
Les Cahiers du GERAD ISSN: 0711–2440

The Preemptive Swapping

Problem on a Tree

S. Anily, M. Gendreau,
G. Laporte

G–2005–69

September 2005
Revised: August 2006

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

The Preemptive Swapping

Problem on a Tree

Shoshana Anily

Faculty of Management
Tel-Aviv University

Tel-Aviv 69978, Israel
anily@post.tau.ac.il

Michel Gendreau

Centre de recherche sur les transports
Université de Montréal

C.P. 6128, Succursale Centre-ville
Montréal (Québec) Canada, H3C 3J7

michelg@crt.umontreal.ca

Gilbert Laporte

GERAD, CRT and Canada Research Chair in Distribution Management
HEC Montréal

3000, chemin de la Côte-Sainte-Catherine
Montréal (Québec) Canada, H3T 2A7

gilbert@crt.umontreal.ca

September 2005

Revised: August 2006

Les Cahiers du GERAD

G–2005–69

Copyright c© 2006 GERAD

Abstract

This paper considers the swapping problem on a tree. In this problem at most one
object of some type is available at each vertex, and each vertex also requests at most
one object of a given type. The total demand and the total supply of each object type
are identical. The problem is to determine a minimum cost routing plan starting and
ending at a prespecified vertex which is the depot, for a single vehicle of unit capacity
and m object types, so that all vertex requests are satisfied. We consider the preemp-
tive mode in which objects may be temporarily dropped along the way. It is shown
that this problem is NP-hard. A heuristic with a worst-case performance ratio of 1.5
is developed. Finally, it is shown that the case where m = 1 is polynomially solvable.

Key Words: Swapping Problem, Stacker Crane Problem, Transshipment.

Résumé

On considère le problème d’échanges d’objets sur un arbre. Dans ce problème, au
plus un objet d’un type donné est disponible à chaque sommet de l’arbre et chaque som-
met requiert au plus un objet d’un certain type. La demande totale et la disponibilité
totale de chaque objet sont identiques. Le problème consiste à déterminer une tournée
de coût minimum commençant et se terminant à un sommet donné, appelé le dépôt,
pour un véhicule de capacité unitaire et m types d’objet, de façon à satisfaire toutes
les demandes. On considère le cas où les objets peuvent être temporairement trans-
bordés à des sommets intermédiaires avant d’atteindre leur destination. On démontre
que ce problème est NP-difficile. On développe aussi une heuristique avec ratio de
performance de pire cas égal à 1.5. Finalement, on démontre que le cas ou m = 1 se
résout en temps polynomial.

Mots clés : problème d’échanges, problème de la grue, transbordements.

Acknowledgments: The authors would like to thank several anonymous referees
for their useful comments, which helped improve the presentation of the paper. This
work was partly supported by the Israel Institute of Business and by the Canadian
Natural Sciences and Engineering Research Council under grants. OPG0038816 and
OPG0039682. This research was carried out while the first author visited the Canada
Research Chair in Distribution Management and the Center for Research in Trans-
portation in Montreal.

Les Cahiers du GERAD G–2005–69 – Revised 1

1 Introduction

The Swapping Problem (SP) introduced by Anily and Hassin (1992) is defined as follows.
Let G = (V,E) be a connected undirected graph where V = {1, ..., n} is a vertex set,
vertex 1 represents a depot, and E ⊆ {[v,w] : v,w ∈ V, v < w} is an edge set. Each edge
e ∈ E has a non-negative cost or length ce ≥ 0. Let also c(v,w) be the length of a shortest
path between vertices v and w. Let O = {0, ...,m} be a set of object types. Object types
1, . . . ,m are real objects whereas object of type 0, also called the null object, is a dummy
object introduced to simplify the analysis. With each vertex v is associated a pair (av, bv),
where av, bv ∈ O; av represents an object type supplied by v, while bv represents an object
type required by v. If v has no supply or no demand, this is represented by the null object
av = 0 or bv = 0. It is assumed that the total demand of each object type is equal to its
total supply. In the SP vehicles of finite capacity are used to swap objects between vertices
in such a way that each vertex receives its required object. Vehicles start and end their
trip empty at the depot and must perform all swapping operations while minimizing the
total distance traveled.

In this definition of the SP, it is implicitly assumed that at most one object is supplied
or required by any vertex. This assumption is not restrictive as long as the number of
objects supplied or required by each vertex is finite, since the vertices can be replicated to
accommodate the case of multiple objects. As in Anily and Hassin (1992), we assume that
there is a single vehicle of unit capacity. In such problems the objects can be preemptive,
non-preemptive or mixed. In the preemptive case all objects can be dropped at intermediate
vertices while in the non-preemptive case, all objects remain in the vehicle between their
origin and their destination. The mixed case allows some of the objects to be preemptive
while the others are non-preemptive, as was done in Anily and Hassin (1992) and in Anily,
Gendreau and Laporte (1999). Here we assume that the preemptive mode applies.

Applications of the SP arise in the optimization of robot arm movements (Atallah and
Kosaraju, 1988) and in printed circuit board assembly (Ball and Magazine, 1988). The
SP generalizes the classical Stacker Crane Problem (SCP) (Frederickson, 1978) in which
objects must be swapped between specified origin-destination pairs without preemption.
The SCP is a special case of the SP in which each object type is supplied and required
by only one vertex. Since the SCP is NP-hard, this is also the case for the SP. Known
complexity results on the SCP and the SP for various graph structures are summarized in
Table 1.

The purpose of this article is to investigate the preemptive SP on a tree graph. In
Section 2 we introduce some notation and preliminary results. We then show in Section 3
that the problem is NP-hard. In Section 4 we develop a polynomial time heuristic with
a worst-case performance ratio of 1.5. Finally, in Section 5, we show that the single-type
case (m = 1) can be solved in polynomial time.

2 G–2005–69 – Revised Les Cahiers du GERAD

Table 1: Complexity results for the SCP and the SP
Stacker crane problem Swapping problem

Graph Non- Non-

structure Preemptive Preemptive Mixed Preemptive Preemptive Mixed

General NP-hard1 NP-hard2 NP-hard NP-hard3 NP-hard3 NP-hard3

Tree NP-hard4 Polynomial5 NP-hard NP-hard4 NP-hard6 NP-hard

Line Polynomial7 Polynomial8 Polynomial9 Polynomial9 Polynomial9 Polynomial9

Circle Polynomial10 Polynomial10 ? ? ? ?
1 Frederickson, Hecht and Kim (1978) provide a heuristic with a worst-case performance

ratio of 9/5.
2 By reduction from the Traveling Salesman Problem.
3 Anily and Hassin (1992) provide a heuristic with a worst-case performance ratio of 5/2.

For m = 2, Chalasani and Motwani (1999) improve this ratio to 2.
4 Frederickson and Guan (1993) provide several heuristics with bounded worst-case

performance ratios.
5 Frederickson and Guan (1992).
6 This article, Section 3. A heuristic with a worst-case performance ratio of 3/2 is provided

in Section 4.The special case where m = 1 is polynomial, see Section 5 of this article.
7 Atallah and Kosaraju (1988), Ball and Magazine (1988).
8 Atallah and Kosaraju (1988).
9 Anily, Gendreau and Laporte (1999).

10 Atallah and Kosaraju (1988).

2 Notation and preliminary results

The SP considered here is defined on a tree T = (V,E) rooted at vertex 1. Everywhere in
the paper, except for the proof of Theorem 2, we assume that the depot is located at the
root. We denote by OPT the cost of an optimal SP solution, and by Tv = (Vv, Ev) the
subtree rooted at v. If v is a leaf of T , then Tv = ({v}, ∅). A vertex v with av = bv = 0
is called a transshipment vertex. As in Frederickson and Guan (1992, 1993), we assume
without loss of generality that all transhipment vertices (except the root) have a degree at
least equal to 3. As an SP solution consists of a sequence of arcs, each associated with a
certain product type, we will also consider the set of 2|E| arcs, denoted by A, connecting
two adjacent vertices of T . For each edge e = [u, v] ∈ E both, the arc (u, v) directed from
u to v, and the arc (v, u) directed from v to u, are in A. In addition, we define a set of
(m + 1)|A| loaded arcs, denoted by Ā, which associates an object type to each arc in A.
Thus, Ā = {(u, v)i : (u, v) ∈ A, i ∈ O}. A service path of object i ∈ O is a sequence of
loaded arcs (uℓ, uℓ+1)

i ∈ Ā, ℓ = 1, . . . , L, which is traversed while the vehicle is loaded by
object i, where the initial vertex on the path supplies object i, i.e., au1

= i, and the ending
vertex on the path demands object i, i.e., buL+1

= i. A service cycle of the null object is
a sequence of loaded arcs (uℓ, uℓ+1)

0 ∈ Ā, for ℓ = 1, . . . , L, which is traversed while the
vehicle is empty and u1 = uL+1.

A feasible solution to the SP consists of a set of service paths, as well as service cycles
of the null object. The loaded arcs of a service path of object i 6= 0 do not necessarily

Les Cahiers du GERAD G–2005–69 – Revised 3

occur consecutively in the solution because of the preemption option, but their order is
preserved. In particular, the first loaded arc on the service path departs from a supply
vertex of object i and the last loaded arc enters a demand vertex of object i. Suppose that
V contains ni vertices whose supply is i but whose demand is different from i. Assuming
that a vehicle never unloads an object at a vertex in order to immediately load the same
object, any feasible solution contains exactly ni service paths of object i. Each vertex v
for which i = av 6= bv is a starting point for such a service path, and each vertex v for
which i = bv 6= av is the end point of such a service path. The set of loaded arcs carrying
the null object in a feasible solution forms service paths and service cycles of the null
object. However, the loaded arcs of the null service paths are not necessarily traversed
consecutively in a feasible solution, or in the order defined by the service path, as any
vertex can be assumed to hold or require the null object.

As in Anily, Gendreau and Laporte (1999) we construct the directed multi-type multi-

graph B, which we call the basic graph. “Multi-type” refers to the fact that an object
type is associated with each arc, referred to as a loaded arc; “multi-graph” means that
several copies of the same loaded arc (origin, destination, object type) can exist. More
specifically, the loaded arcs of the basic graph can be partitioned according to their object
type, i.e., B = (V, Ā0 ∪ · · · ∪ Ām). We construct B as follows: First initialize the sets
of loaded arcs Ā0 := Ā1 := ... =: Ām = ∅. Consider in turn every vertex v ∈ V , the
subtree Tv and the predecessor (father) vertex p(v) of v. For every i ∈ O, compute
∆i

v = |{w ∈ Vv : aw = i}|− |{w ∈ Vv : bw = i}|. The quantity ∆i
v represents the net supply

of object i in Tv. If ∆i
v is positive, then ∆i

v copies of the loaded arc (v, p(v))i are added to
Āi. If ∆i

v is negative, then |∆i
v| copies of loaded arc (p(v), v)i are added to Āi. |∆i

v|, for
the case ∆i

v > 0 (resp. ∆i
v < 0), represents the minimum number of times the loaded arc

(v, p(v))i (resp. (p(v), v)i) will be traversed in an optimal SP solution. This construction
process ensures the existence of a service path between the origin of every object and at
least one of its destinations. The total length of the loaded arcs of B is denoted by cost(B),
and thus cost(B) ≤ OPT. Constructing B can be achieved in O(n) time, starting from the
leaves of T and gradually moving toward the root. The basic graph is fully directed and
balanced, i.e., the in-degree of each vertex is equal to its out-degree, since for every subtree
Tv we must have

∑

i∈O

∆i
v = 0. The loaded arcs of the basic graph B form a union of service

paths, where each service path of object i ∈ O starts at a vertex which is the origin of i
and ends at a vertex that demands i. However, B is not necessarily connected, but when
it is connected, it is then strongly connected since it is balanced. Even if B is strongly
connected, it may not be possible to obtain a feasible SP solution by using its loaded arcs.
Consider for example the tree depicted in Figure 1, where the label of v is (av, bv), and the
corresponding basic graph where the label of each loaded arc is the object type carried on
this arc. No SP solution using the loaded arcs of B exists given that the vehicle must start
and end its trip empty at vertex 1.

A feasible path in the basic graph B consists of a sequence (uℓ, uℓ+1)
iℓ ∈ Ā, ℓ = 1, . . . L,

iℓ ∈ O of loaded arcs of B, which a unit capacity vehicle can follow assuming that the

4 G–2005–69 – Revised Les Cahiers du GERAD

 u 1 w

 u 1 w

(1,2) (0,0) (2,1)

2 2

1 1

a) Tree T

b) Basic graph B

Figure 1: Instance for which B is connected but does not contain a feasible SP solution

vehicle starts empty at the first vertex u1. This means that the necessary object on each
loaded arc is available when the vehicle reaches the tail of the loaded arc.

We should also note that a vertex v with av = bv ∈ O − {0} cannot be replaced by
a transshipment vertex, as the supply at vertex v is not necessarily used for covering the
demand of the vertex. To see this, consider the example in Figure 1 where (a1, b1) = (1, 1).
This change does not effect the basic graph B. It is easily seen that a feasible SP solution
now exists assuming that the vehicle starts empty at vertex 1. However, without loss of
generality, the leaves of the tree can be assumed to supply a different object type than the
one they demand.

The example of Figure 1 demonstrates that a stronger property than strong connectivity
is required to guarantee a feasible SP solution. To this end we recall the property of
reachability introduced in Anily, Gendreau and Laporte (1999). Vertex w is said to be
reachable from vertex u if there exists a feasible path from u to w in the basic graph B. For
example, in Figure 1, vertices 1 and w are reachable from u, vertices 1 and u are reachable
from w but neither u nor w is reachable from 1. Thus reachability is not symmetric but
is transitive. Two vertices are mutually reachable if they are reachable from one another.
It may sometimes be necessary to drop an object at an intermediate point along a path
in order to allow reachability. For example, in the graph depicted in Figure 2, vertex u is
reachable from vertex v assuming object 1 can be dropped at vertex 1. However, v is not
reachable from u since object 2 cannot be made available at vertex 1.

Since mutual reachability is symmetric and transitive and each vertex is auto-reachable,
the mutual reachability relation induces a partition of V into equivalence classes called fully

connected components. The vertices of the fully connected components are not necessarily
contiguous. For example, in the SP depicted in Figure 1, there are two fully connected
components: the first one consists of vertices u and w, which are not contiguous vertices,
and the second one consists of vertex 1. However, if instead of being a transshipment point
vertex 1 had a1 = b1 = 1, then the basic graph B would consist of a single fully connected
component. We say that a basic graph is fully reachable if it consists of a single fully

Les Cahiers du GERAD G–2005–69 – Revised 5

u

(1,2)

(4,3)

(2,1)

22

11

(3,4)

v 1 w

43

Figure 2: Strongly connected graph in which not all vertices are mutually reachable

connected component, i.e., all vertices are reachable from all vertices. In the next lemma
we prove that a fully connected component must be balanced, i.e., in each component the
total demand for object i ∈ O equals the total supply of object i. In particular, this lemma
implies that a fully connected component which is a singleton, must necessarily consist of
a vertex v with av = bv. However, not every vertex v with av = bv defines a singleton in B.

Lemma 2.1 Any fully connected component of B is balanced.

Proof. Suppose by contradiction that there exists a fully connected component C0 of
B which is not balanced. This assumption implies that the number of fully connected
components of B is greater than one. Moreover, it means that within C0 there exists an
object type i1 ∈ O having a total demand greater than its total supply, and an object type
i2 ∈ O, i2 6= i1, having a total demand smaller than its total supply. As a result, there
exists a fully connected component C−1 supplying i1 to C0, i.e., C0 is reachable from C−1

along a service path of i1. And there also exists a fully connected component C1 to which
a unit of i2 is shipped from C0, and thus C1 is reachable from C0 along a service path of
i2. Clearly, C−1 6= C1 as otherwise C0 and C1 would have been mutually reachable. As a
unit exits (enters) C−1 (C1), a unit must enter (exits) C−1 (C1), proving that there exist
two fully connected components C−2 and C2 such that C−1 is reachable from C−2 and C2

is reachable from C1, and C−2, C−1, C0, C1 and C2 are all disjoint components. Repeating
this argument again and again yields a contradiction to the the fact that the number of
fully connected components must be finite (no more than the number of vertices in V). 2

Theorem 1 An SP solution exists on the basic graph B if and only if this graph is fully

reachable.

Proof. If B is not fully reachable, then no SP solution exists since either the depot
cannot be reached from at least one vertex, or at least one vertex cannot be reached
from the depot. If B is fully reachable, then an SP solution can be identified by suitably

6 G–2005–69 – Revised Les Cahiers du GERAD

modifying Hierholzer’s (1873) end-pairing algorithm for the Chinese Postman Problem on
an undirected Eulerian graph.

Step 1. Starting at an arbitrary vertex v ∈ V , follow a service path of object of type av

in the basic graph B emanating from v, until the object reaches its first destination
at u. Iteratively apply this process starting from u until v is eventually reached. Go
to Step 3.

Step 2. Construct a second circuit starting from a vertex w ∈ V of the first circuit
whose supply has not yet been delivered (such a vertex necessarily exists since B

is fully reachable and not all vertices have yet been served). Merge the two circuits
(v, . . . , w1, w,w2, . . . , v) and (w,w3, . . . , w4, w) into a single circuit (v, . . ., w1, w, w3,
. . ., w4, w, w2, . . ., v). When reaching w for the first time on the merged circuit,
drop the object loaded on the vehicle and replace it by the object of type aw. When
reaching w for the second time the object dropped at w is loaded on the empty
vehicle.

Step 3. If the circuit contains all the loaded arcs of B, stop. Otherwise, go to Step 2. 2

The balance of B, and of all fully connected components of B, as proved in Lemma
2.1, and the mutual reachability within each fully connected component ensure that if B

consists of a number of fully connected components, then the loaded arcs of B generate
a set of cycles, one for each component. Each such cycle induces a feasible closed tour
for a unit capacity vehicle servicing the component’s demands by using its supplies. Two
cycles associated with different components can be disjoint or reachable but not mutually
reachable, as otherwise they would be merged into one fully connected component. If B

is not fully reachable, it may be augmented into a fully reachable graph by adding new
loaded arcs to it. As will be seen in Section 3, the problem of determining a least cost
augmentation of B into a fully reachable graph is NP-hard.

3 The preemptive swapping problem on a tree is NP-hard

In this section we prove that the preemptive SP on a tree is NP-hard. To this end we show
that the problem is at least as hard as the Steiner tree problem on a bipartite graph, which
is defined as follows (see Garey and Johnson (1979), pages 208-209). Consider a bipartite
graph G = (Ṽ , Ẽ) with bipartition {R, Ṽ − R} of Ṽ , an integer weight cG

e for each edge
e ∈ Ẽ, and a positive integer number β. The problem is to determine whether there exists
a subtree of G that spans at least the vertices of R such that the total weight of the edges
in the subtree does not exceed β. Frederickson and Guan (1993) use a similar version of
the Steiner tree problem where all weights are equal to prove that the non-preemptive SC
problem on a tree is NP-hard.

Theorem 2 The preemptive SP on a tree is NP-hard.

Les Cahiers du GERAD G–2005–69 – Revised 7

1

10

20

5

4

3

2

40

30

R V _ R

Figure 3: Graph G = (Ṽ , Ẽ) for the Steiner tree problem on a bipartite graph

Proof. Consider a bipartite graph G = (Ṽ , Ẽ) with a bipartition {R, Ṽ −R} of Ṽ . Let
|Ṽ | = ϑ, |Ẽ| = ε, and |R| = ρ. We number the vertices of R by 1, . . . , ρ, and the vertices of
Ṽ −R by ρ+1, . . . , ϑ. The length of edge [v, u] ∈ Ẽ is denoted by cG(v, u). We also let Γv be
the set of vertices adjacent to vertex v, i.e., the neighborhood of vertex v. Denote by kv the
cardinality of Γv, i.e., |Γv| = kv, thus Σρ

v=1kv = ε and Σϑ
u=ρ+1ku = ε. For any vertex v ∈ R,

let ϕ(v, i) be the ith closest vertex to v among the kv vertices in Γv (where ties are broken
arbitrarily). Thus, for a given vertex v ∈ R, ϕ(v, ·) is a one-to-one mapping of {1, . . . , kv}
into Γv such that cG(v, ϕ(v, 1)) ≤ cG(v, ϕ(v, 2)) ≤ ... ≤ cG(v, ϕ(v, kv)). Figure 3 depicts a
graph G = (Ṽ , Ẽ) with ρ = 2, ϑ = 5, ε = 4, cG(1, 3) = 10, cG(1, 5) = 40, cG(2, 4) = 20,
cG(2, 5) = 30, ϕ(1, 1) = 3, ϕ(1, 2) = 5, ϕ(2, 1) = 4, ϕ(2, 2) = 5, Γ1 = {3, 5}, Γ2 = {4, 5},
k1 = 2, k2 = 2, Γ3 = {1}, Γ4 = {2}, Γ5 = {1, 2}, k3 = 1, k4 = 1, k5 = 2.

We will show that if there exists a polynomial algorithm for solving the preemptive SP
on a tree then we could have used it to determine a minimum Steiner tree problem on
G = (Ṽ , Ẽ) spanning the vertices of R. To this end we construct the following reduction.

We first define an SP tree T = (U,E∗) consisting of m = ϑ − ρ + ε different objects,
in addition to the null object, and 3ε + 2ρ + 1 vertices. Each vertex u ∈ Ṽ − R induces
1 + ku different objects, named u∗ and uv for v ∈ Γu. We let the function cT : E∗ → ℜ+

represent the length of the edges of T .

We next describe the construction of T . The tree T is rooted at vertex ℓ(0, 0) (which
does not serve as the depot) and is connected to ρ children named ℓ(1, 0), . . . , ℓ(ρ, 0). The
root and its children are assumed to be transshipment points, i.e., aℓ(v,0) = bℓ(v,0) = 0 for
v ∈ {0, . . . , ρ}. Each of the ρ children of the root serves as the root of a subtree Tℓ(v,0) for

v ∈ {1, . . . , ρ}. Let cT (ℓ(0, 0), ℓ(v, 0)) = cG(v, ϕ(v, 1)) for v ∈ {1, . . . , ρ}, i.e., the distance
between the root of T , namely vertex ℓ(0, 0), and its child ℓ(v, 0), is equal to the minimum
distance between v and a vertex in Γv in graph G. We next describe the construction

8 G–2005–69 – Revised Les Cahiers du GERAD

of Tℓ(v,0) for some v ∈ {1, . . . , ρ}. Vertex ℓ(v, 0) is a parent of two children, the right-
hand side child r(v, 1) and the left-hand side child ℓ(v, 1). The right-hand side child of
ℓ(v, 0), namely vertex r(v, 1), is a leaf associated with objects (a, b) = (ϕ(v, 1)∗, ϕ(v, 1)v).
We let cT (ℓ(v, 0), r(v, 1)) = M for some M ∈ ℜ+ to be specified later. If |Γv| > 1,
then the left-hand side child of ℓ(v, 0), namely ℓ(v, 1), is a transshipment vertex, and
cT (ℓ(v, 0), ℓ(v, 1)) = cG(v, ϕ(v, 2)) − cG(v, ϕ(v, 1)), which is non-negative by definition of
the function ϕ(v, ·). Continuing the construction of T , we let ℓ(v, 1) to be a parent of the
two children r(v, 2) and ℓ(v, 2). The right-hand side child of ℓ(v, 1), namely vertex r(v, 2), is
a leaf associated with objects (a, b) = (ϕ(v, 2)∗, ϕ(v, 2)v). We let cT (ℓ(v, 1), r(v, 2)) = M. If
|Γv| > 2 the left-hand side child of ℓ(v, 1), namely vertex ℓ(v, 2), is a transshipment vertex.
We let cT (ℓ(v, 1), ℓ(v, 2)) = cG(v, ϕ(v, 3)) − cG(v, ϕ(v, 2)) which is again non-negative.
This construction process continues for kv − 1 generations, where the total distance on T
between the root of the tree, namely vertex ℓ(0, 0) and vertex ℓ(v, kv−1), is cG(v, ϕ(v, kv)),
which is the distance in graph G between vertex v and the vertex farthest from v and
adjacent to it. We complete the construction of the subtree as follows. The right-hand
side child of vertex ℓ(v, kv − 1), namely vertex r(v, kv), is a leaf associated with objects
(a, b) = (ϕ(v, kv)

∗, ϕ(v, kv)v). We let cT (ℓ(v, kv−1), r(v, kv)) = M. The left-hand side child
of ℓ(v, kv−1), namely vertex ℓ(v, kv), is associated with objects (a, b) = (ϕ(v, 1)v , ϕ(v, 1)∗).
We let cT (ℓ(v, kv − 1), ℓ(v, kv)) = M. Vertex ℓ(v, kv) has two children. The right-hand side
child r(v, kv +1) is a leaf associated with objects (a, b) = (ϕ(v, 1)∗, ϕ(v, 1)v). The left-hand
side child of ℓ(v, kv), namely vertex ℓ(v, kv + 1), is the root of a subtree which is a path
consisting of exactly kv vertices named ℓ(v, kv + 1), . . . , ℓ(v, 2kv). The last vertex on the
path, i.e., vertex ℓ(v, 2kv), is associated with objects (a, b) = (ϕ(v, 1)v , ϕ(v, 1)∗). For i =
1, . . . , kv−1, vertex ℓ(v, kv + i) is associated with objects (a, b) = (ϕ(v, i+1)v , ϕ(v, i+1)∗).
The length of all edges of the subtree, which is rooted at vertex ℓ(v, kv), can be assumed
to be 0. Figure 4 depicts the tree T = (U,E∗), corresponding to the example of Figure 3,
with m = ϑ − ρ + ε = 5 − 2 + 4 = 7, |U | = 3ε + 2ρ + 1 = 17, and the object set
O = {0, 3∗, 31, 4

∗, 42, 5
∗, 51, 52}.

We note that by this construction each subtree Tℓ(v,0) consists of 3kv +2 vertices, where
exactly kv of them are transshipment points. The subtrees are balanced because the total
supply of each object type is equal its total demand. More precisely, each of the objects
ϕ(v, i)∗ and ϕ(v, i)v for i = 2, . . . , kv is the supply and the demand of exactly one vertex
in the subtree. Each of the objects ϕ(v, 1)∗ and ϕ(v, 1)v is the supply and demand of two
vertices in the subtree. We also note that object type ϕ(v, i)v for i = 1, . . . , kv are not used
by any subtree Tℓ(v′,0), v′ = 1, . . . , ρ other than Tℓ(v,0). On the other hand, objects ϕ(v, i)∗

for i = 1, . . . , kv are used by all subtrees Tℓ(v′,0) with ϕ(v, i)∗ ∈ Γv′ and v′ = 1, . . . , ρ. In

other words, object u∗ for u ∈ Ṽ −R is used by all subtrees Tℓ(v′,0) for which v′ ∈ Γu.

We denote the basic graph associated with T by B(T). It consists of exactly ρ fully
connected components which are not singletons. Each fully connected component Cv for
v = 1, . . . , ρ consists of all vertices of the subtree Tℓ(v,0), which are not transshipment
points, namely vertices r(v, i) for i = 1, . . . , kv +1, and vertices ℓ(v, kv +i) for i = 0, . . . , kv .

Les Cahiers du GERAD G–2005–69 – Revised 9

0

(0,0)

(31 , 3*)

0

0

0

0

0

10

10

20

30
M

M

M

M

M
M

r (1, 3)

(42 , 4*)

(3*, 31)

(31 , 3*)
(51 , 5*)

(0,0)

(0,0)

(0,0)(5*, 51)
(3*, 31)

(0,0)

(42 , 4*)

(52 , 5*)

(4*, 42)

(4*, 42)

(5*, 52)
r (1, 1)

r (1, 2)

l (1, 3)

l (2, 0)

l (0, 0)

l (1, 1)
l (1, 2)

l (1, 4)

l (2, 1)

l (2, 3)

l (2, 2)

l (2, 4)

r (2, 1)

r (2, 2)

r (2, 3)

l (1, 0)

Figure 4: Swapping problem on a tree T = (U,E∗) corresponding to the Steiner tree
problem of Figure 3

Each of the transshipment vertices of Tℓ(v,0) serves as a fully connected component which
is a singleton. In particular, each singleton in Tℓ(v,0) is reachable from the component
Cv. The graph B(T) is disconnected since the root of T is not incident to any loaded
arc of B(T), i.e., vertex ℓ(0, 0) is not reachable from any of the other fully connected
components. Thus graph B(T) must be augmented by adding two opposite direction
loaded arcs of the form (ℓ(0, 0), ℓ(v, 0))iv and (ℓ(v, 0), ℓ(0, 0))iv for v = 1, . . . , ρ and iv ∈ O.
The total cost of these new loaded arcs is 2Σρ

v=1c
G(v, ϕ(v, 1)). Independently of the location

of the depot, any feasible solution for the SP on T must be of a length at least equal to
cost(B(T))+2Σρ

v=1c
G(v, ϕ(v, 1)). In particular, the total length of the loaded arcs of B(T)

whose cost is M , which we call in the sequel large loaded arcs, is Σρ
v=14Mkv = 4Mε, as

each of the edges of T , [ℓ(v, i−1), r(v, i)] for i = 1, . . . , kv is associated with two loaded arcs
in B(T), and the edge [ℓ(v, kv−1), ℓ(v, kv)] of T is covered by 2kv loaded arcs in B(T). We
choose M to be a very large number, say M > 2εcost(G) = 2ε

∑

(v,u)∈Ẽ cG(v, u), in order

to guarantee that the optimal SP solution includes the least possible number of copies of
large loaded arcs. In B(T) all the large loaded arcs are associated with a real object in
O − {0}. Considering Figure 4, we can see that if the vehicle while empty enters vertex

10 G–2005–69 – Revised Les Cahiers du GERAD

ℓ(v, 0) for v = 1, . . . , ρ, for the first time, coming from ℓ(0, 0), then in order to continue
servicing component Cv from there, the vehicle must travel along two opposite-direction
large loaded arcs of the null object, this is in addition to the loaded arcs of B(T). The
first empty such travel along the large loaded arc is needed in order to first reach a vertex
in Cv from which an object can be loaded. The cost of the travels along large loaded arcs
of the null object can be avoided only if vertex ℓ(v, 0) is reached from ℓ(0, 0) while the
vehicle is already loaded by an object that is needed in Cv. As will be shown below, if
there exists a Steiner Tree on the bipartite graph G = (Ṽ , Ẽ) spanning the vertices of R,
then any optimal SP solution for T includes only the large loaded arcs that are members
of B(T), i.e., exactly 4ε large loaded arcs which are all travelled while the vehicle is loaded
by a real object, meaning that objects in one component are used to cover the demand in
other components.

In order to complete the definition of the SP on T , we assume here that the depot is
located at vertex r(1, 1), which, by definition, is not a transshipment vertex (any other
choice of the depot’s location at a non-transshipment vertex of T would do as well). Any
feasible solution to the preemptive SP on T consists of B(T)’s loaded arcs plus two op-
posite direction service paths connecting ℓ(0, 0) with the fully connected components Cv

for v = 1, . . . , ρ in order to make them mutually reachable. As explained above, in a
solution in which the fully connected components are autonomous, i.e., each satisfies its
own demand, the vehicle traverses the two-opposite direction loaded arcs, (ℓ(0, 0), ℓ(v, 0))0

and (ℓ(v, 0), ℓ(0, 0))0 for v = 1, . . . , ρ, as well as the two-opposite direction large loaded
arcs (ℓ(v, 0), r(v, 1))0 and (r(v, 1), ℓ(v, 0))0 in each Cv for v 6= 1, in order to reach the first
non-transshipment vertex in that component. Thus the total cost of such a solution is
cost(B(T)) + 2Σρ

v=1c
G(v, ϕ(v, 1)) + 2(ρ − 1)M. We show below that exploiting the pos-

sibility of using objects of type u∗, u ∈ {ρ + 1, . . . , ϑ}, supplied in one fully connected
component to cover the demand of another component, may generate shorter SP solutions
in which the vehicle does not make empty trips along large loaded arcs.

Consider now a certain fully connected component Cv for v ∈ {2, . . . , ρ}. The only
way to serve Cv without paying travels along a large loaded arc which is associated with
the null object, is by entering Cv while carrying an object u∗ originating from another
fully connected component, say Cv′ for v′ ∈ {1, . . . , ρ} − {v} and u ∈ Γv

⋂

Γv′ . To this
end suppose that ϕ(v′, i) = u and ϕ(v, j) = u. The transfer of object u∗ from component
Cv′ to component Cv is achieved as follows: suppose that the vehicle loads object u∗ at
vertex r(v′, i), when there is still demand for this object in Cv. The vehicle then follows
the loaded arc of B(T), (r(v′, i), ℓ(v′, i − 1))u

∗

, and from vertex ℓ(v′, i − 1) the vehicle,
while loaded with object u∗, exits Cv′ by continuing to the root, and from there to the
fully connected component Cv along the path to vertex ℓ(v, j − 1).From ℓ(v, j − 1) the
vehicle continues along the path that connects ℓ(v, j − 1) to the vertex ℓ(v, kv + j − 1) in
Cv demanding this object. In order to balance the shipment of the unit of object u∗ to
Cv, another unit of object u∗ must eventually be carried out from Cv in order to cover
the demand in some other component. We note that this solution necessitates, in addition
to the loaded arcs of B(T), two opposite direction loaded paths associated with object u∗

Les Cahiers du GERAD G–2005–69 – Revised 11

that connect vertex ℓ(v′, i − 1) to vertex ℓ(v, j − 1). The cost of these two loaded paths
is 2cT

(

ℓ(v′, i− 1), ℓ(0, 0)
)

+ 2cT
(

ℓ(0, 0), ℓ(v, j − 1)
)

= 2cG(v′, ϕ(v′, i)) + 2cG(v, ϕ(v, j)) =

2cG(v′, u) + 2cG(v, u), i.e., the cost of such a transfer boils down to twice the cost of two
edges [v′, u] and [v, u] in the bipartite graph G. In other words, it is twice the cost of
connecting vertices v′, v ∈ R through vertex u ∈ Ṽ −R while constructing a Steiner tree on
G spanning R. If there exists a Steiner Tree on the bipartite graph G = (Ṽ , Ẽ) spanning
the vertices of R, then an optimal SP solution for T does not contain any extra large loaded
arcs beyond the 4ε such arcs that are part of B(T). In such a case, all fully connected
components Cv, v ∈ R, must be connected to each other by transferring objects of type
u∗, u ∈ Ṽ − R as explained above. Any feasible solution to the SP on T that does not
contain more than 4ε large loaded arcs induces a Steiner tree spanning R on the bipartite
graph G = (Ṽ , Ẽ). The cost of the SP solution is the sum of cost(B(T)) and twice the
cost of the associated Steiner tree on G(Ṽ , Ẽ) used to connect the components. Thus, an
algorithm that finds the optimal SP solution on T would also find an optimal Steiner tree
spanning R in the bipartite graph G = (Ṽ , Ẽ), proving that the SP is at least as hard as
the Steiner tree problem on a bipartite graph, and meaning that the preemptive SP on a
tree is NP-hard. 2

4 A 1.5-approximation algorithm for the preemptive SP on

a tree

A lower bound on the optimal solution for the preemptive SP on a tree T can easily be
found. Consider the basic graph B associated with the problem. This graph is balanced
but not necessarily connected. In the first step, we augment B by identifying the edges of T
not covered by any loaded arc of B. For each such edge we add to B two opposite direction
loaded arcs, each associated with the null object. Let B′ be the resulting directed multi-
type, multi-graph which is clearly balanced and connected. As explained in Section 2,
this augmentation does not guarantee the existence of a feasible SP solution on B′, but
cost(B′) ≤ OPT . We will show below that graph B′ can be further augmented to obtain
a feasible SP solution by adding loaded arcs of the null object, so that the cost of the
heuristic solution is at most 1.5OPT .

Graph B′ consists of a number of fully connected components C1, . . . , Cr. Recall that
the depot is located at the root of T , which we assume to be in component C1. If r = 1,
then by Theorem 1 the loaded arcs of B′ induce a feasible and optimal SP solution. A fully
connected component of B′ is said to be unreachable if none of its vertices is reachable from
a vertex in any other fully connected component by following the service paths induced by
B′’s loaded arcs. Component C1, where the depot is located, is considered to be reachable
(from the depot). In the next lemma we prove that if r ≥ 2, then there must exist at least
one fully connected component of B′ that is unreachable.

Lemma 4.1 If B′ contains at least two fully connected components then at least one of

the components is unreachable.

12 G–2005–69 – Revised Les Cahiers du GERAD

Proof. Suppose by contradiction that none of the fully connected components of B′

is unreachable, i.e, each component (except possibly for the component that contains the
depot) can be reached from some other component. Choose any fully connected component
that does not contain the depot to start with. Call it Cα(1). Since Cα(1) is reachable,
there exists another component Cα(2) from which Cα(1) can be reached. Clearly Cα(2)

cannot be reached from Cα(1) as otherwise the two components could be merged. Similarly,
Cα(2) can be reached from some other component Cα(3), α(3) 6= α(1). Component Cα(3)

cannot be reached from neither Cα(1) or Cα(2), otherwise two components could be merged,
contradicting the partition of B′ into fully connected components. This procedure can be
followed for a finite number of steps since B′ consists of a finite number of components.
At the end of the procedure we obtain a sequence of mutually disjoint fully connected
components, where Cα(q−1) is reachable from Cα(q) for q = 2, . . . , Q. Thus, component
Cα(Q) is unreachable, contradicting our assumption. 2

In the algorithm we propose, we will successively add pairs of opposite-direction loaded
arcs of the null object until we obtain a partition of V into a fully connected component
which contains the depot, and possibly some singleton fully connected components. More
specifically, as long as the multi-graph on hand is partitioned to more than one fully
connected component which are not singletons, we start a new iteration (a singleton can
serve itself). At each iteration we identify the set of all unreachable vertices, which belong
to non-singleton fully connected components in the multi-graph at hand, for which all
their predecessors (in T) are reachable. Among those unreachable vertices, we find the
one which is closest to its predecessor in T in terms of the cost function c : E → ℜ+. We
update the multi-graph at hand by adding to it two opposite-direction loaded arcs of the
null object connecting this vertex to its predecessor vertex (in T), and we restart a new
iteration. This procedure obviously preserves the balance of the graph and is finite. We
present now the Augmentation Algorithm for the SP on T = (V,E). The algorithm returns
a multi-directed graph H in which each loaded arc is associated with one of the objects in
O.

Step 1. Input: T = (V,E), the cost ce for each e ∈ E and the associated graph B′.
Output: multi-type, directed multi-graph H, and its cost Cost(H). B̃ ← B′. Go to
Step 2.

Step 2. Find the partition of B̃ into fully connected components {C1, . . ., Cr, Cr+1 . . .
Cr′}, where Cr+1 . . . Cr′ are singletons. If r = 1, return H ← B̃; and cost(H); stop.
Otherwise, let C ′

1, . . . , C
′
K , K ≥ 1, be the unreachable components of B̃ which are

not singletons. Go to Step 3.

Step 3. For ℓ = 1, . . . ,K define Sℓ ⊂ V to be the set of vertices of the unreachable
component C ′

ℓ. S ← ∪K
ℓ=1Sℓ; S̃ ← ∅. For each v ∈ S do begin: if none of the

predecessors of v in T is a vertex in S, then S̃ ← S̃ ∪ {v}; end.

Step 4. For each vertex v ∈ S̃ do begin: κv ← c(p(v), v); Let v∗ ∈ argmin{κv : v ∈ S̃},
where ties are broken arbitrarily. Go to Step 5.

Les Cahiers du GERAD G–2005–69 – Revised 13

Step 5. Augment the graph B̃ by adding to it the loaded arcs (v∗, p(v∗))0 and (p(v∗), v∗)0 .
Go to Step 2.

We first prove that the resulting graph H induces a feasible SP solution.

Theorem 3 There exists a feasible SP solution on H.

Proof. First note that graph H is connected and balanced since graph B′ had this
property and during the augmentation the balance is preserved. In the graph H there are
no unreachable components, which are not singletons. A feasible SP solution on graph
H can be obtained by the modification of the Hierholzer’s end-pairing algorithm for the
Chinese Postman Problem used in the proof of Theorem 1. 2

In order to analyze the worst-case performance ratio of the proposed heuristic we need
a further characterization of the intermediate graphs B̃ obtained during the application of
the algorithm.

Lemma 4.2 Consider a tree T = (V,E) and a corresponding balanced and connected

graph B̃ obtained in the application of the Augmentation Algorithm. Suppose that C ′ is an

unreachable component of B̃. Consider a vertex w ∈ C ′ and the subtree Tw = (Vw, Ew).
If in the subtree Tw = (Vw, Ew), the set of vertices Vw contains a vertex u belonging to an

unreachable fully connected component of B̃, say C̃, C̃ 6= C ′, then C̃ ⊂ Vw.

Proof. Suppose that C̃ is not a subset of Vw. Then, there exists a vertex u1 ∈ C̃ ∩ Vw,
but C̃ has at least one vertex u2 that is not a member of Vw. By definition of a fully
connected component, there must exists in B̃ a service path that starts at u1 and ends at
vertex u2. By the property of a tree, this unique path must pass through vertex w. This
service path makes vertex w reachable from C̃, violating the assumption that w belongs
to an unreachable fully connected component of B̃. 2

Consider any unreachable component of B̃. In Lemma 4.3 we prove that the root of
the minimal subtree containing this component is not a member of the component.

Lemma 4.3 Consider an unreachable component C ′ of graph B̃ obtained in the Augmen-

tation Algorithm. Let Tw = (Vw, Ew) be the minimal subtree for which C ′ ⊆ Vw. Then

w 6∈ C ′.

Proof. Suppose by contradiction that w ∈ C ′. The fact that Tw = (Vw, Ew) is the
minimal subtree for which C ′ ⊆ Vw implies that p(w) 6∈ C ′. By Lemma 4.2 all non-
reachable components of B̃ having a vertex in Vw are contained in Vw. Suppose that
u ∈ Vw, and u belongs to a reachable component of B̃, which we denote by C∗. If C∗ 6⊂ Vw

then there exists a service path in B̃ connecting vertex u to a vertex v 6∈ Vw through
vertex w, contradicting the fact that C ′ is a non-reachable component. Thus, C∗ ⊂ Vw.
Therefore, Vw is equal to the union of some fully connected components, which means that

14 G–2005–69 – Revised Les Cahiers du GERAD

the basic graph B is disconnected along the edge (p(w), w) of T . This implies that in the
augmentation of B to B′ two opposite loaded arcs of the null object connecting the vertices
w and p(w) are added. Thus, in graph B̃, the vertices w and p(w) belong to the same fully
connected component, contradicting our assumption that C ′ ⊂ Vw. 2

In Theorem 4 we prove that the worst-case performance ratio of the heuristic is 1.5.

Theorem 4 cost(H) ≤ 1.5OPT and this worst-case bound is tight.

Proof. First note that while implementing the Augmentation Algorithm, an edge of
T is augmented at most once since in future iterations both end vertices of the edge are
reachable in B̃ from vertex 1, where the depot is located. Let θ be the number of iterations
run by the Augmentation Algorithm. In order to prove that the worst-case performance
ratio of the proposed heuristic is 1.5, we will prove the following statements:

1. In each iteration, say iteration j = 1, . . . , θ, we identify an edge of T , denoted by
ej ∈ E, that is augmented, and we also identify a set of edges Dj ⊂ E that are never

augmented by the algorithm. In particular, ej /∈
⋃θ

i=1 Di.

2. cej
≤ cost(Dj).

3. ej 6= ei and Dj

⋂

Di = ∅ for i 6= j.

4.
∑θ

i=1{2cei
+ 2cost(Di)} ≤ cost(B′).

We now provide the proofs.

1. We will first show that for a given graph B̃ the set S̃ contains at least two vertices
from each (non-singleton) unreachable fully connected component C ′

ℓ of B̃, for which

S̃ ∩ Sℓ 6= ∅. Suppose by contradiction that for the multi-graph B̃, the set S̃ contains
only one vertex v from Sℓ. As C ′

ℓ is not a singleton, the set Sℓ contains at least two
vertices. According to our assumption, none of the vertices in Sℓ − {v} is a vertex
in S̃, thus either there exists a vertex in Sℓ − {v} which is a descendant of a vertex
w ∈ S̃ − Sℓ, w 6= v, or all vertices of Sℓ − {v} are descendants of v. We will show
that both cases yield a contradiction.
First suppose that there exists a vertex in Sℓ−{v} which is a descendant of a vertex
w ∈ S̃−Sℓ, w 6= v. According to Lemma 4.2, Sℓ ⊂ Vw, where Vw is the set of vertices
of the subtree Tw of T . This is in contradiction with the fact that v ∈ Sℓ and v /∈ Vw,
as v,w ∈ S̃. Suppose now that all vertices of Sℓ − {v} are descendants of v. Thus,
the minimal subtree of T containing C ′

ℓ is rooted at v. Recall that C ′
ℓ is unreachable,

and v is a vertex of C ′
ℓ contradicting Lemma 4.3.

Let vertex v∗ be selected according to Step 4 of the Augmentation Algorithm when
applied on B̃ in iteration j. Suppose that v∗ ∈ C ′

ℓ, where C ′
ℓ is an unreachable fully

connected component of B̃ (which is not a singleton). Thus, the set S̃ associated with
B̃ must contain at least one more vertex from C ′

ℓ. Let S̃ℓ = S̃
⋂

Sℓ. By definition of

v∗, κv∗ ≤ κv for any v ∈ S̃. Note that after augmenting B̃ along the edge [p(v∗), v∗]
at a cost of 2κv∗, we have made all vertices in Sℓ, and in particular all vertices in S̃ℓ,

Les Cahiers du GERAD G–2005–69 – Revised 15

reachable from vertex 1 where the depot is located. This means that the algorithm in
future iterations will never augment the graph B̃ along the edges [p(v), v] for v ∈ Sℓ.
Let ej = [p(v∗), v∗] and Dj =

⋃

v∈Sℓ−{v∗}{[p(v), v]} ⊇
⋃

v∈S̃ℓ−{v∗}{[p(v), v]}.

2. It follows from the selection procedure of v∗ in Step 4 of the Augmentation Algorithm

that cej
≤ cost

(

⋃

v∈S̃ℓ−{v∗}{[p(v), v]}
)

≤ cost(Dj).

3. This observation follows directly from the fact that once a vertex is made reachable
from the root by adding the null object loaded arcs in a certain augmentation itera-
tion, then there is no need to augment along the same edge again. Also, if in some
iteration, vertex v∗ is made reachable by augmenting along the edge [p(v∗), v∗], then
all vertices that belonged to the same unreachable component as v∗ become reachable
from the root, and thus these vertices will never again be members S̃.

4. By construction, the multi-type multi-graph B′ is connected and balanced, thus each
edge of E is covered in B′ at least twice. The Augmentation Algorithm augments
B′ along the edges

⋃θ
j=1{ej}, and it does not augment along the edges in

⋃θ
i=1 Di.

The statement follows directly from the facts that these 2θ sets ({ej}, and Dj) for

1 ≤ j ≤ L are disjoint, and
⋃θ

j=1 ({ej}
⋃

Dj) ⊂ E.

Recall that cost(B′) is a lower bound on the optimal SP cost. By the above statements

it follows that the total augmentation cost, namely
∑θ

j=1 2cej
≤ 0.5cost(B′), which proves

that the worst-case performance ratio of the algorithm is 1.5, i.e., cost(H) ≤ 1.5OPT .

In order to complete the proof we present an example (Figure 5) where the bound 1.5
is tight. Part (a) of the figure demonstrates the SP, where the depot is located at the root
of the tree, namely at vertex 1. The numbers on the edges denote their cost. This graph is
disconnected and is therefore augmented into B′ which contains, in addition to the services
paths of B, also the two loaded arcs (1, 3)0 and (3, 1)0, see part (c) of the figure. No feasible
SP solution exists on B′ as none of the objects 1 or 2 is available at vertex 3 when the
vehicle enters there the first time. One can readily check that cost(B′) = 4M + 4ξ.

The fully connected components of B′ are C1 containing the root and vertices 2 and 3,
and the unreachable component C2 containing both vertices 4 and 5. The first iteration
of the Augmentation Algorithm generates the set S̃ = {4, 5}, where both vertices 4 and
5 belong to the same unreachable component. In this case κ4 = κ5 = M , and therefore
the algorithm chooses arbitrarily one of these vertices, say vertex 4 as v∗. Graph B′ is
augmented by adding to it the two loaded arcs (3, 4)0 and (4, 3)0. The resulting multi-type
multi-graph is the heuristic solution H that the algorithm generates. According to this
solution, the vehicle loads object 1 at vertex 1 and carries it to vertex 2, where it unloads
it and loads object 2, which is carried to vertex 1. From there the vehicle travels empty
to vertex 4 through vertex 3 and swaps objects 2 and 1 between vertices 4 and 5. Finally
the vehicle travels empty from vertex 4 to the root. Clearly, cost(H) = 6M + 4ξ.

The optimal SP solution to the above example is to start at the depot by loading
object 1, and carry it directly to vertex 4, from there the vehicle loads object 2 which is

16 G–2005–69 – Revised Les Cahiers du GERAD

(1,2)

(2,1)

1

2

(2,1) (1,2)

(1,2)

(2,1)

(2,1) (1,2)

1

2

1

2

a) Tree T b) Basic graph

M M

0

0

(0,0)

1

2

(1,2)

(2,1)

(2,1) (1,2)

1

2

1

2

(0,0)

 c) Graph B'

ξ ξ

1

2 3

4 5

1

2 3

4 5

1

2 3

4 5

Figure 5: Example showing that the worst-case bound of the heuristic is tight

carried to vertex 5. At vertex 5 object 1 is loaded and carried to vertex 2. There it is
unloaded and object 2 is loaded to be carried to the root. Thus, OPT = 4M +4ξ, implying
that limM→∞cost(H)/OPT = 1.5. 2

Les Cahiers du GERAD G–2005–69 – Revised 17

5 The case m = 1 is polynomial

In this section we consider the special case where the set of items consists of a single type
object and the null object, i.e., O = {0, 1}. We will show that there exists an optimal
routing of the vehicle that only uses the loaded arcs of the graph B′. The vertices of
the tree are of four types: a vertex is either (i) a supply vertex associated with the pair
(a, b) = (1, 0); or (ii) a demand vertex associated with the pair (a, b) = (0, 1); or (iii) a
transshipment vertex associated with the pair (a, b) = (0, 0); or (iv) a vertex associated
with the pair (a, b) = (1, 1). Clearly, in the case of one product type there is no need to
preempt. Thus, there exists an optimal solution in which a vertex v which is associated
with (av, bv) = (1, 1) will always serve itself by using its own supply.

Recall from Section 2 that all the loaded arcs in the basic graph B, which are directed
from vertex u to vertex v, are associated with a an object i ∈ {0, 1}, where all the loaded
arcs directed from vertex v to vertex u are associated with the other object 1 − i. Since
the basic graph B is balanced, the two sets of loaded arcs have the same cardinality. If
B is not connected, the graph is augmented by adding two opposite direction loaded arcs
of the null object between any two adjacent vertices of T which are not covered by any
loaded arc of B. This results in graph B′. We show in Theorem 5 that graph B′ consists
of a single reachable fully connected component implying that OPT = Cost(B′).

Theorem 5 For the case m = 1, graph B′ consists of a single fully connected component.

Proof. We show that none of the fully connected components of graph B′ is unreachable.
Suppose by contradiction that there were at least one unreachable fully connected compo-
nent C. Let the subtree Tw be the minimal subtree that contains C. According to Lemma
4.3, w /∈ C. By definition, there must exist a service path of object 1 starting at a vertex
v1 ∈ C, passing through vertex w, and ending at a vertex v2 ∈ C. Since B is balanced,
there must also exist a service path of the null object starting at v2, passing through w
and ending at v1. This makes v1 reachable from w, contradicting our assumption that C
is unreachable. 2

References

Anily, S. and R. Hassin. 1992. The Swapping Problem. Networks 22:419–433.

Anily, S., M. Gendreau and G. Laporte. 1999. The Swapping Problem on a Line. SIAM

Journal on Computing 29:327–335.

Arkin, E., R. Hassin and L. Klein. 1997. Restricted Delivery Problems on a Network.
Networks 29:205–216.

Atallah M.J. and S.R. Kosaraju. 1988. Efficient Solutions to Some Transportation Prob-
lems with Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing

17:849–869.

18 G–2005–69 – Revised Les Cahiers du GERAD

Ball, M.O. and M.J. Magazine. 1988. Sequencing of Insertions in Printed Circuit Board
Assembly. Operations Research 36:192–201.

Chalasani, P. and R. Motwani. 1999. Approximating Capacitated Routing and Delivery
Problems. SIAM Journal on Computing 28:2133–2149.

Frederickson, G.N. and D.J. Guan. 1992. Preemptive Ensemble Motion Planning on a
Tree. SIAM Journal on Computing 21:1130–1152.

Frederickson, G.N. and D.J. Guan. 1993. Nonpreemptive Ensemble Motion Planning on
a Tree. Journal of Algorithms 15:29–60.

Frederickson, G.N., M.S. Hecht and C.E. Kim. 1978. Approximation Algorithms for Some
Routing Problems. SIAM Journal on Computing 7:178–193.

Garey, M.R. and D.S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness, Freeman, New York.

Hierholzer, C. 1873. Über die Möglichkeit einen Linienzug ohne Wiederholung und ohne
Unterbrechning zu unifaren. Mathematische Annalen VI:30–32.

