
Les Cahiers du GERAD ISSN: 0711–2440

Dynamic Point Selection for the
L1 Norm Hyperplane
Separation Problem

S. Blanchard, G. Caporossi,
P. Hansen

G–2005–59

August 2005

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs

auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la

recherche sur la nature et les technologies.

Dynamic Point Selection for the L1 Norm

Hyperplane Separation Problem

Simon Blanchard

Gilles Caporossi

Pierre Hansen

GERAD and
Service de l’enseignement des méthodes quantitatives de gestion

HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada, H3T 2A7
{simon.blanchard;gilles.caporossi;pierre.hansen}@gerad.ca

August 2005

Les Cahiers du GERAD

G–2005–59

Copyright c© 2005 GERAD

Abstract

L1 norm discrimination consists in finding the hyperplane that minimizes the sum
of L1 norm distances between the hyperplane and the points that lie on the wrong
side of the hyperplane. This problem is difficult for datasets containing more than
100,000 points. Since few points are needed to obtain the optimal hyperplane, we
propose a point selection algorithm which iteratively adds the necessary points to a re-
duce set of points. We evaluate different point selection criteria. The resulting method
obtains in reasonable times exact solutions for problems of up to two million points.

Résumé

Le problème de discrimination en norme L1 consiste à trouver l’hyperplan qui mini-
mise la somme des distances en norme L1 entre l’hyperplan et les points qui se trouvent
du mauvais côté de celui-ci. Ce problème est difficile à résoudre exactement pour des
ensembles contenant plus de 100 000 points à discriminer. Puisque peu de points sont
essentiels afin d’obtenir l’hyperplan optimal, nous proposons une méthode de sélection
de points qui ajoutera séquentiellement les points nécessaires à un ensemble réduit de
points. Nous évaluons différents critères de choix des points. La méthode résultante
permet de résoudre exactement dans des temps raisonnables des problèmes qui ont
jusqu’à deux millions de points.

Les Cahiers du GERAD G–2005–59 1

1 Introduction

Given two sets of observations in n dimensional space, the hyperplane separation problem
consists in finding an hyperplane that best separates the two sets according to arbitrary cri-
teria. Such criteria are typically variations of either minimizing the number of misclassified
points or minimizing the distance between the misclassified points and the hyperplane.

Because the problem is NP-complete for all distance norms except L1 [13], researchers
(e.g. [1, 15, 20]) have developed special purpose algorithms and heuristics that can tackle
problems of large size. Other researchers focused on finding alternative methods for find-
ing a separating hyperplane that can cope with the increasing size of datasets. Robust
linear programming [3] and support vector machines [21] are good examples of popular
formulations that, even though quite intuitive, address a different problem than the ones
mentioned above.

In this paper, we propose a fast general iterative scheme for the two group hyperplane
separation problem that finds the optimal solution. We demonstrate the efficiency of the
method by applying it to the problem of minimizing the sum of the L1 norm distances
between the misclassified points and the hyperplane (MSD).

In the next section, we present the L1 norm MSD problem. Then, we introduce the
dynamic point selection algorithm. Finally, we evaluate the gains obtained by using the
proposed approach.

2 Problem formulation

Let A and B be sets of observations in ℜn where A ∈ ℜmA x n and B ∈ ℜmB x n. We want
to obtain an hyperplane h (w, γ) so that the distance of the misclassified points to the
hyperplane is minimum. w is the one by n normal vector of the plane and γ is a scalar.
Traditionally, the basic problem has been formulated as follows [12]:

min
∑

i∈A

yi +
∑

j∈B

zj (1)

subject to −xiw + γ ≤ yi i ∈ A (2)

xjw − γ ≤ zj j ∈ B (3)

yi, zj ∈ R
+, w ∈ R

n, γ ∈ R (4)

where xi and xj are the coordinates of observations from A and B respectively. yi and zj

are variables that are greater than zero if the associated observation is on the wrong side of
the plane and zero otherwise. Several other formulation have been proposed (e.g. [2, 7, 8]),
but this one, as well as the alternatives ones, were proven to be inexact [6, 16] as they did
not prevent the null solution. Later formulations added various normalization constraints
(e.g. [5, 10, 11]), however the normalization constraints added were modifying the problem;
they either rules out some admissible solutions or they didn’t obtain the same solution for

2 G–2005–59 Les Cahiers du GERAD

rotated data or both [3]. This is because they did not take into account that the admissible
region of the problem is a unit sphere in a norm dual to the one used for measuring the
distances between the misclassified points and the hyperplane [13].

When measuring distances using the L1 norm, one must add the following constraints
to the problem (1)-(4):

−1 ≤ wl ≤ 1 ∀l = 1...n (5)

∃q / |wq| = 1 q ∈ (1...n). (6)

If taking constraint (5) into account is easy, constraint (6) cannot be handled directly
without using binary variables. This constraint says that at least one of the w variable
must be equal to 1 or -1. In 2 dimensional space, the admissible solutions for w are
illustrated in Figure 1 as a bold line while the traditional solution sphere for the L2 norm
(Euclidian distance) is shown as a dashed line. The 2n cases it implies (w1 = −1, w1 =
1, w2 = −1, w2 = 1..., wn = −1, wn = 1) could be considered separately as shown in [13].
This implies solving the 2n corresponding linear programs one after the other and keeping
the best solution h∗ as optimal solution.

3 A dynamic point selection algorithm

Very few constraints are active in the final simplex basis. Active constraints are those that
are satisfied to equality; they either correspond to points that are misclassified or on the
separating hyperplane. Contrarily, if a point respects the following condition O for one of
the 2n linear programs it may be omitted for that LP.

Condition O. A point may be omitted for the resolution of one of the 2n problems if

adding it would not change its solution. A sufficient condition is that is does not lie on the

hyperplane obtained and is not misclassified.

Based upon this property, our algorithm solves the problem using a subset of the points
and iteratively adds points that do not respect the condition O. If no point needs to be

Figure 1: Admissible regions in R2, for problems using L1 and L2

Les Cahiers du GERAD G–2005–59 3

added, the optimal hyperplane h∗ is found. To describe the algorithm, we define S as the
working set, i.e. the set of points that is used to construct the current linear program. The
omitted points are noted S.

Solving the problem with S yields a separating hyperplane h(w, γ). We note H the set
of points that are misclassified or on h(w, γ). The set E of omitted misclassified points is
defined by E = H ∪ S. The algorithm is described in Figure 2.

As no point is ever removed from S, the convergence proof of the algorithm is obvious.
The rate of convergence however, depends on the choice of the points to be in the initial
set S.

The convergence property is not affected by the choice of the points added as long as
some points are added to S while E is not empty. It is therefore theoretically not necessary
to add all misclassified points and one may also add points that are correctly classified.
However, our experiments using various strategies at Step 4 lead us to the simple rule
described above.

3.1 Creating the initial working set

To prove the optimality of a solution h∗(w∗, γ∗), it is necessary that all points not satisfying
the condition O for this solution are in the working set. In the support vector machine
terminology, this set of points (vectors) is dubbed as support vectors. To reduce the number
of iterations (and the computing time), a good initial working set should at least contain
all the support vectors for the optimal hyperplane h∗(w∗, γ∗).

For the MSD problem, points that do not respect condition O are associated with
active constraints. As 2n linea programs must be considered simultaneously, even if in
linear programming constraints that are inactive at the optimal solution can be removed
from the problem without changing the solution, some points that respect the condition O

for the optimal hyperplane must be considered. In fact, if we were to include only the
misclassified points and the points that lie on the surface of the optimal hyperplane, we
would obtain what we call a ”reversed” hyperplane (see Figure 3) with optimal value 0
(for the restricted set of points). If only points that do not respect the condition O were
used as initial working set, almost if not all the omitted points would be added at the next

Step 1. Create initial working set S
Do {

Step 2. Find
Step 3. Set
Step 4. Add

h using S

E = S ∩H
S ← S ∪ E

} while (E 6= ⊘)

Figure 2: The dynamic point selection algorithm

4 G–2005–59 Les Cahiers du GERAD

Figure 3: Example of a complete set (left), a working set (right) with a reversed optimal
hyperplane.

iteration. In this case, another of the 2n problems to be considered will happen to provide
a better solution (on the working set) than the one from which h∗ was obtained.

For this reason, and to reduce the number of iterations, even if the problem is initialized
with a good (or even optimal) hyperplane, we must also consider the addition of well
classified points. In our experiments, we started with a heuristically obtained hyperplane
and initialized the working set with all the points not satisfying condition O as well as a
sufficient number of points that are close to the hyperplane. In practice, we added well
classified points until the sum of their distances to the hyperplane was at least as big as
the sum of the distances of the included misclassified points to the hyperplane.

Additionally, even though they are inactive with the heuristic solution, points that are
well classified need to be added to prevent the reversal of the hyperplane. The preferred
way of selecting the points is to sort them by proximity to the heuristic hyperplane and
then select the closest ones until the sum of their distances to the hyperplane definitely
surpasses that of the misclassified ones. Doing so prevents the reversal of the hyperplane.
This is subsequently referred to as PLANCG.

If no initial hyperplane is available, it is possible to create the working set with a random
sample selection from the complete set. The method, in this case, is similar to chunking
as expressed in [19]. This method is hereafter referred to as RANDCG. Our experiments
indicate that including twice as many points as there should be with the optimal solution
brings the best trade-off between preventing the reversal of the hyperplane and including
the fewest points possible. This percentage can be roughly estimated using prior knowledge
of the problem or by using an heuristic.

Les Cahiers du GERAD G–2005–59 5

3.2 Using an upper-bound to improve speed

Let h(w, γ) be the hyperplane obtained from S and d be the corresponding sum of distances
from all misclassified points (from S and S) and h, then T is an upper bound on the optimal
solution value d∗.

Some of the 2n linear programs yield bad solutions because of the dimension restrictions
on their hyperplanes. Since adding points to S cannot decrease the objective value, any
of the 2n linear programs whose solution on S is worse than d cannot improve the current
solution h(w, γ) with value d, and this linear program needs not to be optimized any
further. This leads to substantial savings in optimization times.

This can further be improved by sorting the order in which the 2n problems are solved
using a non-optimal hyperplane, according to importance of absolute value wl. This is
based on the assumption that even after adding new points to the working sets, we have a
greater chance of finding the optimal solution of that iteration on one of the two admissible
surfaces of the hyperplane that have the most importance when calculating the distance
between the points and the hyperplane.

3.3 Similarities with other algorithms

Chunking related methods [4, 18, 19, 22] take advantage from the fact that removing ob-
servations that are well classified will not change anything to the objective function value.
Initially, they were proposed to deal with the large memory needs of support vector ma-
chines, which require keeping in memory a matrix of size (mA + mB)2. Traditional chunk-
ing [22] involves keeping the misclassified points from the previous iteration’s hyperplane,
adding omitted misclassified points and repeating until no omitted point is misclassified.
Because this does not guarantee that the matrix, as it increases in size, will fit in memory,
Osuna et al. [18] fixed it in size and proved that it will still converge to the complete set
optimal solution. Their algorithm therefore requires adding and removing from memory
the same number of observations. Bradley and Mangasarian’s chunking algorithm [4] de-
composes the data into blocks, each representing a different subproblem. At each iteration,
the subproblem with the best optimal fonction value is used to add all the misclassified
points from its own block, to all the other subproblems where they were omitted.

Our algorithm, for the L1 norm MSD problem, is less concerned about memory re-
quirements and more about the computational limitations required when solving the 2n
linear programs, each approximately of size (mA + mB)× n. The objectives, however are
essentially the same: reduce the number of points needed in the working set to a minimum
and keep the number of iterations low as to minimize the number of times the solver is
called. To keep the number of included points to a minimum, our method also takes into
account that some well classified points by the optimal solution are needed. Thus, the
initial working set is chosen according to the distance between the points and an heuristic
hyperplane. This strategy has been successfully used by Glen [9] in his MIP heuristic.
As opposed to the traditional chunking method, when our method is applied to the MSD

6 G–2005–59 Les Cahiers du GERAD

problem, we need to select a better initial working set, with both misclassified and well
classified points, to keep the number of iterations and the number of points to a minimum.

4 Results

4.1 Methodology

Two algorithms are tested. The first is RANDCG, which randomly selects a sample of
points to include in the initial working set and then iteratively adds misclassified points
until the optimal solution of the complete set is found. The second is PLANCG, which
selects both misclassified and well classified points from an heuristic solution and then
iteratively adds misclassified points until the optimal solution of the complete set is found.

The two algorithms were programmed with C++ using CPLEX 8.0’s C++ libraries.
David Musicant’s NDC Dataset Generator (NDC) [17] was used to generate the datasets.
The NDC algorithm’s basic steps go as follows:

• Randomly generate a number of groups centers,

• Distribute points around the groups following a multivariate normal distribution,

• Randomly generate a separating hyperplane,

• Assign the points their class labels based on their group center’s position to the
hyperplane.

By stretching the covariance matrix, it is possible to increase or decrease problem difficulty,
even though the theoretical rate is not available. As in [1], the number of groups was made
to be equal to the number of variable used in the datasets. The computer used is a Xeon
3.06GHz with 2Gb of ram.

Even though there can be many ways for obtaining an initial hyperplane for PLANCG,
we decided to use RANDCG on a sample to produce the heuristic solution needed for
PLANCG. 10% random samples were used. The samples provided sufficiently good initial
solutions so that there was no need to use bigger sample sizes.

4.2 Simulations

4.2.1 Capacity The results shown in Table 1 indicate drastic saves in computational
times. Problems of less than a hundred thousand points are typically solved between
0.5%-2% of the complete set times, depending on whether an initial hyperplane was used
or not.

4.2.2 Robustness Additional iterations, when adjusting the hyperplane, influence little
the time. This is probably because of the hot-starts between iterations. The difference
in times between PLANCG and RANDCG is explained by the number of points that are
needed in the working set. Because RANDCG selects the initial points at random, many of

Les Cahiers du GERAD G–2005–59 7

Table 1: Results with approximately 4% of the points misclassified. Averages of three
runs.

Original Orig. w/ Bound Dynamic Selection
Size RANCG PLANCG

20000 1450 241 15 7
30000 3134 498 30 9
50000 7786 966 73 18
75000 17038 2420 183 35

100000 46102 4706 302 70
250000 - - 2420 674
500000 - - 24291 2981
750000 - - 63033 8010

1000000 - - - 17937
1500000 - - - 38441
2000000 - - - 122856

Table 2: Number of needed points to obtain the optimal solution, for the two dynamic
point selection methods.

Dynamic Selection
Size RANCG PLANCG

20000 2934 1294
30000 4316 1909
50000 7113 3278
75000 10773 4947

100000 14107 6627
250000 35167 16342
500000 69002 32785
750000 103664 48325

1000000 - 65441
1500000 - 97229
2000000 - 130246

points are never needed in finding the optimal solution and unnecessarily slow the problem.
On average, RANDCG needs 3.55 well classified points for every misclassified points in the
optimal solution in order to find it. PLANCG, because it initially chooses points that are
likely to be needed as the hyperplane adjusts itself, needs only 1.66 well classified points
for every misclassified points in order to find the optimal solution. Averages of needed
points for tested problems are displayed in Table 2.

8 G–2005–59 Les Cahiers du GERAD

Another important factor is the difficulty of separation. Since the number of points
needed is proportional to the difficulty of separation, the more difficult is a problem the
lesser the advantage of using the dynamic point selection method should be.

The dynamic point selection algorithm does not seem to be especially sensible to the
number of variables in the problem, at least, not more than the traditional L1 formulation
itself. We did, however, notice a little more variation in the resulting times when the
problems are more difficult with more variables.

5 Conclusion

We proposed a dynamic point selection algorithm that, when applied to the problem of
minimizing the sum of the L1 norm distances between the misclassified points and the
hyperplane, finds the exact solution of the problems within a fraction of the complete
set times. It can solve, in reasonable time, problems up to two million points. Further
developments include the application of the generic dynamic point selection algorithm to
other norms and other problem definitions.

References

[1] Audet, C., P. Hansen, A. Karam, C.D. Ng, S. Perron (2004). “Exact Solution of L∞-
norm and L2-norm Plane Separation”, Les Cahiers du GERAD G–2004–84, Technical
Report, HEC Montréal, 14 p.

[2] Bajgier, S.M., A. Hill (1982). “An experimental comparison of statistical and linear
programming approaches to the discriminant problem”, Decision Sciences, 13, 604–
618.

[3] Bennett, K.P., O.L. Mangasarian (1992). “Robust linear programming discrimination
of two linearly inseperable sets”, Optimization Methods and Software, 1, 23–34.

[4] Bradley, P.S, O.L. Mangasarian (2000). “Massive data discrimination via linear sup-
port vector machines”, Optimization Methods and Software 13, 1–10.

[5] Cavalier, T.M., J.P. Ignizio, A.L. Soyster A.L. (1989). “Discriminant Analysis via
mathematical programming: Certain problems and their causes”, Computers and Op-

erations Research, 16(4), 353–362.

[6] Freed, N., F. Glover (1986). “Resolving certain difficulties and improving the classifica-
tion power of LP discriminant analysis formulations”, Decision Science, 17, 589–595.

[7] Freed, N., F. Glover (1986). “Evaluating alternative Linear Programming Models to
solve the two-group discrimination problem”, Decision Science, 17, 151–162.

[8] Freed, N., F. Glover (1981). “A linear programming approach to the discriminant
problem”, Decision Science, 12, 68–74.

Les Cahiers du GERAD G–2005–59 9

[9] Glen, J.J. (2003). “An iterative mixed integer programming method for classification
accuracy maximizing discriminant analysis”, Computer & Operations Research, 30,
181–198.

[10] Glover, F., S. Keene, B. Duea (1986). “A new class of models for the discrimination
problem”, Decision Sciences, 19, 269–280.

[11] Glover, F. (1990). “Improved Linear programming Models for Discriminant analysis”,
Decision Science, 21, 771–785.

[12] Joachimsthaler, E.A., A. Stam (1990). “Mathematical-Programming Approaches for
the Classification Problem in 2-Group Discriminant-Analysis”, Multivariate Behav-

ioral Research, 25(4), 427–454.

[13] Mangasarian, O.L. (1999). “Arbitrary-norm separating plane”, Operations Research

Letters, 24, 15–23.

[14] Mangasarian, O.L. (2000). “Data Selection for Support Vector Machine Classifiers”,
Proceedings of the sixth ACM SIGKDD international conference on Knowledge dis-

covery and data mining, Boston (USA), 64–70.

[15] Marcotte, P., G. Marquis, G. Savard (1995). “A new implicit enumeration scheme for
the discriminant analysis problem”, Computers Operations Research, 22(6), 625–639.

[16] Markowski, E.P., C.A. Markowski (1987). “An experimental comparison of several
approaches to the discriminant problem with both qualitative and quantitative vari-
ables”, European Journal of Operational Research, 28(1), 74–78.

[17] Musicant, D.R. (1998). NDC: Normally Distributed Clustered datasets [online], Madi-
son, University of Wisconsin. <http://www.cs.wisc.edu/dmi/svm/ndc/>

[18] Osuna, E., R. Freund, F. Girosi (1997). ”An Improved Training Algorithm for Support
Vector Machines”, Proceedings of Neural Networks for Signal Processing VII, Amelia
Island (USA), 276–285.

[19] Platt, J. (1998). “Sequential minimal optimization: A fast algorithm for training
support vector machines”, Technical Report 98–14, Microsoft Research, Redmond,
Washington, April 1998.

[20] Rubin, P.A. (1990). “Heuristic solution procedures for a mixed-integer programming
discriminant model”, Managerial Decisions and Economics, 11(4), 255–266.

[21] Vapnik, V. (1998). Statistical Learning Theory, Springer-Verlag, New York, 736 p.

[22] Vapnik, V. (1982). Estimation of Dependences Based on Empirical Data, Springer-
Verlag, New York, 399 p.

