjW
−1
j XT

j ≥ Xj + XT
j − Wj
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which can be easily deduced from the fact that (XjW
−1/2
j −W

−1/2
j )(XjW

−1/2
j −W

−1/2
j )T ≥

0, we can get

(Xj + XT
j − Wj)

−1 ≥ X−T
j WjX

−1
j > EX−1

j

By using Schur complement to (5) yields









(

Φi + NT
i M−1

i Ni

)

∗ ∗ ∗
XT

i AT
di −(1 − hi)Si ∗ ∗

DT
i 0 −γ2I ∗

GiXi + HiYi 0 Li −I









< 0 (6)

with

NT
i M−1

i Ni =
s

∑

j=1,j 6=i

πijX
T
i (Xj + XT

j − Wj)
−1Xi

>

s
∑

j=1,j 6=i

πijX
T
i (EX−1

j )Xi

therefore, we have









Φ̂i ∗ ∗ ∗
XT

i AT
di −(1 − hi)Si ∗ ∗

DT
i 0 −γ2I ∗

GiXi + HiYi 0 Li −I









< 0 (7)

where

Φ̂i = AiXi + XT
i AT

i + BiYi + Y T
i BT

i + Si + ηµS

+
s

∑

j=1

πijX
T
i (EX−1

j )Xi

Pre- and Post-multiplying the above inequality by diag{X−T
i , X−T

i , I, I},
diag{X−1

i , X−1
i , I, I} respectively and letting Pi = X−1

i , Qi = P T
i SiPi, Q = P T

i SPi and
Ki = YiPi, we get









Θi ∗ ∗ ∗
AT

diPi −(1 − hi)Qi ∗ ∗
DT

i Pi 0 −γ2I ∗
Gi + HiKi 0 Li −I









< 0 (8)
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where

Θi = (Ai + BiKi)
T Pi + P T

i (Ai + BiKi) + Qi + ηµQ

+

s
∑

j=1

πijEPj

Also, we can note that Pi have the following structure

Pi =

[

P11i 0
P21i P22i

]

where P11i > 0 and P22i > 0. Furthermore, the relation Si < S is equivalent to Qi < Q.

Therefore, from Theorem 1, we can see that there exists an ε∗ > 0 such that the
closed-loop system (4) under the controller (3) is stochastically stable with γ -disturbance
attenuation for any εi ∈ (0, ε∗]. This completes the proof.

Remark 4.1 The conditions in (5) are also LMIs and can be solved efficiently by interior-
point algorithms.

Remark 4.2 The synthesis results also apply both standard and nonstandard MJSPDS
since no assumption is made regarding whether A22i is invertible or not,

Remark 4.3 Compared with the results of [6], the approach proposed in this paper do not
require the input matrix Bi to be square.

5 Numerical examples

To show the validness of our results let us consider a four states system with three modes.
The dynamics of this described by (1) with the following data:

A1 =









−0.366 0.271 0.188 −0.4555
0.482 −1.01 0.24 −0.4
0.100 0.0 0 0
−0.407 0.0 1.0 0









,

Ad1 =









0.1 0.02 0 0
0.1 −0.1 0 0
0 0 0 0
0 0 0 −0.2









,

A2 =









−0.566 0.271 0.188 −0.4555
0.482 −1.01 0.24 −0.4
0.100 0.3 0 0
−0.807 0.0 1.0 0









,
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Ad2 =









−0.1 0 0 0
0.1 −0.1 0 0
0 0 0.1 0
0 0 0 −0.2









,

A3 =









−0.166 0.271 0.188 −0.4555
0.482 −1.01 0.24 −0.4
0.100 0.5 0 0
−0.207 0.0 1.0 0









,

Ad3 =









−0.1 0 0 0
0.1 0.1 0 0
0.1 0 −0.1 0
0 0 0 −0.2









,

B1 =









1
1
1
1









, B2 =









1
2
1
1









, B3 =









1
3
1
1









,

D1 =









0.5
0.5
0.5
0.5









,D2 =









0.5
0.5
0.5
0.5









,D3 =









0.5
0.5
0.5
0.5









G1 = G2 = G3 =
[

1 0.5 1 0.5
]

,

H1 = H2 = H3 = 0.5, L1 = L2 = L3 = 0

Π =





−0.1341 0.1007 0.0334
0.1007 −0.1007 0
0.0354 0 −0.0354





n1 = n2 = 2

τ1(t) = 3 + 0.2sin(t),

τ2(t) = 4 + 0.3sin(t),

τ3(t) = 5 + 0.4sin(t),

From above we can get

µ1 = 3.2, µ2 = 4.3, µ3 = 5.4,

h1 = 0.2, h2 = 0.3, h3 = 0.4
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Selecting γ = 2.6 and solving the LMIs (5), we get:

P1 =









23.1563 2.9052 0 0
2.9052 2.9400 0 0

−33.0678 −5.9137 29.5819 27.7189
−30.4738 −9.7837 27.7189 38.3195









,

P2 =









28.1510 2.9711 0 0
2.9711 1.5568 0 0

−33.8429 −4.7175 27.2948 35.9038
−50.6250 −8.47130 35.9038 75.3236









,

P3 =









25.2293 2.0553 0 0
2.0553 1.1363 0 0

−29.1126 −2.2427 28.9431 30.6781
−38.6246 −2.4091 30.6781 41.2128









,

K1 =
[

147.9097 38.4059 −231.1862 −265.1340
]

,

K2 =
[

199.4889 27.4152 −254.7818 −445.8874
]

,

K3 =
[

143.3570 −4.2496 −240.4672 −288.5424
]

,

which construct a set of feasible solutions. Under this controller, the resulting closed-loop
system can remain stochastic stability and H∞ performance. The upper-bound ε∗ can be
evaluated by using numerical simulations.

6 Conclusion

This paper deals with the class Markovian jumping singularly perturbed delayed systems.
The delays are on the state vector and are mode dependent. The stability and the stabi-
lizability problems are tackled and LMIs conditions are established. Our conditions do not
require the classical standard assumptions on singularly perturbed systems. A memoryless
state feedback controller is used in our study. This controller uses the slow and the fast
part of the state vector of the system.
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