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G–2005–33

April 2005

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
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Abstract

Most examples of cycling in the simplex method are given without explanation
of how they were constructed. An exception is Beale’s 1955 example built around
the geometry of the dual simplex method in the plane. Using this approach we give
a simple geometric explanation for a number of examples of cycling in the simplex
method, including Alan Hoffman’s original example. This gives rise to a simple method
for generating examples with cycles.

Résumé

La plupart des exemples du cycle dans la méthode simplexe sont donnés sans ex-
plication de la façon dont ils ont été construits. Une exception est l’exemple de Beale
(1955) établi en utilisant la géométrie de la méthode simplexe duelle dans deux dimen-
sions. En utilisant cette approche nous donnons une explication géométrique simple
pour plusieurs exemples du cycle dans la méthode simplexe, y compris l’exemple orig-
inal de Alan Hoffman. Ceci nous amène à une méthode simple pour produire des
exemples avec des cycles.
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“Cycling is certainly not completely understood.” - Hoffman, 1951.

1 Introduction

What is the magic behind cycling in the simplex method? Every textbook on linear
programming dedicates a section to cycling in the simplex method; however, no single
textbook provides the reader with a geometric intuition behind cycling. This list includes
the classic textbooks of Chvátal [3] and Dantzig [4], and recent books such as Sierksma [11].
The examples are usually presented as a sequence of tableaux or dictionaries - if we follow
the terminology and notation used by Chvátal. Such presentations are sure to convince
the reader that simplex methods can cycle, but do not provide any insight behind the
construction. Consider the first cycling example, concocted by Hoffman in 1951 [7], [4,
p.229], with starting dictionary

x0 = 1

x1 = − cos ϕx3 + ω cos ϕx4 − cos 2ϕx5 + 2ω cos2 ϕx6

− cos 2ϕx7 − 2ω cos2 ϕx8 − cos ϕx9 − ω cos ϕx10

x2 = −[(tanϕ sinϕ)/ω]x3 − cos ϕx4 − [(tanϕ sin 2ϕ)/ω]x5 − cos 2ϕx6

+ 2(sin2 ϕ/ω)x7 − cos 2ϕx8 + [(tanϕ sinϕ)/ω]x9 − cos ϕx10

z = [(1− cos ϕ)/ cos ϕ]x3 − ωx4 − 2ωx6 − 4 sin2 ϕx7

+ 2ω cos 2ϕx8 − 4 sin2 ϕx9 − ω(1− 2 cos ϕ)x10.
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If we set ϕ = 5π/2, ω > (1−cos 2ϕ)/(1−2 cos ϕ) ≈ 4.74 the simplex method using Dantzig’s
rule cycles through a sequence of 10 dictionaries.1 The left hand side variables cycle
repeatedly through the sequence {x0, x1, x2}, {x0, x2, x3}, ... , {x0, x9, x10}, {x0, x10, x1}.

How was this example constructed? Strangely, even Hoffman forgot!

“Finally, we regret that we are unable at this date to recall any details of
the considerations that led to the construction of the example, beyond the fact
that the geometric meaning of [a pivot rule for the simplex method] was very
much in the foreground.” - Hoffman, 1951.

“Two months after I made up the example, I lost the mental picture which
produced it...” - Hoffman, 1994.

This is a shame, as geometry can certainly help students understand the simplex method
through a visual interpretation. In 1997 Lee [8] successfully untangled the algebraic deriva-
tion of Hoffman’s example, and using column geometry (originally known as the simplex

interpretation [4, p.160]) produced a three-dimensional picture. In Figure 1 we exhibit
Hoffman’s example in two-dimensions using the geometry of the dual simplex method,
which was first explained and used to construct cycles by Beale [2], but not used to ana-
lyze Hoffman’s example:

“Unfortunately, the geometric motivation behind Hoffman’s example is not
easy to grasp” - Beale, 1955.

In the next section we see how cycling works in this setting, by giving a simplified version
of this geometrical interpretation. We show that cycling examples obtained from various
linear programming texts have a similar structure, and many are combinatorially equiva-
lent. In Section 3 we give a simple method of constructing examples that contain cycles of
arbitrary even length.

2 Visualizing Cycles

Given a linear program,

max z =
n∑

j=1

cjxj

n∑

j=1

aijxj ≤ bi i = 1...m

xj ≥ 0 j = 1...n,

1Note that in [4], [6], [7], and [8] the bound on ω reads ω > (1 − cos ϕ)/(1 − 2 cos ϕ) ≈ 1.81. In fact,
the tighter bound presented here is required for Hoffman’s LP to cycle using Dantzig’s pivot rule. See
Appendix A for details.
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Figure 1: A picture of Hoffman’s cycle

we add nonnegative slack variables xn+1, ..., xn+m to obtain a system of linear equations,

n∑

j=1

aijxj + xn+i = bi i = 1, ..., m. (1)

Solving these m equations for m − n variables we obtain a dictionary. For example, the
linear program

max z = 10x1 − 57x2 − 9x3 − 24x4 (2)

0.5x1 − 5.5x2 − 2.5x3 + 9x4 ≤ 0

0.5x1 − 1.5x2 − 0.5x3 + x4 ≤ 0

x1, x2, x3, x4 ≥ 0

is encoded by the dictionary

x5 = 0− 0.5x1 + 5.5x2 + 2.5x3 − 9x4 (3)

x6 = 0− 0.5x1 + 1.5x2 + 0.5x3 − x4

z = 0 + 10x1 − 57x2 − 9x3 − 24x4,

and each variable xj corresponds an inequality of (2). If the basic solution, obtained by
setting the cobasic (right-hand side) variables to zero and evaluating the basic (left-hand
side) variables, is nonnegative then the dictionary represents a basic feasible solution for
the linear program, the value of z being the objective value. Simplex methods attempt to
increase the objective value by exchanging a cobasic variable xs with positive coefficient
in the z-row with a basic variable xr while maintaining a basic feasible solution. This
is accomplished via a ratio test which chooses xr such that 1) the coefficient of xs in
equation xr is negative and 2) solving this equation for xs and substituting for xs in the
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other equations then yields another feasible basic solution. This basic operation is called a
simplex pivot. Pivot rules (or refinements) dictate which variables to select; for example,
following Dantzig’s pivot rule [4] we choose the variable in the z−row with largest positive
coefficient. We break ties in the ratio test arbitrarily (usually by selecting the variable with
the smallest index). In our example we would pivot on variables x1 and x5, the former
chosen as it has the largest positive coefficient in the z−row and the latter arbitrarily chosen
from x5 and x6 due to a ratio test tie - caused by degeneracy - yielding the dictionary

x1 = 11x2 + 5x3 − 18x4 − 2x5

x6 = −4x2 − 2x3 + 8x4 + x5 (4)

z = 53x2 + 41x3 − 204x4 − 20x5.

Degeneracy may cause the simplex method to stall, or pivot from dictionary to dictionary
without increasing the objective value. The simplex method cycles if it stalls indefinitely,
revisiting previously computed dictionaries. Continuing with our example, the simplex
method with Dantzig’s rule visits the dictionaries

x1 = −0.5x3 + 4x4 + 0.75x5 − 2.75x6

x2 = −0.5x3 + 2x4 + 0.25x5 − 0.25x6 (5)

z = 14.5x3 − 98x4 − 6.75x5 − 13.25x6,

x2 = x1 − 2x4 − 0.5x5 + 2.5x6

x3 = −2x1 + 8x4 + 1.5x5 − 5.5x6 (6)

z = −29x1 + 18x4 + 15x5 − 93x6,

x3 = 2x1 − 4x2 − 0.5x5 + 4.5x6

x4 = 0.5x1 − 0.5x2 − 0.25x5 + 1.25x6 (7)

z = −20x1 − 9x2 + 10.5x5 − 70.5x6,

x4 = −0.5x1 + 1.5x2 + 0.5x3 − x6

x5 = 4x1 − 8x2 − 2x3 + 9x6 (8)

z = 22x1 − 93x2 − 21x3 + 24x6,

and returns to dictionary (3), cycling through the sequence of bases {5, 6}, {1, 6}, {1, 2},
{2, 3}, {3, 4}, {4, 5}, {5, 6}... The six inequalities of the linear program (2) define a four-
dimensional polyhedron, and the simplex method cycles among the bases of a single vertex.
This geometry cannot help us visualize the cycle. In 1955, Beale [2] constructed a cycle for
the simplex method by considering the geometry of the dual problem. The dual of (2) is
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min w = 0y1 + 0y2 (9)

(1) : 0.5y1 + 0.5y2 ≥ 10

(2) : −5.5y1 − 1.5y2 ≥ −57

(3) : −2.5y1 − 0.5y2 ≥ −9

(4) : 9y1 + y2 ≥ −24

(5) : y1 ≥ 0,

(6) : y2 ≥ 0

which has six inequalities in two dimensions. We can also write the dual problem in
dictionary form. In fact, the dual dictionary is simply a disguised version of the (primal)
dictionary for the primal: the transposed system with signs reversed.

In the dual simplex method the w−row is assumed to have all coefficients non-negative.
The leaving basic variable is chosen from the basic variables with negative constant on the
right hand side of the dictionary. A ratio test is used to choose the entering variable so that
the w−row remains non-negative. It is easy to verify that the dual simplex method applied
to the dual problem will, with a suitably chosen pivot rule, follow the same sequence of
pivots as the primal simplex method does on the primal problem. The sequence of bases
for the primal problem becomes the sequence of cobases for the dual problem, and vice
versa. Graphing (9), the geometry behind a simplex method cycle begins to unveil. We
obtain an arrangement of lines, each bounding an inequality of (9). Figure 2 depicts this
arrangement.

The two-dimensional geometric interpretation of the dual simplex method is simple
when the objective function is zero. For the time being, let’s ignore specific pivot rules
and consider simplex pivots in general. Every line in the arrangement corresponds to a
variable in the dual dictionary. The slack variable yi for i = 3...n corresponds to line i− 2,
while y1 and y2 correspond to lines n− 1 and n respectively.

Each intersection of lines corresponds to a basic dual solution obtained by setting the
two corresponding variables to zero. These are the two dual cobasic variables for a corre-
sponding dual dictionary. For example, the dual dictionary in Table 1 with cobasis {1,2}
corresponds to the intersection of lines labeled 5 and 6. The basic variable chosen in a
pivot corresponds to a violated inequality: in our case the intersection point lies on the
wrong side of line 1, so y3 is the leaving basic variable. The entering variable is chosen from
those with a positive coefficient in the equation for the leaving variable, so that that the
new basic solution will satisfy the inequality corresponding to the entering variable. In the
example we could choose either y1 or y2 as the entering variable. However from the cobasis
{1,6} we could pivot to the cobasis {1,2} since this is on the correct side of line 4. We could
not pivot to cobasis {3,6} as this is on the wrong side of line 5. A negative basic variable
indicates a degree of infeasibility, for example y3 = −10 + 0.5y1 + 0.5y2 indicates that at
the intersection of line 5 and line 6, line 1 is infeasible by 10

0.5 units along line 5 and by 10
0.5
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Figure 2: Chvátal [3]

Table 1: Primal and dual dictionaries

x5 = 0− 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = 0− 0.5x1 + 1.5x2 + 0.5x3 − x4

z = 0 + 10x1 − 57x2 − 9x3 − 24x4

←→

y3 = −10 + 0.5y1 + 0.5y2

y4 = 57− 5.5y1 − 1.5y2

y5 = 9− 2.5y1 − 0.5y2

y6 = 24 + 9y1 + y2

w = 0 + 0y1 + 0y2.

units along line 6 with respect to the vector space basis {y1, y2}. The dual simplex method
terminates when it reaches a point where either no inequalities are violated (optimality) or
when it cannot pivot to a violated inequality without violating one of the two intersecting
lines (dual infeasible).

It is now routine to check that the cycles shown in Figure 1 for Hoffman’s example,
and Figure 2 for our example correspond to valid dual simplex pivots. It follows that the
primal problems pivot through the same cycles, with bases/cobases interchanged.

Our example is derived from the following example found in Chvátal’s book. The first
dictionary of the cycle is presented as

x5 = −0.5x1 + 5.5x2 + 2.5x3 − 9x4 (10)

x6 = −0.5x1 + 1.5x2 + 0.5x3 − x4

x7 = 1− x1

z = 10x1 − 57x2 − 9x3 − 24x4,
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and consists of seven variables and three equations. However, variable x7 never leaves the
basis as the cycle only pivots on the variables x1 through x6. The equation x7 = 1 − x1

only serves to bound the linear program but can be removed from dictionary (10) without
affecting the cycle. It turns out that many other examples found in literature, including
Hoffman’s, can be reduced in this way and then graphed in two-dimensions. In fact, many
are then combinatorially equivalent.

In all eight examples in Table 2, the primal linear program (after reduction to 2 equa-
tions) is unbounded. Thus, by duality theory, all six dual linear programs above are
infeasible. Nonetheless, the simplex method cycles without detecting this fact. (Note that
the shaded region in Figure 1 corresponds to the feasible set of Hoffman’s dual linear
program).

Table 2: Some examples of cycling found in literature
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1

6
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Beale [2] Sierksma [11]
x5 = 0− 1

4x1 + 60x2 + 1
25x3 − 9x4

x6 = 0− 1
2x1 + 90x2 + 1

50x3 − 3x4

z = 0 + 3
4x1 + 150x2 + 1

50x3 − 6x4

x5 = 0− x1 + 32x2 + 4x3 − 36x4

x6 = 0− x1 + 24x2 + x3 − 6x4

z = 0 + 3x1 − 80x2 + 2x3 − 24x4
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Yudin and Gol’shtein [13] Yudin and Gol’shtein [13]
x1 = 0− 2x3 + 3x4 + 5x5 − 6x6

x2 = 0− 6x3 + 5x4 + 3x5 − 2x6

z = 0 + x3 − x4 + x5 − x6

x1 = 0− x3 + 2x4 + 3x5 − 4x6

x2 = 0− 4x3 + 3x4 + 2x5 − x6

z = 0 + x3 − x4 + x5 − x6
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Table 2: Some examples of cycling found in literature (continued)

4

36
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6

Solow [12] Marshall and Suurballe [9]
x1 = 0 + 7x3 + 3x4 − 7x5 − 2x6

x2 = 0− 2x3 − x4 + 3x5 + x6

z = 0 + 2x3 + 2x4 − 8x5 − 2x6

x1 = 0− 1
2x3 + 11

2 x4 + 5
2x5 − 9x6

x2 = 0− 1
2x3 + 3

2x4 + 1
2x5 − x6

z = 0− x3 + 7x4 + 1x5 − 2x6

−10 10 20

100

−20

40

60

6

4 5

20

80

1

3
2

y

y2

1

1
5

7

6

4

2

Chvátal [3] Kuhn [1]
x5 = 0− 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = 0− 0.5x1 + 1.5x2 + 0.5x3 − x4

z = 0 + 10x1 − 57x2 − 9x3 − 24x4

x1 = 0 + 2x4 + 9x5 − x6 − 9x7

x2 = 0− 1
3x4 − x5 + 1

3x6 + 2x7

z = 0 + 2x4 + 3x5 − x6 − 12x7

In no way is the geometry described in this section constrained to cycles with m = 2, as
when m = d oriented lines become d-dimensional oriented hyperplanes and a dual simplex
pivot has an analogous description to its m = 2 counterpart. The geometry can be used
to explain cycling examples with m ≥ 3 such as [5],[9] and [10]. We choose to restrict
ourselves to the two-dimensional interpretation for simplicity.

3 Constructing Cycles

Every two-dimensional arrangement of k inequalities can be encoded as a primal dictionary
with k equations and k + 2 variables. For the time being, let’s ignore specific pivot rules
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and consider simplex pivots in general. Only two basic rules need to be followed to build
a simplex method cycle:

1. Each pivot must be a simplex pivot: the pivot step from the intersection of lines r
and s to the intersection of lines r and t is a simplex pivot if and only if the inequality
bounded by t is violated at {r, s} and the inequality bounded by s is satisfied at {r, t}.

2. The cycle must be represented by closed loop in the diagram.

The path consists of an alternating series of left and right turns in the line arrangement,
as the next point must always satisfy the two currently intersecting lines.

valid

invalidL

R

invalid

validR
L

Table 3: Left and right turns

We use this fact to construct a cycle from scratch and the reader can follow the con-
struction in Figure 3. First, using line segments we draw a path consisting of an alternating
series of left and right turns that forms a closed loop. Note that the number of points must
be even to form a closed loop, and the loop can indeed be self-crossing (as in Figure 4).
Next, we choose coordinate axes (y1, y2), and lines bounding y1 ≥ 0, y2 ≥ 0 so that the
loop lies in the positive quadrant.

→

y

1

2

3

6

8

7

5

4

y

1

2

→

min 0y1 + 0y2

(1) : −y1 ≤ −10
(2) : y1 ≤ 15
(3) : −y2 ≤ −10
(4) : y2 ≤ 15
(5) : 10y1 + y2 ≤ 175
(6) : −10y1 − y2 ≤ −100
(7) : y1 − 10y2 ≤ −70
(8) : −y1 + 10y2 ≤ 150
(9), (10) : y1, y2 ≥ 0

Figure 3

We then fit a line through each line segment in the loop. For each line assign a direction
of feasibility which coincides with the path. Compute these inequalities with respect to
(y1, y2), and add a zero objective function to obtain a dual LP . By duality, we convert to
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a primal LP , add slack variables, and compute an initial dictionary:

x2 = 0 + x1 − 10x3 + 10x4 − 101x7 + 101x8 + x9 − 10x10 (11)

x5 = 0 + x3 − x4 + x6 + 10x7 − 10x8 + x10

z = −5x1 − 15x3 + 10x4 − 75x6 − 165x7 + 85x8 − 15x9 − 25x10.

Now simplex pivots in our diagram correspond to simplex pivots in the primal linear
program, cycling repeatedly through the sequence {x2, x5}, {x2, x8}, {x4, x8}, {x4, x6},
{x1, x6}, {x1, x7}, {x3, x7}, {x3, x5}.

2

In order for the cycle to follow a specific pivot rule, an additional step is required. Note
that for each inequality, ai1y1+ai2y2 ≤ bi for i = 1...8, we can scale both sides by a positive
constant Ci at will as ai1y1 + ai2y2 ≤ bi ⇔ Ci(ai1y1 + ai2y2) ≤ Cibi. These constants in
turn scale the primal variables, yielding the dictionary,

x2 = 0 +
1

C2
x1 −

10

C2
x3 +

10

C2
x4 −

101

C2
x7 +

101

C2
x8 (12)

x5 = 0 +
1

C5
x3 −

1

C5
x4 +

1

C5
x6 +

10

C5
x7 −

10

C5
x8

z = −5C1x1 − 15C3x3 + 10C4x4 − 75C6x6 − 165C7x7 + 85C8x8.

By pivoting along the desired cycle, the corresponding dictionaries constrain the values
of Ci we can choose so that the pivot rule is followed. For example, for the first pivot
to follow Dantzig’s rule we need 85C8 > 10C4 in the primal dictionary. We accumulate
all the constraints on Ci in this manner, and only if we find satisfying values for the Ci’s
then following the pivot rule yields the cycle. (The reader can easily check that for any
dictionary the coefficient for variable xj in the z−row is strictly a multiple of Cj). In our
example we need 85C8 > 10C4, 85C6 > 10C1, 80C7 > 10C3, 135C5 > 15C2, thus setting
Ci = 1 for i = 1...8 results in a simplex method cycle following Dantzig’s pivot rule.

This process has a geometric analogue that can guide us to construct a diagram to
ensure that Dantzig’s rule (or any other coefficient based rule) will follow the loop. The
sufficient condition is as follows: given a diagram, for each point along the loop we list the
pivot rule requirements for the cycle to be followed. For example, at point A in Figure 4
we want to pivot to violated line 1 instead of line 2 or 6 which are also violated at A. This
translates into constraints C1 > C2 and C1 > C6. Similar constraints are obtained from
all points B, C, D, E and F along the cycle. If the set of constraints are satisfiable, as is
the case here, then there exist Ci’s large enough such that Dantzig’s rule will cycle on the
resulting LP . Of course the challenge is to draw a diagram with this in mind!

2We can ignore variables x9 and x10 as they are not involved in the cycle. They correspond, respectively,
to inequalities y1 ≥ 0 and y2 ≥ 0 of the dual LP which are only used to specify the coordinate axes.
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point A : C1 bigger than C2 and C6

point B : C6 bigger than C2

point C : only line 2 violated
point D : C3 bigger than C4 and C5

point E : C5 bigger than C4

point F : only line 4 violated

Figure 3: Crossing loop

Appendix A Hoffman’s ω: The Correct Bound

All references to Hoffman’s example, for example [4], [6], [7], and [8], state an incorrect

lower bound ω > 1−cos(φ)
1−2·cos(φ) ≈ 1.81. If we set the value of ω close to this bound the

simplex method with Dantzig’s rule terminates. We now compute the correct lower bound.
Consider the objective function of the initial dictionary,

z =
1− cos(φ)

cos(φ)
· x3 − ω · x4 − 2 · w · x6 − 4 · sin2(φ) · x7

+ 2 · w · cos(2φ) · x8 − 4 · sin2(φ) · x9 + ω · [ 2 · cos(φ)− 1 ] · x10.

For positive values of ω, x3 is the only choice to enter the basis since 1−cos(φ)
cos(φ) is the only

positive coefficient in the z-row (cos(2φ) < 0 and [2 · cos(φ)− 1] < 0 because π
3 < φ < π

2 ).
We pivot x3 with x1 and obtain the second dictionary with objective function

z =
cos(φ)− 1

cos(φ)
· x1 + ω ·

1− 2 · cos(φ)

cos(φ)
x4 − 2 · sin(φ) · tan(φ) · x5 − 2 · ω · cos(φ) · x6

+
1− cos(φ)

cos(φ)
· x7 − 3 · ω · x8 − 2 · sin(φ) · tan(φ) · x9 − ω · [ 4 · cos2(φ)− 3 ] · x10.

For x4 to enter the basis, using Dantzig’s rule to pivot, we require both

ω ·
1− 2 · cos(φ)

cos(φ)
≥ 2 · sin(φ) · tan(φ)

and

ω ·
1− 2 · cos(φ)

cos(φ)
≥

1− cos(φ)

cos(φ)
,

together yielding a tighter bound

ω ≥ 2 · sin(φ) · tan(φ) ·
cos(φ)

1− 2 · cos(φ)
=

1− cos(2φ)

1− 2 · cos(φ)
≈ 4.74.
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Proceeding in this manner, analyzing all ten dictionaries of Hoffman’s cycle, the correct

lower bound ω > 1−cos(φ)
1−2·cos(φ) ≈ 4.74 is obtained.
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Figure 4: A picture of Hoffman’s example with 0 < ω < 4.74
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