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Abstract

The multidimensional scaling (MDS) aims at finding coordinates for a set of n ob-
jects in a (low) ¢ dimensional space that best fits dissimilarity information. To build a
perception map to represent the relative positions of objects under study, the mapping
dimension used is generally 2. The application area for MDS is mostly psychology and
marketing. Unfortunately, the procedure is very sensitive to the parameters used and
to the quality of the optimization performed. In this paper, we propose a reliable and
flexible algorithm that allows the researcher to study the impact of the Minkowsky
parameter (used to define distance measure between objects) on the results. The core
of the algorithm is the use of the Variable Neighborhood Search (VNS) metaheuris-
tic. The algorithm developed is tested with benchmark data (Morse code data). The
choice of the best Minkowsly parameter is then discussed through the use of generated
data and real data collected in an experiment where respondents had to rate pairs of
national and private brands on the basis of their dissimilarities. The impact of distance
measure on the quality of the perceptual maps is evaluated through the computation of
Stress. Two perceptual maps are generated with different distance measures in order
to examine their differences.

Key Words: Multidimensional scaling, Algorithm Metaheuristic, Norm selection,
Marketing application.

Résumé

Le “multidimensional scaling” a pour but de trouver des coordonnées pour des
objets en se basant sur les informations relatives a leurs distances ou dissimilarités.
En considérant les coordonnées des n objets dans l’espace a p dimensions comme
des variables, le “multidimensional scaling” peut étre considéré comme un probléme
d’optimisation globale non convexe avec variables continues. Dans cet article, nous
proposons un algorithme basé sur la Recherche & Voisinages Variables (RVV) pour
résoudre ce probléeme. L’algorithme est testé sur un probleme étalon classique a 'aide
de diverses mesures de distance ou d’erreurs; les résultats sont ensuite décrits et dis-
cutés.
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1 Introduction

The multidimentional scaling (MDS) aims at finding coordinates for a set of n objects in
a (low) ¢ dimensional space that best fits dissimilarity (or similarity) information. The
application area for such technique is mostly psychology and marketing. Indeed, according
to Carroll and Green (1997), the first application of MDS in marketing research is at-
tributed to Torgerson (1958), a psychometrician that examined consumers’ perceptions of
new silver products in New England in the 50s. The graphical representation of this kind
of information in a map was then used by Steffire (1969) to illustrate, in a simple manner,
the positioning of products and brands according to their perceived similarities. MDS was
then applied by many marketing researchers to the area of innovation and brand (and
store) positioning.! The success of MDS was followed by a skeptical movement toward
other multivariate techniques? (i.e. conjoint analysis, multiple regressions). A parallel
stream of research criticized the methodological issues related to MDS at the stages of
data collection (Bijmolt and Wedel, 1995), and dimensionality (Kruskal, 1964).

The methodological stream of research that dealt with the issue of distance estimation
in MDS was mentioned by Kruskal (1964). It highlighted the fact that the optimization
problem underlying MDS is non-convex and has a set of local optima (even for relatively
small problems) that lead to biased perceptual maps, when the euclidian distance is used
as an estimation method of distances between the objects in the map.

Many authors suggested the use of different algorithms in order to solve this optimiza-
tion problem. Hubert et al. (1992) recommended the use of combinatorial methods, while
Groenen and Heiser (1996) and Groenen et al. (1999) developed heuristics i.e., tunneling
and distance smoothing, and simulated annealing (Brusco, 2001 ; Leung and Lau, 2004).
Unfortunately, none of these methods takes into account the recent developments in the
area of global and combinatorial optimization.

In this paper, we propose a reliable and flexible algorithm that allows the researcher
to study the impact of the distance measure (known as the Minkowsky parameter) on the
results.?

The core of the algorithm is the use of the Variable Neighborhood Search (VNS) meta-
heuristic (Hansen and Mladenovié¢, 2001, Mladenovi¢ and Hansen 1997, Caporossi and
Hansen 2005).

This algorithm is then applied to a marketing problem related to the positioning of store
brands compared to national brands. Many perceptual maps are produced by using differ-
ent distance measures computed from data obtained in an experiment. The experiment is

'For a comprehensive review of marketing applications of MDS, see Cooper (1983)
2Carroll and Green, (1997)
3The program is available from the authors upon request
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done with a sample of 45 respondents (mainly students) that had the task of indicating the
levels of dissimilarities between 8 brands providing acetaminophen 325 mg caplets (5 store
brands and 3 national brands). Among these 45 respondents, only those familiar with all
the brands (16 respondents) were selected to estimate distances and generate perceptual
maps.

The first section highlights the issue of choosing the right parameter when computing
distances in perceptual maps. The second section describes the problem and its formu-
lation. The third explains the VNS metaheuristic and its implementation. The fourth
section is devoted to the evaluation of the performance of the algorithm and numerical re-
sults. The fifth section describes the numerical impacts of the variation of the Minkowsky
parameter p on the error (Stress). A real data analysis is proposed on the sixth section
and the last one concludes.

2 The distance measure issue

MDS provides a graphical representation of objects on the basis of distances computed
from the positions of the objects on the map. Distances should reflect the similarities and
dissimilarities between them.

To evaluate the distance between pairs of objects, a version of the Minkowsky formula is
usually used. Let X = {z;;} be the coordinates matrix where the x;; is the kth coordinate
of the object i. If the dimension of the space is ¢, the Minkowsky distance d;; between
objects ¢ and j is defined as follows:

q 1/p
dij = (Z |k — ib‘jk\p> (1)
k=1

where p is called the Minkowsky parameter. Particular cases of the Minkowsky distance
arise when p = 1, p = 2 or p = oo; the corresponding distances are city-bloc (or Man-
hattan) distance, Euclidian distance or maximum difference between coordinates. If the
Euclidian distance is mainly used in practice, there is no evidence that it best corresponds
to the perception people have. For instance, consider a study on objects having only two
attributes, say the shape and the color. If we would like to analyze the relative perception
of a blue square, a red square and a red disk, we would most likely find that the distance
between the blue square and the red square is the same as the distance between the red
square and the red disk: 1 as they only differ by one attribute. The distance between the
blue square and the red disk will probably be 2 rather than /2. This simplistic example
gives the idea that we cannot be sure our brain uses euclidian distance (in fact, we don’t
know which distance it uses). On the other hand, there is no evidence either that the space
in which it is evaluated is 2, or the number of attributes the objects under study has.
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3 Problem formulation

If the dissimilarity between objects 7 and j is noted J;;, a version of the MDS problem
could be to minimize the following generalization of Stress S:

n—1 n
min S(X) = Z E wij|f(8:5) — dij|! (2)

i=1 j=i+1

where w;j, the weight associated to the pair of objects i and j reflects the confidence
one have in the corresponding d;;, f() is a non decreasing transformation function, and
[ the objective criterion value; if [ = 1, the objective is to minimize the sum of absolute
deviations and if [ = 2, the objective is to minimize the sum of squared deviations (sum of
squared errors). In the present paper, we will concentrate on the case where w;; =1 Vi, j,
flz)=zandl=1orl=2.

4 Resolution approach: the Variable Neighborhood Search

This n x ¢ continuous variables (z;;) optimization problem is unfortunately not convex
and may have a large number of local optima. For this reason, we decided to use a modern
metaheuristic to solve it: the Variable Neighborhood Search (VNS).

The Variable Neighborhood Search is a metaheuristic, i.e., a framework for building
heuristics that may be applied to a wide variety of problems. Its principle is to alternate
local search and various perturbations of the solution. In order to get better results,
the local search part could involve some special strategies such as using a succession of
local search algorithms (variable neighborhood descent) or nesting heuristic methods. In
the current algorithm, we alternate a simple variable neighborhood search that has weak
diversification properties, called Improved Local Search (ILS), with a true perturbation
scheme P. The first may be viewed as a search intensification phase while the other is
the diversification phase. Depending on the value of the magnitude parameter k, the
perturbation will be more or less important, constraining the algorithm to first explore
the close neighborhood of the best known solution to date (and to take advantage of
the previous optimization unlike the multistart algorithm would do) and explore wider
neighborhoods only if the close neighborhood fails.

The VNS implementation used here is the following:

Initialization
Let k = 0, choose a random initial solution Xj.
Set S(X*) «— S(Xp)
While the stopping criterion is not met, do:
X'« ILS(X) (the solution obtained from X by improved local search).
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If S(X') < S(X*):
X*— X'
k<0
else,
k—k+1
if k> knpas: k<0
X «— Pp(X™) (a solution obtained from X* by a perturbation of magnitude k).
done.

4.1 Improved local search

The improved local search works in the same way as VNS, except that the perturbation
is not intended to explore the neighborhood of the best known solution; its goal is rather
to quickly drive the search to better solutions. If the moves considered for the “pertur-
bations” at this step are useful to improve the search, they do not have the property to
theoretically allow any solution to be found by the algorithm, even if they involve a certain
level of randomization. This property is not required at this step but is necessary for the
perturbation phase.

The first improved local search strategy, involves a Barycenter move and is defined as
follows:

Initialization:
choose the value of m (2 here), k_ils (2 here), set n_ils = 0 and set s_ils = S(X).

While n_ils < k_ils do:
s_cur = LS(X)
if s_cur < s_ils do:
s-tls «— s_cur and n_ils «— 0
else
nals — n_ils + 1
apply n_ils times:
Let obj be a random object
Move obj to the barycenter of its m nearest neighbors according to dissimilarity.
done.

The second improved local search strategy involves the Line move and is defined as
follows:

Initialization:
choose the value of k_ils (2 here), set n_ils = 0 and set s_ils — S(X).
While n_ils < k_ils do:
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s_cur = LS(X)
if s_cur < s_ils do:
s_tls < s_cur and n_ils < 0
else
nals — n_ils + 1
apply n_ils times:
Let ¢ be a random object
Let j be another random object
Move i in the direction of j (forward or backward) so that d;; = d;;.
done.

The local search LS(X) involved as the central part of any improved local search strat-
egy is a gradient based steepest descent with decreasing stepsize as follows:

Initialization:
Set Ir, Irmin, M1, M2 and max_imp.
While Ir < lry;, do:
—_
compute grad(X)
X' — X —lr grad(X)
If S(X') < S(X)
imp «— imp + 1
If imp > max_amp n «— no
else n «— m
X — X'
else n < n; and imp =1
Ir —nxlr
done.

Here we choose Ir = 0.1, lryin = 178, m = 0.9, no = 1.25 and maz_imp = 5. If
the solution is improved for more than 5 consecutive steps, the step size is increased, but
is reduced when the solution gets worse. The principle of reducing the step size during
optimization is a standard technique (used for example in neural networks) to help the
search finding a local optima. Here, we also consider increasing the step size if it is too
small (if the solution is improved each time, we are in the good direction and have no
reason to be slow).

4.2 Perturbation Scheme

In variable neighborhood search, the perturbation scheme consists in applying increasing
magnitude perturbations to the best known solution P(X™*). As slightly moving the
positions of each objects would not change the structure of the solution, it was decided
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that the magnitude of the perturbation would not be associated to the change in the
coordinates of the objects but on the number of objects to move.

The following two perturbations are considered:

e The STD perturbation consists in applying k times the following: Choose randomly
an object obj and randomly change its coordinates.

e The EXC perturbation: Choose randomly two objects obj1 and objo and permute
them.

In practice, we noticed that small perturbations (k. = 2 or 3) are enough to quickly im-
prove the solution, even if this number needs to be increased a little for better performance
on large problems.

5 Performance of the algorithm

5.1 Testing procedure

All the numerical results given in this section have been obtained on a SUN computer with
AMD opteron 250 CPUs running at 2.4 GHz. The benchmark data is a transformed version
of the “Morse code data” (Rothkopf, 1957). The symmetric dissimilarity matrix is deduced
from the confusion matrix C by the same transformation as in Hubert, Arabie and Meulman
(1997) and in Brusco (2001). The transformation is the following: d;; = 0;; = 2 — ¢;; — cji.

5.2 Numerical results

The following tables give a synthesis of the errors obtained for the Morse code data after 10
runs of 180 seconds CPU time. Multistart (MS) is compared to different implementations
of Variable Neighborhood Search (involving the EXC or STD perturbations). Different
improved locals search (BAR and LIN) are also compared to the basic local search (Basic).
Each table shows the comparison for a different parameter p (p = 1 or p = 2) or an error
criterion (sum of absolute deviation or sum of squared errors).

The numerical results obtained show that the Variable Neighborhood Search implemen-
tations significantly improves the quality of the solutions; this is particularly true if the
“LIN” local search scheme is used together with the “STD” perturbation.

From the optimization point of view, these results show that minimizing the sum of
squared errors is easier than minimizing the sum of the absolute deviations. Also, solving
the problem with the Euclidian distance is easier than it is with the Manhattan distance.
In the case of the minimization of the sum of squared errors with the Euclidian distance,
the best known solution was found in almost every case (and when it was missed, the
solution was very close).
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Table 1: Results for 10 runs minimizing the sum of absolute deviation for the Morse code
data with Minkowsky parameter 1

LS BAR LIN Basic BAR LIN Basic BAR LIN Basic
PERT EXC EXC EXC STD STD STD MS MS MS
Min 203.494 | 203.647 | 203.864 | 203.363 | 203.486 | 203.685 | 205.519 | 204.145 | 221.509
Median | 203.582 | 203.79 | 213.065 | 203.412 203.6 208.117 | 208.423 | 207.377 | 228.002
Max 212.376 | 207.262 | 217.16 | 211.291 | 203.925 | 217.838 | 211.300 | 209.330 | 233.035
Avg 204.994 | 204.346 | 211.651 | 204.777 | 203.663 | 209.623 | 208.564 | 207.076 | 228.162

Table 2: Results for 10 runs the sum of squared errors for the Morse code data with
Minkowsky parameter 1

LS BAR LIN Basic BAR LIN Basic BAR LIN Basic
PERT EXC EXC EXC STD STD STD MS MS MS
Min 153.474 | 154.061 | 153.763 | 153.806 | 153.634 | 153.599 | 154.338 | 155.335 | 157.742
Median | 154.286 | 155.05 | 155.434 | 154.198 | 154.179 | 155.098 | 156.758 | 157.183 | 163.008
Max 155.125 | 157.43 | 160.965 | 158.063 | 158.29 | 160.702 | 159.775 | 158.309 | 166.781
Avg 154.385 | 155.388 | 155.689 | 154.953 | 154.732 | 156.599 | 156.99 | 157.204 | 162.779

Table 3: Results for 10 runs minimizing the sum of squared errors for the Morse code data
with Minkowsky parameter 2

LS BAR LIN Basic BAR LIN Basic BAR LIN Basic
PERT EXC EXC EXC STD STD STD MS MS MS
Min 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045
Median | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045
Max 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.098 | 150.098 | 159.098
Avg 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.045 | 159.055 | 159.05 | 159.055

Table 4: Results for 10 runs minimizing the sum of absolute deviation for the Morse code
data with Minkowsky parameter 2

LS BAR LIN Basic BAR LIN Basic BAR LIN Basic
PERT EXC EXC EXC STD STD STD MS MS MS
Min 244.716 | 245.653 | 245.009 244.7 245.57 | 245.042 | 244.701 | 245.952 | 247.676
Median | 244.728 | 246.007 | 245.687 | 244.708 | 245.858 | 245.626 | 244.739 | 246.092 | 248.844
Max 244.857 | 246.249 | 246.575 | 244.771 | 246.139 | 246.004 | 245.497 | 246.562 | 250.308
Avg 244.749 | 245.958 | 245.739 | 244.721 | 245.841 | 245.667 | 244.926 | 246.228 | 249.023

6 Impact of the Minkowsky parameter upon the error mea-
sure

6.1 The Morse code data

As the program described above seems reliable and could handle any value for the
Minkowsky parameter, it may be used to evaluate the impact of the Minkowsky parame-
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ter and find the value that best fits the data. The “Morse code” problem was solved for
p = 0.6 to 3.6 with 0.1 increment. For p < 1, the measure could no more be considered as
a distance but was however computed for the purpose of studying the response curve. In
order to get best results (not to study the performance of the algorithm), the program was
run for more than 10 minutes with various strategies. The obtained curve is not convex
and has a local maxima for p = 2 as shows the Figure 1.

185
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177,54
1754
1725
170 1
1675 L.
165 Rl
162,514

160

)  AARR R TN
157.5 * P * SV,
! \ & MRS =3

1551 o
152,5 +— =% . ; ] . .
05 1 15 2 25 3 35 4

Minkowsky parameter p

Stress

Figure 1: Stress according to the Minkowsky parameter p for the Morse code data

6.2 Generated data

In order to understand this phenomenon and to see wether it is due to the data itself, to
a use of an inappropriate dimension, or to any other feature that may have an incidence
on the results, the same test was then achieved with simulated data where all the external
parameters have been eliminated.

Six data sets have been generated, each consisting in 20 objects with coordinates be-
tween 0 and 10 in a two dimensional space (in order to avoid the bias due to the di-
mension reduction) from which dissimilarities d;; were computed as distances either using
Minkowsky parameter 1 or 2. The dissimilarities have then been randomly noised in follow-
ing way: 52’-]- = 6;5* (1 — § +ua) where u is a uniform 0-1 random variable and o = 0.0, 0.1
or 0.2. Figure 2 shows the results obtained according to the Minkowsky parameter.

7 Real data application

An experiment with a sample of 45 persons has been used in order to collect the necessary
data to test the algorithm and to produce the different perceptual maps. Most of the
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Data generated with p=1 Data generated with p=2
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Figure 2: Stress according to the Minkowsky parameter p for the data generated with
p =1 (left) and p = 2 (right)

respondents are university students that accepted to contribute to the study as volunteers.
The experiment was conducted on an individual basis. Each respondent had the task to
evaluate the level of dissimilarity between pairs of objects on a scale that varies from 1
(very similar objects) to 100 (very different objects). The objects represent 8 brands of
acetaminophen 325 mg caplets: 3 of them were national brands (Atasol, Tylenol and Ex-
cedrin) and the rest of them were private brands sold in Canadian pharmacies (Personnelle,
Life, Equate, Truly, Option). In order to facilitate the task of data collection, a software
(Simili)* has been developed allowing pictures of the products to be displayed with some
details about the brand. A scale was presented for each pair of brands, and the respondent
had to click with the mouse, on the level that corresponds the best to his dissimilarity
perception. At each stage of the procedure, the data provided is directly recorded in a
matrix.

Respondents were asked also to fill a section of the questionnaire with socio-demographic
data and some data related to the use and the familiarity with the different brands. A
graduate student had the task of explaining the procedure to the different respondents in
order to guarantee the data quality.

The Stress is computed for the Minkowsky parameter p = 1...3 and the results are
shown on Figure 3. From this graphic, one does not only notice that the Stress is minimized
for p = 1, but comparing the shape of the curve to the curves of Figure 2 suggests that
p =1 is a better choice.

In order to see the impact of the Minkowsky parameter on the map, two perceptual
maps are drawn, one with p = 1 (Figure 4) and p = 2 (Figure 5). Indeed these two maps

4The software is available from the authors upon request.
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are close one to the other, but already with only 8 objects, one of them (Personnelle) has a
significantly different position. The choice of a distance measure instead of the other could
be misleading (and the change would increase with the number of objects).
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Figure 3: Stress according to the Minkowsky parameter p for the brand data

Persormelle
COption
-
Life:
Atasol *
-
Excedrin
-

Tylenol
L ]

Tru.ry

Equate
L ]

Figure 4: Map obtained with the stores/national brands data using p = 1
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Figure 5: Map obtained with the stores/national brands data using p = 2
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8 Conclusion and future research avenue

The algorithm proposed in this paper may easily handle various parameters and provides
reliable results. These properties were useful when studying the impact of the Minkowsky
parameter on the final Stress. The first remark was that the multidimensional scaling
problem is easier to solve when p = 2 than it is for other values and minimizing the
sum of squared errors is also easier to solve than the other error functions. The second
remark is that the results seems to be better when p # 2 (the final error is smaller).
Surprisingly, this second remark holds for each of the tests we did except for the noise free
data (o = 0) generated with p = 2 (in all the other cases, a local maximum is found when
solving the problem with p = 2). If this is difficult to prove, it is probably due to the
insensitiveness of the euclidian distance to the rotations. For any Minkowsky parameter
other than 2, rotating the whole map changes the distances and may reduce the Stress.
From the optimization point of view, the insensitiveness of the euclidian distance to the
rotations is certainly an asset as any random solution could be expected to be closer to
an optimal configuration than it would be if p # 2. In the case of noisy data, which is a
reasonable assumption in psychology or in marketing, the Stress value could not be used
alone to find out the best Minkowsky parameter. We therefore suggest to build the curve
of Stress value as a function of p. If no strong conclusion could be made, it is likely that
choosing p = 2 is not always the best choice. New experiments should be achieved to
study the choice of the value of p, for example, it would be interesting to see wether the
respondents themselves think the map obtained with p = 1 is better or not than the map
obtained with p = 2. As a complement to this study, it would be interesting to see which
meaning they give to each axis.
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