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3000, chemin de la Côte-Sainte-Catherine
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Abstract

Installment options are a generalization of compound options, where the holder pe-
riodically decides whether to keep an option alive or not by paying the installment. We
propose a numerical procedure, based on dynamic programming coupled with piece-
wise polynomial approximations, to price installment options when the underlying
asset price follows a GARCH process. Numerical experiments are carried out using
data from the Australian Stock Exchange. Computed option prices under GARCH
and Black-Scholes models are compared to traded prices.

Key Words: Dynamic Programming, Option pricing, Installment Option.

Résumé

Les options à paiement différé sont une généralisation des options composées, où
le détenteur doit décider à dates fixes s’il conserve l’option en vie en versant ou non
un paiement. Dans cet article, nous proposons une procédure numérique, basée sur
la programmation dynamique et l’approximation polynomiale par morceaux, pour la
tarification d’options à paiement différé lorsque l’évolution du prix du sous-jacent est
décrite par un processus GARCH. Nous présentons des expériences numériques utili-
sant des données de la bourse Australienne. Les prix d’options calculés à partir de
modèles GARCH et Black-Scholes sont comparés aux prix de marché.

Acknowledgments: We acknowledge financial support from NSERC, SSHRC, IFM2

and HEC Montréal.
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1 Introduction

Installment derivatives have two important features differentiating them from other types

of derivatives: the premium is paid periodically, at pre-specified dates (the installment

schedule), and the holder has the right to stop making the payments, thereby terminating

the contract. For instance, the holder of an American installment option may

1. At any date until maturity: exercise the option, which puts an end to the contract;

2. At any pre-specified date of the installment schedule: decide between paying the

installment, which keeps the option alive until the next decision date, or not paying

the installment, which puts an end to the contract.

Installment options (IO) introduce flexibility in the liquidity management of portfolio

strategies. Instead of paying a lump sum for a derivative instrument, the holder of the IO

will pay the installments as long as the need for being long in the option is present. In

addition, the non-payment of an installment suffices to close the position at no transac-

tion cost. This reduces the liquidity risk typically associated with other over-the-counter

derivatives. Installment options can also be used as an analogy for real options (Davis

et al. 2003) or for the valuation of callable corporate debt (Bounab 2005).

The analogy with compound options can be used for pricing European IOs. In that set-

ting, Davis et al. (2001, 2002) derive no-arbitrage bounds for the price of the IO and study

static versus dynamic hedging strategies within a Black-Scholes framework with stochastic

volatility. In the constant volatility Black-Scholes (1973) setting, Wystup et al. (2004) use

the compound options analogy to obtain a closed-form solution, which nonetheless requires

the numerical evaluation of multivariate normal integrals.

A numerical algorithm to price American IOs under the Black-Scholes assumptions has

been proposed by Ben-Ameur et al. (2004). They use a Dynamic Programming approach

combined with a piecewise linear approximation of the option value. Ciurlia and Roko

(2004) propose a closed-from formula for American options with continuous installments,

again in the Black-Scholes, constant volatility setting.

These papers rely on the constant volatility assumption; an exception is Davis et al.

(2001, 2002), who do not propose a pricing algorithm, but bounds based on hedging port-

folios. However, empirical evidence supports time-varying volatility in financial time series.

In particular, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH)

class of models is prominently used to estimate such series. No-arbitrage option pricing in

a GARCH context was proposed by Duan (1995) and pricing methods for American-style

options in the GARCH framework include lattice-based approaches (Ritchken and Trevor

1999, Duan et al. 2003), Markov chain approximation (Duan and Simonato 2001) and

Dynamic Programming (Ben-Ameur et al. 2005).
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The aim of this paper is to propose a numerical pricing algorithm for American In-

stallment options in the GARCH setting. Similarly to Ben-Ameur et al. (2005), we use a

piecewise polynomial approximation of the option value at discrete estimation times. Nu-

merical experiments using data from the Australian Stock Exchange (ASX) are performed

in order to investigate the properties of IOs in the GARCH setting and to compare the

prices obtained using the GARCH and Black-Scholes (BS) specifications. We also examine

the installment warrant contract traded on the ASX.

The rest of the paper is organized as follows. In Section 2, we briefly present the

GARCH family of models. Section 3 is devoted to the model, the DP recursion and the

approximation scheme. Section 4 discusses the Installment contract traded on the ASX

and reports on numerical experiments. Section 5 concludes.

2 The GARCH Option Pricing Models

The GARCH specifications have been suggested as a response to a first generation of asset

pricing models that assume a constant return volatility for underlying financial assets. In

addition to accommodating changes in the volatility of asset returns, the large GARCH

family allows for the modeling of the asymmetrical over reaction of the market to “bad”

news.

We briefly present the discrete-time GARCH family of models. Let (Ω,F , P ) a filtered

probability space, {St, for t ≥ 0} an F−adapted process as for a basic asset price (hereafter

referred to as the stock), and {Ht, for t ≥ 1} an F−predictable process as for the volatility

of the stock return. Here, Ft indicates the set of available information to investors from all

relevant variables up to time t. The general form of a GARCH(p, q) model, as proposed

by Bollerslev (1986), is

Ht = µ +
p∑

i=1
αiε

2
t−i +

q∑
j=1

βjHt−j ,

where p and q ∈ N are model-selection integers and µ > 0, αi and βj ≥ 0, for all i and

j, are real parameters. The collection of random variables εt/
√

Ht | Ft−1, for t ≥ 1,

are independent and play the role of an innovation process. Since then, various GARCH

specifications were suggested, the most popular using p = q = 1. The difference between

the various specifications mainly resides in the use of different, possibly asymmetrical,

effects of the innovation process on the variable Ht. In the sequel, we use the specification

of Duan and Simonato (2001), but the method can be easily modified to accommodate

the others. Under that specification, the dynamic of the stock return and its conditional

volatility under the data generating probability measure P is described by

ln
St+1

St

= r + λ
√

Ht+1 −
1

2
Ht+1 +

√
Ht+1εt+1 (1)
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Ht+1 = β0 + β1Ht + β2Ht(εt − θ)2

εt+1 | Ft ∼ N (0, 1),

where r is the risk-free interest-rate of return over one period (continuously compounded),

λ is a constant risk premium, and θ is a leverage parameter. The parameters β0, β1,

and β2 are assumed to satisfy β0 > 0, β1 ≥ 0, β2 ≥ 0, and the stationary condition

β1 + β2 < 1. In this setting, the vector process {(St, Ht+1) , for t ≥ 0} verifies the Markov

property. The main result achieved by Duan (1995) is the existence of a P−equivalent

probability measure Q, called locally risk-neutral, under which the process of the stock

price discounted by the risk-free interest-rate of return is a martingale, and no-arbitrage

pricing is valid. Under Q, the dynamic of the asset return and its conditional volatility is

ln
St+1

St

= r − 1

2
Ht+1 +

√
Ht+1ǫt+1 (2)

Ht+1 = β0 + β1Ht + β2Ht(ǫt − θ − λ)2

ǫt+1 | Ft ∼ N (0, 1)

and the no-arbitrage price at t of a claim that promises an FT−measurable random payoff

YT at T is given by:

vt (s, h) = EQ
[
e−r(T−t)YT | St = s and Ht+1 = h

]
(3)

≡ Etsh

[
e−r(T−t)YT

]
,

under the condition that the right-hand side of (3) exists.

3 The Installment Option Pricing Model

3.1 Dynamic Programming Recursion

Consider an American-style installment option written on an underlying asset described

by the GARCH process (1) with maturity T and exercise payoff κ(t, s) when at time t the

underlying asset’s price is s. The no-arbitrage pricing equation (3) makes explicit the fact

that the value of the option depends on the current date, denoted t, the observed price

of the underlying asset, denoted s, and the measured volatility level at t + 1, denoted h.

Here, the time steps t = 0, 1, . . . , T correspond to the (equally spaced) time steps of the

GARCH process.

Let m0 = 0 be the installment option (IO) inception date and {m1, . . . , mn} , 0 <

m1 < m2 < ... < mn < T, a collection of n installment dates scheduled in the contract.

We assume for simplicity that installment dates coincide with time steps (but not all time
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steps are installment dates). An installment design is characterized by the vector of premia

c = (c1, ..., cn) that are to be paid by the holder at dates m1, ..., mn to keep the IO alive.

The price of the IO is the up-front payment required to enter the contract at t = 0.

The value of the IO at time t is thus given recursively by:

vt (s, h) = max
{
κ(t, s); Etsh

[
e−rvt+1 (St+1, Ht+2)

]
− Ct; 0

}
, (4)

t = 0, . . . , T − 1

vT (s, h) = κ(s, T ) (5)

where

Ct =

{
cj if t = mj

0 otherwise,

and where s = St is the price of the underlying asset at t, h = Ht+1 is the measured

volatility at t + 1, and Etsh [e−rvt+1 (St+1, Ht+2)] is defined by (3).

The three elements in the right hand side of (4) are respectively the exercise value,

the (net) holding value, and the (null) abandonment value. Equation (4) thus models the

choices that are available to the option holder: at an installment date, he will pay the

installment and hold the option as long as the (net) holding value is positive and larger

than the exercise value. Otherwise, according to the exercise payoff, he will either exercise

the option (when positive) or abandon the contract (when null). At all other dates, the

option holder will exercise the option if the exercise payoff is larger than the holding value.

Notice that European installment options are special cases with κ(t, s) = 0 for 0 ≤ t < T.

One way of pricing this IO and obtain the value and up-front payment v0(S0, H1) is

via backward induction using (4)-(5) from the known function vT (s, ·) = κ(T, s) and,

simultaneously, to identify the optimal exercise and payment strategy. However, the value

function vt, for t = 0, . . . , T , cannot be obtained in closed-form and must be approximated

in some way. We propose an approximation on a finite grid on the product space of asset

prices and volatilities.

3.2 Approximation

We approximate the value of the installment option at some pricing date t by a piecewise

quadratic-linear interpolation, denoted v̂t, over a grid of size p × q, where p is odd. Let

0 = a0 < a1 < . . . < ap < ap+1 = ∞, 0 = b0 < b1 < . . . < bq < bq+1 = ∞, and define the

evaluation grid points by

G = {(ak, bl) | k = 1, 2, . . . , p and l = 1, 2, . . . , q} .

Define also I = {1, 3, 5, ..., p− 2}, I = I∪{−1, p}, J = {1, 2, 3, ..., q − 1}, and J = J∪{0, q}
with the convention that a−1 = 0 and ap+2 =∞. Thus, the rectangles [ai, ai+2]× [bj , bj+1],

for i ∈ I and j ∈ J , cover the state space (0,∞)× (0,∞).
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Suppose that an approximation ṽt of vt is available at t on G.
For each j = 1, . . . , q, we use a second-degree Newton polynomial interpolation:

P t
ij(s) = ωt

ij0 + ωt
ij1(s− ai) + ωt

ij2(s− ai)(s− ai+1) , (6)

for s ∈ [ai, ai+2] and i ∈ I .

The coefficients ωt
ij0, ωt

ij1, and ωt
ij2 are obtained so that P t

ij(s) = ṽt(s, bj), for s ∈
{ai, ai+1, ai+2}, which result in

ωt
ij0 = ṽt(ai, bj)

ωt
ij1 = (ṽt(ai+1, bj)− ṽt(ai, bj)) / (ai+1 − ai)

ωt
ij2 = (ṽt(ai, bj) (ai+2 − ai+1)− ṽt(ai+1, bj) (ai+2 − ai) +

ṽt(ai+2, bj) (ai+1 − ai)) / ((ai+1 − ai) (ai+2 − ai+1) (ai+2 − ai)) .

Outside I, we use the interpolation coefficients of the adjacent interval:

P t
−1,j(s) = P t

0j(s)

P t
pj(s) = P t

p−2,j(s).

Then, for s ∈ [ai, ai+2] and i ∈ I, we interpolate ṽt (s, .) to each [bj , bj+1], for j ∈ J ,

or extrapolate to [0, b1] or [bq,∞] linearly. The quadratic-linear interpolation v̂t of vt to

R = [a0, ap+1]× [b0, bq+1] is then

v̂t(s, h) =
bj+1 − h

bj+1 − bj

P t
ij(s) +

h− bj

bj+1 − bj

P t
i,j+1(s), (7)

for (s, h) ∈ [ai, ai+2]× [bj , bj+1] and (i, j) ∈ I × J .

3.3 Evaluation

Assume that v̂t+1 is known. Using (4) and (7), an approximation of the holding value at t

and (ak, bl) ∈ G takes the form:

Etakbl
[e−rv̂t+1(St+1, Ht+2)] (8)

= e−r
∑

i∈I

∑
j∈J αt+1

ij0 Etakbl
[I (Rij)] + αt+1

ij1 Etakbl
[St+1I (Rij)]

+αt+1
ij2 Etakbl

[Ht+2I (Rij)] + αt+1
ij3 Etakbl

[St+1Ht+2I (Rij)]

+αt+1
ij4 Etakbl

[
S2

t+1I (Rij)
]
+ αt+1

ij5 Etakbl

[
S2

t+1Ht+2I (Rij)
]
,

where I is the indicator function,

Rij = {St+1 ∈ [ai, ai+2] and Ht+2 ∈ [bj , bj+1]} ,
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and the αt+1
ij0 , . . . , αt+1

ij5 are obtained directly from (6)-(7). The inputs of the evaluation

formula (8) are thus the known coefficients of the interpolation (7) at date t + 1 and the

GARCH transition tables

T 0
klij = Etakbl

[I (Rij)] , T 1
klij = Etakbl

[St+1I (Rij)] , (9)

T 2
klij = Etakbl

[Ht+2I (Rij)] , T 3
klij = Etakbl

[St+1Ht+2I (Rij)] ,

T 4
klij = Etakbl

[
S2

t+1I (Rij)
]
, and T 5

klij = Etakbl

[
S2

t+1Ht+2I (Rij)
]
.

For example, T 0
klij is the probability that the state vector visits the rectangle [ai, ai+2] ×

[bj , bj+1] at t + 1, starting from (ak, bl) at t. The matrices T 0
klij , . . . , T

5
klij can be written

in closed-form (see Ben-Ameur et al. (2005)). Notice that these matrices exhibit special

structure, due to the fact that the random variables St+1 and Ht+2 are functions of the

single normally distributed random variable εt+1. The exploitation of this special structure

is important with regards to the efficiency of the numerical procedure (storage cost and

computational burden).

3.4 Implementation

The DP algorithm may be summarized as follows:

1. Precompute the transition tables (see Appendix 1);

2. Set ṽT (ak, bl) = κ(ak), for (ak, bl) ∈ G, and set t = T − 1;

3. By (7), interpolate ṽt+1 to v̂t+1;

4. By (8), compute Etakbl
[v̂t+1(St+1, Ht+2)] , for (ak, bl) ∈ G;

5. By (4), compute ṽt (ak, bl) = max {κ(ak); Etsh [e−rvt+1 (St+1, Ht+2)]− Ct; 0} , for

(ak, bl) ∈ G;
6. Record the optimal decision at t and (ak, bl)), for (ak, bl) ∈ G;
7. If t = 0, stop; else set t← t− 1 and go to step 3.

4 Numerical Experiments

4.1 ASX Installment Warrants

Installment options are mostly traded over the counter. However, Installment warrants

have been traded on the Australian Stock Exchange (ASX) since January 1997, where

both the number of listed Installment Warrants (IW) and the trading volume have been

growing exponentially. The following is an excerpt from the ASX web site.

“Installment warrants give holders the right to buy the underlying shares or instrument

by payment of several instalments (usually two) during the life of the warrant. The Final
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payment is usually between 40% and 60% of the price of the underlying instrument at the

time of issue. Installment warrants are often covered warrants with the underlying asset

being held in trust / custody for the benefit of the holder. A common feature of installment

warrants is that the holder is entitled to any dividends or distributions and possibly franking

credits paid by the underlying asset during the life of the warrant. An interest component

is usually part of the payments due.”

A plain IW, with two installments, is thus very much similar to a deeply in the money

call option, except for the fact that the holder is entitled to dividends and other credits,

and except for fiscal considerations (part of the payments are considered interest). The

first installment is akin to the option premium, and the second one to the strike price.

Because the underlying is held in trust, there is no dilution effect.

4.2 An Example

We report here on the valuation of two Installment Warrants (IW) written by ABN AMRO.

The first is written on Qanta Airways Limited (QAN) and the second on The Australian

Gas Light Company (AGL). In both cases, we use the daily prices of the underlying stock

from 20/03/2002 to 18/11/2004 (675 trading days) to estimate the GARCH parameters

using a maximum likelihood procedure. We also estimate the daily volatility of stock re-

turn, denoted σBS , assumed to be constant under Black-Scholes. The results are presented

in Table 1.

We use both Black-Scholes and GARCH model to price the IWs on November 18, 2004

(t = 0). The risk-free rate is 0.000137, which is consistent with data available from the

Australian bond market. Dividends are paid on both securities and are taken into account

in the price of the IW (recall that the owner of an IW receives the dividends). Table 2

below gives the relevant data regarding the information available and computed prices

under the two models on November 18, 2004, where AGLIZO and QANIZO are the codes

of ABN AMRO IWs on AGL and QAN respectively. Both models seem to perform rather

well with regards to estimating the value of the IW.

4.3 ASX Rolling Installment Warrants

Several IW include the possibility to be rolled over. In the case of the Rolling IW traded on

the ASX, the premium to be paid by the owner is called the rollover amount. This payment

allows the holder to defer the last installment payment of the first IW by rolling into a

second installment series. This rollover amount is calculated at maturity as the difference

between the capital component of the second IW and the last installment payment to be

paid on the first IW. Therefore, the rollover amount is not known in advance. Notice that

the it may be negative, resulting in a cash payment from the issuer to the owner of the

IW.
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Table 1: Fitting results

Parameter AGL QAN

λ 0.045100 0.031551
β0 0.00001 0.00022
β1 0.808300 0.174259
β2 0.05790000 0.00000639
θ 0 0.406517
σBS 0.01091399 0.02156000

Table 2: IW contracts data and prices

AGLIZO QANIZO

dividend 0.61 at t = 126 0.10 at t = 138
maturity 207 207
2nd installment 6 2
H1 × 105 6.879487 26.64369
S0 13.15 3.54
Market price 7.56 1.62
BS price 7.3933 1.6211
GARCH price 7.3187 1.5994

In a second experiment, we apply our IO algorithm to compute the rollover amount

implied by the market price of the IW under both the BS and GARCH models. More

precisely, we find the value of the installment at date t = 207 such that the value of an

IO with maturity 207+T ′ is equal to the market price of the plain IW maturing at date

T = 207, for increasing values of T ′.

The results are presented in Table 3 for AGLIZO and Table 4 for QANIZO for various

maturities of the second installment series.

The value of the implied installment is increasing with the maturity of the second

contract, which is consistent with what is expected of the rollover amount, since the price

of the second IW should be increasing with maturity, all other parameters being equal.

Notice that for short maturities, the implied installment is negative, and that, under the

BS model, the implied installment is consistently higher than under the GARCH model,

which is consistent with the fact that the BS price is higher than the GARCH price.

The results of this second numerical experiment may be interpreted in the following

way: we find an IO contract, with known installment to occur at date t = 207, and with
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Table 3: Implied rollover amount for AGLIZO

Maturity BS GARCH

207+60 -0.2001 -0.20986
207+120 -0.1514 -0.16116
207+180 -0.10308 -0.11285
207+240 -0.05515 -0.06494
207+300 -0.00764 -0.01741
207+360 0.03952 0.02973
207+420 0.08631 0.07649
207+480 0.13271 0.12284
207+540 0.17877 0.16898
207+600 0.22447 0.21464
207+660 0.26983 0.25994
207+720 0.31483 0,30488

Table 4: Implied rollover amount for QANIZO

Maturity BS GARCH

207+30 -0.00996 -0.01577
207+60 0.00018 -0.0064
207+90 0.01055 0.00315
207+120 0.02110 0.01283
207+150 0.03179 0.02264
207+180 0.04256 0.03262
207+210 0.05344 0.04256
207+240 0.06434 0.05266
207+270 0.07625 0.06275
207+300 0.08907 0.07276
207+330 0.10215 0.08300
207+360 0.11534 0.09317

maturity 207+T ′, which is equivalent to the rolling IW traded on the ASX in the sense

that its theoretical price is equal to the market price of the IW. This procedure allows

the investor to extract the market forecast on the rollover amount to be paid. This is of

special interest since rolling IW are traded on the ASX and can also be purchased via the

underwriter. Recovering the “implied” rollover amount from market prices therefore serves

as a benchmark to set over-the-counter prices, which helps preclude arbitrage.
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5 Conclusion

In this paper, we propose a numerical procedure based on dynamic programming and piece-

wise polynomial approximation for pricing installment options in the GARCH framework.

We illustrate the procedure using data from the Australian Stock Exchange. We estimate

the parameters of the GARCH process followed by two stocks and then price Installment

Warrants written on these stocks under both GARCH and Black-Scholes assumptions. We

compare the theoretical prices obtained under these two different models for the underlying

asset process to the market price of these Installment Warrants. Finally, we extract the

market forecast on the rollover amount implied by market prices for rolling Installment

Warrants of various maturities.
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