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Abstract

We give complete descriptions of the Steiner equivalent subgraph polytope and its
dominant when the underlying digraph is strongly connected and series-parallel. These
descriptions show that the Steiner equivalent subgraph problem is polynomially solv-
able on such digraphs and lead as well to the description of the dominant of the Steiner
dicut poytope for this class of digraphs.

Key Words: Steiner equivalent subgraphs, Steiner dicuts, Steiner strongly con-
nected subgraphs, series-parallel graphs, polyhedra.

Résumé

Nous considérons, dans ce papier, le problème du sous-graphe équivalent Steiner
de coût minimum. Nous montrons que, dans le cas des graphes séries-parallèles forte-
ment connexes, les inégalités triviales et celles associées aux coupes Steiner minimales
sont suffisantes pour décrire complètement l’enveloppe convexe des solutions réalisables
ainsi que son dominant. Cela nous permet de déduire que le problème se résout en un
temps polynomial, sur cette classe de graphes, et d’obtenir également une description
complète du dominant du polytope des coupes Steiner pour cette même classe.
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1 Introduction

Let G = (V, A) be a connected loopless digraph and S ⊆ V a subset of distinguished nodes
of G, called terminals. A Steiner equivalent subgraph T = (V, AT ) of G is a subgraph such
that, for any pair of distinct terminals s1 and s2, there exists a dipath from s1 to s2 in T if
and only if there exists one in G. When S = V , a Steiner equivalent subgraph is nothing
less than a classical equivalent subgraph. If G is strongly connected then a minimal Steiner
equivalent subgraph is a strongly connected subgraph that spans S. Given a cost vector c
associated with the arcs of G, the Steiner equivalent subgraph problem consists of finding
the minimum cost Steiner equivalent subgraph of G. This problem is NP-hard since, when
G is strongly connected and S = V , an hamiltonian circuit of G is a Steiner equivalent
subgraph with |V | arcs.

The incidence vector x of a subgraph (V, A′) of G is a {0, 1}-vector of RA such that
x(e) = 1 if and only if e ∈ A′. The Steiner equivalent subgraph polytope associated with
G relatively to S, and denoted by SESP (G, S), is the convex hull of incidence vectors of
all Steiner equivalent subgraphs of G. The dominant of the Steiner equivalent subgraph
polytope is DSESP (G, S) = SESP (G, S) + RA

+. In the case where S = V , these polyhe-
dra are simply denoted by ESP (G) and DESP (G) respectively. The Steiner equivalent
subgraph problem can then be formulated as min{cx : x ∈ SESP (G, S)}.

Let W ⊂ V such that ∅ 6= W 6= V . With W we mean the node set V \ W . Let δ+(W )
be the set of arcs having their tails in W and their heads in W . δ+(W ) is called dicut
(note that δ+(W ) is not necessarily empty). We shall say that dicut δ+(W ) is induced by
W . When |W | is equal to 1 or |V | − 1, the dicut is called trivial. A Steiner dicut is a dicut
δ+(W ) such that both W and W have nonempty intersections with the terminal set S. A
Steiner dicut is minimal if it does not include another Steiner dicut strictly. Let us denote
by W(S) the family of all subsets of V that induce nonempty minimal Steiner dicuts of G.

If x is a vector of RA and A′ is a subset of edges of G then x(A′) =
∑

e∈A′

x(e). Clearly, an

integer vector x ∈ RA is the incidence vector of a Steiner equivalent subgraph of G if and
only if x satisfies the following inequalities :

x(δ+(W )) ≥ 1, ∀ W ∈ W(S). (1)

x(e) ≥ 0, ∀ e ∈ A. (2)

x(e) ≤ 1, ∀ e ∈ A. (3)

Inequalities (1) are the minimal Steiner dicut inequalities while inequalities (2) and (3) are
called trivial inequalities. Observe that if |S| < 2 then SESP (G, S) is described by the
trivial inequalities and DSESP (G, S) = RA

+. Let us denote by P (G, S) and DP (G, S) the
polyhedra given respectively by (1)-(3) and (1)-(2). Similarly we will simply denote them
by P (G) and DP (G) when S = V .
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To the best of our knowledge the Steiner equivalent subgraph problem has been stud-
ied only for S = V (i.e., the equivalent subgraph problem). Moyles and Tompson [13],
Hsu [9], Martello [11] and Martello and Toth [12] developed algorithms for the minimum
cardinality equivalent subgraph problem. Parker and Rardin [15] proposed a linear time
algorithm to solve the equivalent subgraph problem on series-parallel digraphs and Had-
jar [8] showed that this problem is also polynomially solvable on a class of digraphs that
contains directed Halin graphs. Polyhedral investigations were as well reported in the
literature for this case. Chopra [3] described families of facet defining inequalities for
DESP (G). For strongly connected series-parallel digraphs, Chopra [4] and Margot and
Schaffers [10] proved respectively that DESP (G) = DP (G) and ESP (G) = P (G). In [8]
Hadjar gave some properties of ESP (G) and its dominant and characterized digraphs for
which these polyhedra are given by the trivial dicut inequalities and the trivial inequalities.
He also showed that DESP (G) = DP (G) and ESP (G) = P (G) for a class of digraphs
that includes the directed Halin graph one.

Our main purpose, in this paper, is to generalize the results of Chopra [4] for the Steiner
case; i.e., for any S ⊆ V . We show in Section 2 that, for strongly connected series-parallel
digraphs and for any set of terminals, SESP (G, S) = P (G, S) and DSESP (G, S) =
DP (G, S). A direct consequence is that the Steiner equivalent subgraph problem is poly-
nomially solvable on such digraphs. We derive as well, in Section 3, a complete description
of the dominant of the convex hull of the incidence vectors of the Steiner dicuts for this
class of digraphs. Section 4 draws some concluding remarks.

To end this section, we list some other definitions and notations. The contraction of a
given edge (or arc) consists of identifying its endnodes into a single node and of removing
the resulting loops. An undirected graph is said to be series-parallel [5] if it can not be
reduced, by successive applications of edge removal and edge contraction operations, to a
complete graph on four nodes (K4). A series-parallel digraph is obtained by orienting the
edges of a series-parallel undirected graph. An arc e ∈ A with tail u and head v will be
denoted by e = (u, v). We say that tow arcs e1 = (u1, v1) and e2 = (u2, v2) are parallel if
u1 = u2 and v1 = v2 and anti-parallel if u1 = v2 and v1 = u2. By uv-dipath we mean a
dipath with tail u and head v. We shall write δ+(v) instead of δ+({v}), where v ∈ V . Auv

will denote the set of all arcs of G with endnodes u and v. Let x ∈ RA and A′ ⊂ A, by xA′

we mean the restriction of x to A′. If x ∈ DP (G, S) and δ+(W ) is a Steiner dicut of G,
such that its corresponding inequality x(δ+(W )) ≥ 1 is tight for x, then we shall say that
δ+(W ) is tight for x. Finally, our graphs will be connected and loopless.

2 SESP (G, S) and DSESP (G, S) for series-parallel digraphs

Before stating the main result of this paper, let us mention some simple and useful remarks.

As we are considering strongly connected series-parallel digraphs, we assume for the
sake of simplicity, that our series-parallel digraphs are obtained from undirected series-
parallel graphs by replacing each edge by two anti-parallel arcs. This assumption makes
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no further restrictions given that any series-parallel digraph G = (V, A) is a subgraph

of a series-parallel digraph Ĝ = (V, Â) obtained in that way and clearly SESP (G, S)

and DSESP (G, S) are faces of respectively SESP (Ĝ, S) and DSESP (Ĝ, S) that can be

obtained by making tight inequalities x(g) ≥ 0 for g ∈ Â \ A.

We shall then use the following definition of minors : a digraph G′ is said to be a
minor of a given digraph G if it can be obtained from G by repeatedly removing a pair of
anti-parallel arcs and/or contracting an arc.

Remark 1 By the previous assumption, any connected minor of a strongly connected
series-parallel digraph is a strongly connected series-parallel digraph.

It is well known that an arbitrary undirected series-parallel graph with neither parallel
edges nor a node of degree one contains a node of degree two. This property can then be
extended to series-parallel digraphs as follows.

Lemma 1 A series-parallel digraph with neither parallel arcs nor a node having exactly
one neighbor contains a node with exactly two neighbors.

We will also use the following easy lemma.

Lemma 2 Let G be a digraph and S the set of its terminals. Let x ∈ DP (G, S) and let
δ+(W ) and δ+(W ′) be two Steiner dicuts of G tight for x. If δ+(W ∩W ′) and δ+(W ∪W ′)
are Steiner dicuts then they are tight for x as well.

We state now our main result.

Theorem 1 Let G be a strongly connected series-parallel digraph and S the set of its
terminals. DSESP (G, S) = DP (G, S).

Proof. Clearly the result is true for digraphs with two nodes. Suppose that there exists
a series-parallel digraph G = (V, A), with a set of terminals S, for witch the theorem does
not hold. Assume that G and S are chosen so that :

(i) G is minimal for this property; i.e., the theorem holds for any minor of G with any
set of terminals;

(ii) S is maximal; i.e., the result is true for G with any terminal set strictly includes S.

Trivially, |S| ≥ 2, DESP (G, S) ⊆ DP (G, S) and any integer point of DP (G, S) is in
DSESP (G, S). Suppose that DP (G, S) has a fractional extreme point x. So there exists

a family of |A \ A0| node subsets W̃(S) ⊆ W(S) such that x is the unique solution of the
following equation system

{
x(δ+(W )) = 1 ∀ W ∈ W̃(S)

x(e) = 0 ∀ e ∈ A0.
(4)
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where A0 = {e ∈ A : x(e) = 0}. We will say that system (4) defines x. Clearly, 0 ≤ x(e) ≤
1, ∀e ∈ A.

Claim 1 Let u, v ∈ V . x(Auv) ≥ 1.

Proof. Suppose the contrary and consider the digraph G′ = (V, A′), where A′ = A \Auv.
If G′ is not connected then all terminals of G are in a same connected component, say H =
(VH , AH), since otherwise Auv would be a Steiner dicut whose corresponding inequality is
not satisfied by x. In this case, any minimal Steiner dicut of G is contained in AH and
then (A\AH) ⊆ A0. So xAH

is the unique solution of the system obtained from system (4)
by removing equations x(g) = 0 for g ∈ A \ AH . Thus xAH

is a fractional extreme point
of DP (H, S); but this contradicts the minimality of G since H is a minor of G that can
be obtained by contraction of all arcs in A \ AH . Suppose now that G′ is connected. By
Remark 1, G′ is a strongly connected minor of G. Again if we remove equations x(g) = 0 ,
∀g ∈ Auv, from system (4) then we obtain a system having xA′ as the unique solution;
hence xA′ is a fractional extreme point of DP (G′, S), a contradiction. ⊓⊔

Claim 2 G does not have parallel arcs.

Proof. Assume that e1 = (u, v), e2 = (u, v), f1 = (v, u), f2 = (v, u) are arcs of G. Suppose,
by Claim 1, that x(e1) > 0. Considerer the point x′ obtained from x by substituting
x(e1) − ǫ and x(e2) + ǫ for x(e1) and x(e2) respectively, where ǫ is a sufficiently small
positive scalar. Since e1 and e2 belong to the same Steiner dicuts of G, the point x′ belongs
to DP (G, S) and satisfies all equations of system (4); therefore x is not an extreme point,
a contradiction. ⊓⊔

Claim 3 G does not contain a node having exactly one neighbor

Proof. Suppose that G has a node v with only one neighbor u. As, by Claim 2, G is
parallel arcs free, v is incident with exactly two arcs e = (u, v) and f = (v, u). Given
that x(e) + x(f) > 0 (by Claim 1), at least one of these arcs must belong to a minimal
Steiner dicut of G, in which case, v must be in S. Actually, the only minimal Steiner
dicuts intersecting {e, f} are {e} and {f}; so x(e) = x(f) = 1. Therefore, if we denote by
G′′ = (V ′′, A′′) the minor of G obtained by contracting e and by w the node arising from
this contraction then xA′′ is a fractional extreme point of DP (G′′, S′′), where S′′ = S∪{w},
a contradiction. ⊓⊔

The digraph G has neither parallel arcs nor a node with only one neighbor, so by
Lemma 1, G contains a node v2 adjacent to exactly two nodes v1 and v3. That is v2 is
incident with exactly 4 arcs e1 = (v1, v2), e2 = (v2, v3), f1 = (v3, v2) and f2 = (v2, v1) (see
Figure 1).

In the sequel we will denote by G1 = (V1, A1) and G2 = (V2, A2) the minors of G
obtained by contracting respectively arcs e1 and e2 and by w1 and w2 the nodes arising
from these contractions. The terminal sets of G1 and G2 will be denoted respectively by
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v1

v2

v3

e1 e2

f1f2

Figure 1: Node v2 adjacent to exactly two nodes v1 and v3.

S1 and S2 with S1 = (S \ {v1, v2}) ∪ {w1} if S ∩ {v1, v2} 6= ∅ or S1 = S otherwise and
S2 = (S \ {v2, v3}) ∪ {w3} if S ∩ {v2, v3} 6= ∅ or S2 = S otherwise. Note that, for the sake
of simplicity, if g denotes an arc (u, v) (resp. (v, u)) of G where v is an endnode of ej , with
j ∈ {1, 2}, then g will also denote the arc (u, wj) (resp. (wj , u)) of Gj ; for instance, e2 will
denote as well the arc (w1, v3) of G1.

For j = 1, 2, observe that, by Remark 1, Gj is a strongly connected series-parallel
digraph; thus, by the minimality assumption, DSESP (Gj , Sj) = DP (Gj , Sj). As well,
since any Steiner dicut of Gj with respect to Sj is a Steiner dicut of G with respect to S,
xAj

∈ DP (Gj , Sj).

Claim 4 At least one of the arcs e1 and f2 (resp. e2 and f1) appears in at least two
equations of any system defining x.

Proof. Assume that each of e1 and f2 appears in exactly one equation of system (4). We
can also assume that S \ {v1, v2} 6= ∅, since otherwise the Claim would not be true for e2

and f1 too, in which case, we consider these two arcs instead of e1 and f2. Consider the
minor G1 = (V1, A1) of G whose terminal set S1 is of cardinality at least two. The point
xA1

is fractional because if x(e1) or x(f2) is fractional then e1 or f2 belongs to a Steiner
dicut tight for x that contains at least one arc g ∈ A1 such that x(g) is fractional. Let Γ1

denote the system obtained from system (4) by removing the equation containing x(e1)
and that containing x(f2). Then xA1

is the unique solution of system Γ1 any equation of
which is either of the form x(g) = 0, with g ∈ A1, or corresponds to a Steiner dicut of G1

tight for xA1
. Hence xA1

is a fractional extreme point of DP (G1, S1), a contradiction. ⊓⊔

Claim 5 v2 ∈ S.

Proof. Assume that v2 /∈ S. Note that, in this case, no minimal Steiner dicut of G
contains both arcs e1 and e2. On the one hand, if x(e1) > 0 then e1 belongs to a Steiner
dicut δ+(We1

) of G tight for x and, as δ+(We1
∪ {v2}) is a Steiner dicut, x(e1) ≤ x(e2).

On the other hand, when x(e2) > 0, e2 is an element of a Steiner dicut δ+(We2
) of G tight
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for x and, since δ+(We2
\ {v2}) is also a Steiner dicut, x(e1) ≥ x(e2). Thus x(e1) = x(e2).

Similarly, x(f1) = x(f2). It follows that one can substitute x(e2) (resp. x(f1)) for x(e1)
(resp. x(f2)) in all equations of system (4), except in one, and get a system defining x that
contradicts Claim 4. ⊓⊔

Claim 6 If x(e1) 6= x(e2) or x(f1) 6= x(f2) then x(δ+(v2)) = x(δ+(V \ {v2})) = 1

Proof. As v2 ∈ S (by Claim 5), δ+(v2) and δ+(V \ {v2}) are Steiner dicuts of G; so
x(e1) + x(f1) ≥ 1 and x(e2) + x(f2) ≥ 1. Let us suppose that x(e1) + x(f1) > 1. In
such a case, x(e1) > 0, x(f1) > 0 and then there exist two Steiner dicuts δ+(We1

) and
δ+(Wf1

), with We1
6= V \ {v2} 6= Wf1

, that are tight for x and contain respectively e1

and f1. Note that v2 is neither in We1
nor in Wf1

. Observe also that We1
∩ Wf1

∩ S = ∅
since otherwise both δ+(We1

∩Wf1
) and δ+(We1

∪Wf1
) would be Steiner dicuts of G and,

by Lemma 2, δ+(We1
∪ Wf1

) would be a tight dicut that includes {e1, f1} which means
x(e1) + x(f1) ≤ 1. So (We1

\ Wf1
) ∩ (S \ {v2}) 6= ∅ and accordingly δ+(We1

∪ {v2}) is a
Steiner dicut of G that contains e2 instead of e1 which in turn implies x(e2) ≥ x(e1). As
well (Wf1

\ We1
) ∩ (S \ {v2}) 6= ∅, δ+(Wf1

∪ {v2}) is a Steiner dicut of G that contains f2

instead of f1 and x(f2) ≥ x(f1). We deduce that if x(e1) + x(f1) > 1 then x(e2) ≥ x(e1),
x(f2) ≥ x(f1) and x(e2) + x(f2) ≥ x(e1) + x(f1) > 1.

Assume now that x(e2) + x(f2) > 1. By using analogous arguments as for the previous
case, one can show that x(e1) ≥ x(e2), x(f1) ≥ x(f2) and x(e1)+x(f1) ≥ x(e2)+x(f2) > 1.

We conclude that if x(δ+(v2)) > 1 or x(δ+(V \ {v2})) > 1 then x(e1) = x(e2) and
x(f1) = x(f2). ⊓⊔

Claim 7 If x(e1) 6= x(e2) or x(f1) 6= x(f2) then 0 < x(g) < 1, ∀g ∈ {e1, e2, f1, f2}.

Proof. Suppose (w.l.o.g.) that x(e1) > x(e2). From Claim 6, x(e1) + x(f1) = x(e2) +
x(f2) = 1 and hence x(f2) > x(f1). Notice that at most one arc among e1, e2, f1 and f2 is
in A0; in fact, if x(e2) = 0 then, by Claim 1, x(f1) > 0 and if 0 < x(e2) < x(e1) ≤ 1 then
x(f2) = 1 − x(e2) is positive.

Assume (w.l.o.g.) that x(e2) = 0. We have then 0 < x(e1) < 1, 0 < x(f1) < 1 and
x(f2) = 1. We distinguish two cases.

Case 1 : S \ {v1, v2} 6= ∅.

Consider the minor G1 = (V1, A1) whose terminal set S1 has at least two elements one
of which is w1. So xA1

is a fractional point of DSESP (G1, S1) that can be decomposed as
follows :

xA1
=

t1∑

i=1

αiy
i + γ1
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where αi ≥ 0 for i = 1, ..., t1,

t1∑

i=1

αi = 1, γ1 ∈ RA1

+ and each yi is the incidence vector of a

minimal Steiner equivalent subgraph of G1 that does not contain arc e2.

For, i = 1, ..., t1, define xi ∈ RA as follows

xi(g) =





yi(g) if g ∈ A \ {e1, f2}
1 if g = f2

1 − yi(f1) if g = e1

(this corresponds to the extensions shown in Figure 2) and let γ ∈ RA such that

γ(g) =





γ1(g) if g ∈ A \ {e1, f2}

x(g) −
t1∑

i=1

αi if g ∈ {e1, f2}

One can check easily that each point xi is the incidence vector of a Steiner equivalent
subgraph of G and

x =

t1∑

i=1

αix
i + γ.

But this is impossible given that x is an extreme point of DP (G, S).

Case 2 : S = {v1, v2}.

First, observe that (δ+(v3)\{f1}) ⊆ A0 since δ+({v2, v3}) is the unique Steiner dicut of G
that intersects δ+(v3)\{f1} and it contains f2 with x(f2) = 1. Therefore x(δ+({v2, v3})) =
1.

Now look at the minor G2 = (V2, A2) and its terminal set S2, where w2 ∈ S2 and
|S1| = 2. Thus xA2

is a fractional point of DSESP (G2, S2) and can be decomposed as
follows :

v1

v1

v2

v2

v3

v3
v3

v3

w1

w1

Figure 2: Extensions of the yi vectors.
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xA2
=

t2∑

i=1

αiz
i + γ2

where αi ≥ 0 for i = 1, ..., t2,

t2∑

i=1

αi = 1, γ2 ∈ RA2

+ and each zi is the incidence vector of a

minimal Steiner equivalent subgraph of G2.

Note that since xA2
(δ+(w2)) = 1, at most one of the points zi, i = 1, ..., t2, corresponds

to a Steiner equivalent subgraph that has exactly two arcs, e1 and f2, while the other
points correspond to Steiner equivalent subgraphs containing f2 but not e1.

For, i = 1, ..., t2, define xi ∈ RA as follows

xi(g) =





zi(g) if g ∈ A \ {e2, f1}
0 if g = e2

1 − zi(e1) if g = f1

(see Figure 3) and let γ ∈ RA such that

γ(g) =





γ2(g) if g ∈ A \ {e2, f1}

x(g) −
t2∑

i=1

αi if g ∈ {e2, f1}

Thus each point xi is the incidence vector of a Steiner equivalent subgraph of G and x
can be expressed as

x =

t2∑

i=1

αix
i + γ.

But this contradicts the fact that x is an extreme point of DP (G, S).

This shows that x(e1), x(e2), x(f1) and x(f2) are positive. Furthermore, as x(e1) +
x(f1) = x(e2) + x(f2) = 1, these components are less than 1. ⊓⊔

v1

v1

v1

v1

v2

v2

v3

v3

w2

w2

Figure 3: Extensions of the zi vectors.
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Claim 8 x(e1) = x(e2) and x(f1) = x(f2).

Proof. Assume (w.l.o.g.) that x(e1) > x(e2). So, by Claims 6 and 7, 0 < x(e2) < x(e1) < 1
and 0 < x(f1) < x(f2) < 1. As well, from Claim 4, it follows that at least one arc of e1 and
f2 belongs to a Steiner dicut that is tight for x and different from {e1, f1} and {e2, f2}.
Assume (w.l.o.g.) that e1 belongs to such a Steiner dicut denoted by δ+(We1

). Then all
terminals of G except v2 are in We1

, since otherwise δ+(We1
∪{v2}) would be also a Steiner

dicut (obtained from δ+(We1
) by replacing e1 by e2) which implies x(e1) ≤ x(e2). Observe

that if, instead of e1, f2 belongs to a Steiner dicut δ+(Wf2
) tight for x and different from

δ+(v2) then analogously, as x(f1) < x(f2), S ∩ Wf2
= {v2}.

The set S2 of terminals of G2 is of cardinality at least two and contains w2. The
fractional point xA2

belongs to DSESP (G2, S2), so it can be decomposed as follows :

xA2
=

t̂∑

i=1

αiŷ
i + γ̂

where αi ≥ 0 for i = 1, ..., t̂,
t̂∑

i=1

αi = 1, γ̂ ∈ RA2

+ and each ŷi is the incidence vector of

a minimal Steiner equivalent subgraph of G2. Evidently, as xA2
(δ+(We1

)) = 1, we have
ŷi(δ+(We1

)) = 1 for i = 1, ..., t̂.

Let us extend each vector ŷi, i = 1, ..., t̂, to a vector xi ∈ RA as follows :

xi(g) = ŷi(g) for g ∈ A \ {e2, f1}
xi(e2) = 1 and xi(f1) = 1 if ŷi(e1) = 0 and ŷi(f2) = 0
xi(e2) = 1 and xi(f1) = 0 if ŷi(e1) = 1 and ŷi(f2) = 0
xi(e2) = 0 and xi(f1) = 1 if ŷi(e1) = 0 and ŷi(f2) = 1
xi(e2) = 0 and xi(f1) = 0 if ŷi(e1) = 1 and ŷi(f2) = 1

These extensions are illustrated in Figure 4.

Let Ti and T̂i be respectively the subgraphs of G and G2 corresponding to xi and ŷi

for some i ∈ {1, ..., t}. Actually T̂i is a Steiner equivalent subgraph of G2. If T̂i does not
contain both e1 and f2 then plainly Ti is a Steiner equivalent subgraph of G. Assume that
e1 and f2 are in T̂i. In this case, we claim that w2 is incident with exactly two arcs e1

and f2 in T̂i. Indeed, since ŷi(δ+(We1
)) = 1, e1 is the unique arc leaving We1

. Suppose

that there exists a w2s1-dipath of T̂i, with s1 ∈ S2 \ {w2}, that does not include e1 and

f2. Because T̂i is minimal, arc f2 belongs to a w2s2-dipath in T̂i with s2 ∈ S2 \ {w2, s1}.

Consequently, as S2 \ {w2} ⊆ We1
, T̂i does not contain dipaths linking s1 and s2; but this

is impossible seeing that T̂i is a Steiner equivalent subgraph. Hence, since v3 /∈ S2, Ti is a
Steiner equivalent subgraph of G.
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v1

v1

v1

v1

v1

v1

v1

v1

v2

v2

v2

v2

v3

v3

v3

v3

w2

w2

w2

w2

Figure 4: Extensions of the ŷi vectors.

Let γ ∈ RA such that

γ(g) =





γ̂(g) if g ∈ A \ {e2, f1}

x(g) −
t̂∑

i=1

αi if g ∈ {e2, f1}

We can then write

x =
t̂∑

i=1

αix
i + γ

contradicting the fact that x is an extreme point of DP (G, S). ⊓⊔

Claim 9 v1, v3 ∈ S.

Proof. Assume that v1 /∈ S and let W ⊂ V such that v1 ∈ W and W ∩ S = ∅. We
will show that x satisfies the inequalities x(δ+(W )) ≥ 1 and x(δ+(W )) ≥ 1. If v3 ∈ W
then δ+(v2) ⊆ δ+(W ) and δ+(V \ {v2}) ⊆ δ+(W ) and consequently x(δ+(W )) ≥ 1 and
x(δ+(W )) ≥ 1. Suppose now that v3 /∈ W and let W ′ = W ∪ {v2}. Trivially, as |S| ≥ 2,
W ′ ∩ S 6= ∅ and (W ′) ∩ S 6= ∅. Since, by Claim 8, x(e1) = x(e2) and x(f1) = x(f2), we
have

x(δ+(W )) = x(δ+(W ′)) ≥ 1

x(δ+(W )) = x(δ+(W ′)) ≥ 1.

Hence it is clear that x is a fractional extreme point of DP (G, S′), with S′ = S ∪ {v1}.
But this contradicts the fact that S is maximal. Similarly, one can prove that v3 ∈ S. ⊓⊔
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Let δ+(W ) be a dicut of G such that {v2} 6= W 6= V \ {v2} and δ+(W ) ∩ {e1, e2} 6= ∅.
Denote by δ+(W ′) the dicut obtained from δ+(W ) by substituting e2 for e1 if e1 ∈ δ+(W )
or e1 for e2 otherwise. Since {v1, v2, v3} ⊆ S (by Claims 5 and 9), δ+(W ) is a Steiner dicut
if and only if δ+(W ′) does so. Furthermore, as x(e1) = x(e2) (by Claim 8), δ+(W ) is tight
for x if and only if δ+(W ′) does so. This also holds for f1 and f2.

Let Ee1
(resp. Ef2

) denote the equation x(e1) + x(e2) = 1 (resp. x(f1) + x(f2) = 1)

if {v2} (resp. V \ {v2}) is an element of W̃(S) or any equation of system (4) where x(e1)
(resp. x(f2)) appears.

Thus one can substitute x(e2) (resp. x(f1)) for x(e1) (resp. x(f2)) in all equations of
system (4), except in Ee1

(resp. Ef2
), and get a system defining x that contradicts Claim 4.

This completes the proof of our theorem. ⊓⊔

Let us turn to SESP (G). In [14], Rais showed that if the feasible solutions of a binary
polytope are closed under supersets, then the polytope is the intersection of its dominant
with the unit cube. Actually, this property holds for the Steiner equivalent subgraphs; thus
the following corollary is a straightforward consequence of Theorem 1 and Rais’ result.

Corollary 1 Let G be a strongly connected series-parallel digraph and S the set of its
terminals. SESP (G, S) = P (G, S).

Theorem 1 and Corollary 1 show that inequalities (1), (2) and (3) are sufficient to
describe SESP (G, S) and DSESP (G, S) when G is a strongly connected series-parallel
digraph. Of course, this does not hold for general digraphs; when S = V , Chopra [4]
showed that DESP (Kd

4 ) 6= DP (Kd
4 ), where Kd

4 is the non-series-parallel digraph obtained
from K4 (the complete graph on four nodes) by replacing each edge by two anti-parallel
arcs. However, Hadjar [8] proved that DESP (G) = DP (G) for a class of non-series-
parallel digraphs such as directed Halin graphs. He also showed that one can orient the
edges of any 2-connected graph to obtain a strongly connected digraph whose associated
equivalent subgraph polyhedra are completely described by the trivial dicut inequalities
and the trivial inequalities. Note that the digraphs considered in [8] are anti-parallel arcs
free.

We conclude this section by pointing out that the separation problem associated with
Steiner dicut inequalities can easily be reduced to the maximum flow problem and hence it
can be solved in polynomial time. Thus, from Corollary 1, it follows (see Grötschel, Lovász
and Schrijver [7])

Corollary 2 The Steiner equivalent subgraph problem is polynomially solvable on strongly
connected series-parallel digraphs.
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3 The Steiner dicuts in series-parallel digraphs

Let G = (V, A) be a digraph and S the set of its terminals. Let us denote by SCP (G, S)
the Steiner dicut polytope of G with respect to S (i.e. the convex hull of the incidence
vectors of all Steiner dicuts of G) and by DSCP (G, S) its dominant. The extreme points
of DSCP (G, S) correspond to minimal Steiner dicuts of G. Let T (S) be the set of the
minimal Steiner equivalent subgraphs of G. Consider the polyhedron DP (G, S) defined in
Section 1 and let DQ(G, S) denote the polyhedron (⊂ RA) given by

{
y(δ+(T )) ≥ 1 ∀ T ∈ T (S)

y(e) ≥ 0 ∀ e ∈ A.

The extreme points of DSCP (G, S) are in bijection with the non trivial facets of DP (G, S)
while those of DSESP (G, S) are in bijection with the non trivial facets of DQ(G, S).
Hence, whenever all extreme points of DP (G, S) (resp. DQ(G, S)) are integer, DP (G, S)
and DQ(G, S) form what Fulkerson [6] called a blocking pair of polyhedra. The following
corollary is a direct consequence of Fulkerson’s results [6].

Corollary 3 DSESP (G, S) = DP (G, S) if and only if DSCP (G, S) = DQ(G, S).

Thus, Corollary 4 below is the Steiner version of Chopra’s result [4] and follows from
Theorem 1 and Corollary 3.

Corollary 4 Let G be a strongly connected series-parallel digraph and S the set of its
terminals. DSCP (G, S) = DQ(G, S).

4 Concluding remarks

When the underlying digraph is strongly connected and series-parallel, the minimal Steiner
dicut inequalities and the trivial inequalities are sufficient to describe the Steiner equivalent
subgraph polyhedra. By this characterization, the equivalent subgraph problem is polyno-
mially solvable on strongly connected series-parallel digraphs. It also led to a description
of the dominant of the Steiner dicut polytope. Actually these results generalize those of
Chopra [4] for the Steiner case.

A closely related polytope is that of the Steiner strongly connected subgraphs (i.e.,
the convex hull of the incidence vectors of all strongly connected subgraphs that span S),
denoted by SSCSP (G, S). Trivially, when G = (V, A) is strongly connected and S = V ,
SSCSP (G, S) = SESP (G, S). However, if S ⊂ V with |S| ≥ 2 then the two polytopes
can be completely different. This is the case for the example illustrated in Figure 5. A
strongly connected series-parallel digraph G, with two terminals s1 and s2, and its arc costs
are given in Figure 5(a); Figure 5(b) and Figure 5(c) show respectively the minimum cost
Steiner equivalent subgraph and the minimum cost Steiner strongly connected subgraph
of G.
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s1

s2

(a) (b) (c)

1

1

1

4

4

−1−10

Figure 5: Digraph G, with S = {s1, s2}, and the optimal extreme points of SESP (G, S)
and SSCSP (G, S).

To ensure the strong connectivity of the Steiner equivalent subgraphs, one has to include
the following inequalities

x(δ+(W )) − x(e) ≥ 0

x(δ+(W )) − x(e) ≥ 0
∀W ⊂ V s.t. S ⊆ W, ∀e /∈ A(W ). (5)

where A(W ) is the set of all arcs having both endnodes in W . Hence an integer vector
x ∈ RA is the incidence vector of a Steiner strongly connected subgraph of G if and only if
x satisfies inequalities (1), (2), (3) and (5). Note that inequalities (5) are similar to those
used by Bäıou and Mahjoub [1] for the Steiner 2-edge connected subgraph polytope and
by Coullard, Rais, Rardin and Wagner [2] for the Steiner 2-connected subgraph polytope
on series-parallel graphs.

Although, since the minimal Steiner equivalent subgraphs (of a strongly connected
digraph) are minimal Steiner strongly connected subgraphs, the dominant of SSCSP (G, S)
and that of SESP (G, S) coincide. Thus Theorem 1 gives as well a description of the
dominant of SSCSP (G, S) for strongly connected series-parallel digraphs.
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