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D. Urošević

G–2005–25

March 2005
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Mathematical Institute, SANU

Belgrade, Serbia

March 2005

Les Cahiers du GERAD

G–2005–25

Copyright c© 2005 GERAD



Abstract

This paper examines the plant location problem under the objective of maximizing
return-on-investment. However, in place of the standard assumption that all demands
must be satisfied, we impose a minimum acceptable level on market share. The model
presented takes the form of a linear fractional mixed integer program. Based on prop-
erties of the model, a local search procedure is developed to solve the problem heuris-
tically. Variable neighborhood search and tabu search heuristics are also developed
and tested. Thus, a useful extension of the simple plant location problem is examined,
and heuristics are developed for the first time to solve realistic instances of this problem.

Key Words: Plant location, investment, market share, fractional programming,
heuristics.

Résumé

On étudie le problème de localisation d’usines avec l’objectif de la maximisation
du retour-sur-investissement. Toutefois, au lieu de l’hypothèse usuelle que toutes les
demandes doivent être satisfaites, nous imposons un niveau minimum acceptable sur
la part de marché. Le modèle proposé prend la forme d’un programme linéaire frac-
tionnaire en variables mixtes. Sur la base de propriétés de ce modèle, on développe
une procédure de recherche locale pour résoudre le problème de manière heuristique.
Des heuristiques de recherche à voisinage variable et de recherche avec tabous sont
également développées et testées. De la sorte, on examine une extension utile du
problème simple de localisation des usines et on développe pour la première fois des
heuristiques permettant de résoudre des instances réalistes de ce problème.

Mots clés : Localisation d’usines, retour-sur-investissement, part de marché, pro-
grammation linéaire fractionnaire, heuristiques.
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1 Introduction

The simple plant location problem requires choosing facility sites on a network to open in
order to serve a given set of customers with known demands at minimum total cost. Thus,
the objective is to find the best balance (or tradeoff) between the fixed costs associated
with opening facilities and the variable costs associated with supplying and transporting the
product or service to the market. This problem, beginning with the original formulation by
Balinski (1965) (also attributed to Stollsteimer, 1963, and Kuehn and Hamburger, 1963),
has received considerable attention in the literature on location theory, and several exact
and approximate methods have been proposed to solve it. See, for example, the surveys in
Krarup and Pruzan (1983), Labbé et al. (1995), Labbé and Louveaux (1997), and relevant
chapters in Mirchandani and Francis (1990), Francis et al. (1992) and Daskin (1995).

The inherent assumptions of the basic model may severely restrict its usefulness in
practice. ReVelle and Laporte (1996) suggest that minimizing total cost should be replaced
by maximization of the return-on-investment (ROI) as the real objective in an industrial
application. This latter objective is investigated in Myung et al. (1997) and Brimberg and
ReVelle (2000). In both papers, the solution that maximizes ROI is obtained by solving
a related bicriterion model. Myung et al. use profitability and ROI as the two criteria
to be maximized. However, the problem is converted to a parametric single objective
uncapacitated facility location problem having the same form as the basic model, and
which is shown to produce the same set of efficient points as by the weighting method.
Brimberg and ReVelle use profitability and the investment cost as their two criteria (other
models are also suggested), and apply the weighting method directly. In both cases, the
maximum ROI solution is one of the efficient points obtained in the solution process.

The basic model makes the assumption that all demands must be satisfied. However,
in a real situation, some customers may be unprofitable or only marginally profitable (e.g.,
these customers have remote locations), and hence, they should not be included in the
picture (see, e.g., Brimberg and ReVelle, 1998, for further discussion on this subject). The
solution that maximizes profitability or ROI, therefore, generally captures less than 100%
of market share. Brimberg and ReVelle (2000) suggest that the requirement to satisfy all
demands be relaxed; however, without a constraint on market share, the solution will not
guarantee an adequate amount of profit. In fact, there always exists an optimal solution
in which only the facility offering the highest return on investment is opened (ReVelle and
Laporte, 1996). Myung et al. (1997), in the context of their bicriterion model, also remove
the requirement to satisfy all demands. An additional constraint imposes a minimum
acceptable level of profit.

The aim of this paper is to present a formal model that maximizes return-on-investment
subject to an acceptable lower bound on percent of market share in line with the recom-
mendation in ReVelle and Laporte (1996). By parameterizing the percent of market share,
the model further allows the decision-maker to examine the tradeoff on ROI over the full
range of market share. We also propose some powerful heuristics to solve the model di-
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rectly, rather than finding the efficient points of a related bicriterion model, as suggested
in earlier papers. Whereas these earlier papers consider exact solution methods and apply
them only to small instances of their linearized models, our heuristics allow much larger
problem sizes to be investigated with reasonable requirements on computing time and
memory.

The remainder of the paper is organized as follows. In the next section, we present
the maximum ROI model with market share, and derive some results that are useful for
solving it directly. A local search procedure is proposed in Section 3 for finding local
optima of the model. The local search is subsequently used in Variable Neighborhood and
Tabu Search heuristics developed in Section 4. Computational experience is discussed in
Section 5, followed by some conclusions and directions for future research.

2 The model

We introduce a similar notation as given in ReVelle and Laporte (1996). Consider the
following input data:

i, I = {1, . . . , m}, denote the index and set of eligible plant sites;

j, J = {1, . . . , n}, the index and set of demand points or customers;

fi = fixed cost for opening a new facility at site i;

ei = fixed expansion cost per unit produced at site i;

gi = variable cost per unit produced at i (labor, materials, overhead, etc.);

cij = cost to deliver customer j’s full demand from site i;

dj = demand for the product at j;

pj = price per unit sold to customer j;

opening costs and demands are assumed to be positive (fi > 0, ∀i, dj > 0, ∀j); all other
parameters have nonnegative values. All costs relate to the same time horizon.

The decision variables are given by:

yi, a zero-one variable, equal to 1 if a new facility is opened at site i, and 0 otherwise;

xij = fraction of j’s demand supplied by a facility at site i.

Using this notation, the ROI plant location problem with market share may be formu-
lated as follows:

max z(X, Y ) =

∑m
i=1

∑n
j=1 (pjdj − cij − gidj) xij

∑m
i=1 fiyi +

∑m
i=1

∑n
j=1 eidjxij

(ROI)
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s.t.

m
∑

i=1

xij ≤ 1,∀j ∈ J, (1)

m
∑

i=1

n
∑

j=1

djxij ≥ Dα, (2)

0 ≤ xij ≤ yi ∀i ∈ I, ∀j ∈ J, (3)

yi ∈ {0, 1}, ∀i ∈ I, (4)

where D =
∑

j∈J dj is the total market share, and 0 ≤ α ≤ 1 denotes a minimum

acceptable fraction. The numerator in the objective function gives the net profit (total
revenue - variable costs), normally expressed on an annual basis, while the denominator
gives the total fixed investment as a net present value. The ratio of the two sums estimates
the return on investment as a function of the decision variables (X, Y ). Note that the
constraints in (1) now imply that all demands do not have to be satisfied. However, the
total demand satisfied must meet a minimum acceptable percentage of market share as
specified in (2). The constraints in (3) imply that any site i must be opened (yi = 1) if a
positive flow emanates from that site.

Setting α = 0 effectively removes constraint (2) from the problem. Then, if the net
profit per unit,

πij = pj − cij/dj − gi > 0, (5)

for some pair (i, j), it is clear that the optimal solution to (ROI) must include some
positive production. Otherwise, if πij < 0, ∀(i, j), we obtain the trivial solution of keeping
all production sites closed. Assuming (5) holds for some (i, j), we obtain the following
known but unproven result.

Property 1 An optimal solution of the (ROI) problem without market share is given by
a single open facility site that offers the highest return on investment.

Proof. Solve (ROI) without constraint (2) and with only site i open to obtain z(i) = Pi/Vi,
where Pi and Vi are the corresponding profit and investment. Repeat for i = 1, . . . , m, and
reorder the indices so that z(1) ≥ z(2) ≥ · · · ≥ z(m).

Next consider the problem with sites 1 and 2 open, and no others, and let z(1, 2) =
(P (1)+P (2))/(V (1)+V (2)) denote the optimal solution, where P (1), P (2), and V (1), V (2)
are respective profit contributions and investments. It is clear that

z(1) ≥ max{P (1)

V (1)
,
P (2)

V (2)
}.
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Furthermore, by elementary algebra, we know that

max{P (1)

V (1)
,
P (2)

V (2)
} ≥ P (1) + P (2)

V (1) + V (2)
.

Thus, z(1) ≥ z(1, 2). We may use an inductive argument to show that max ROI cannot
exceed z(1) for any combination of open sites. 2

Algorithm 1 (exact solution of ROI without market share constraint)

Step 1. For i = 1, . . . , m do:
(1) calculate unit profit from customer j, πij , j = 1, . . . , n;
(2) arrange πij values in nonincreasing order,

π
(1)
i ≥ π

(2)
i ≥ · · · ≥ π

(n)
i ;

(3) set P = 0, V = fi, z(i) = 0, ℓ(i) = 0;
(4) for ℓ = 1, . . . , n do:

(a) P = P + π
(ℓ)
i d

(ℓ)
i , V = V + eid

(ℓ)
i , z = P/V ;

(b) if z ≥ z(i), set z(i) = z, and ℓ(i) = ℓ;
else return last solution for site i.

Step 2. Set i∗ = arg max{z(i), i = 1, . . . , m}.
Step 3. Retain solution found for i∗ as optimal. �

Thus, we have a simple O(mn log n) algorithm to solve (ROI) without constraint (2).
Furthermore, the total demand satisfied in the obtained solution provides a lower bound
on percentage of market share:

αmin =

∑ℓ(i∗)
ℓ=1 d

(ℓ)
i∗

D
. (6)

Now consider (ROI) with the market share constraint (2) reinstated, and a specified
subset I0 ⊆ I of open facility sites; that is, yi = 1, ∀i ∈ I0, and yi = 0, ∀i ∈ I \ I0. Let
K =

∑

i∈I0
fi represent the total opening cost for this solution. We may rewrite (ROI) as

follows:

max z0(X) =

∑

i∈I0

∑n
j=1 πijdjxij

K +
∑

i∈I0

∑n
j=1 eidjxij

(ROI-1)

s.t.
∑

i∈I0

xij ≤ 1,∀j ∈ J, (7)
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∑

i∈I0

n
∑

j=1

djxij ≥ Dα, (8)

xij ≥ 0, ∀i ∈ I0, ∀j ∈ J. (9)

Next convert (ROI-1) into the following associated parametric problem:

max







∑

i∈I0

n
∑

j=1

πijdjxij − s(K +
∑

i∈I0

n
∑

j=1

eidjxij)







(P1)

s.t. (7), (8) and (9),

where s ∈ R is a parameter. Let us denote the optimal value of the objective function in
(P1) by F (s). It is well known that solving (ROI-1) is equivalent to finding the unique
root of the nonlinear equation F (s) = 0 (Dinkelbach, 1967).

Suppose now that we fix the value of s. The constant −sK may be deleted from the
objective function, leaving us with:

max







∑

i∈I0

n
∑

j=1

(πij − sei)djxij







(P2)

s.t. (7), (8) and (9). It is readily seen that (P2) may be solved by a greedy approach. That
is, the unit profit coefficients

ξij = πij − sei (10)

are ranked in nonincreasing order, given by

ξi1j1 ≥ ξi2j2 ≥ · · · ≥ ξitnjtn
(11)

where t = |I0|. Then we assign the customer demands once (to satisfy (7)) in order of
highest unit profitability until the ξij values become negative. If the market constraint
is satisfied, stop; else continue to add customer demands in order until the constraint is
just satisfied. Since each unit of demand is added to the solution in order of greatest
profitability, it is clear that the greedy solution must be optimal.

Property 2 Given that the m × n coefficients ξij are arranged in nonincreasing order,
problem (P2) is solvable in O(mn) time.

Proof. Observe that the sequence in (11) may be constructed in linear time in the number
of elements (m × n) of the larger sequence. Since this step governs the complexity of the
procedure for (P2), the result immediately follows. 2

Now the resolution of F (s) = 0 (and therefore solving (ROI-1)) is readily achieved.
Noting that the objective function is convex piecewise linear, we may, for example, apply
directly the Newton-Raphson method (also known as Dinkelbach’s method) as follows.
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Algorithm 2 (solving ROI-1)

Step 1. Choose an initial value, s0 (e.g., s0 = 0), and set iteration counter ℓ = 0.

Step 2. Solve (P2) for s = sℓ; let Xℓ = (xℓ
ij) denote the obtained optimal solution. If

F (sℓ) = 0, stop.

Step 3. Determine the new value of s,

sℓ+1 = sℓ +
F (sℓ)

(

K +
∑

i∈I0

∑n
j=1 eidjxℓ

ij)
;

set ℓ = ℓ + 1, and return to step 2. �

It is interesting to note that parameter ”s” has an economic interpretation as a discount
factor on the investment. Furthermore, F (s) may be viewed as an annual (or per period)
net profit after discounting the investment cost. The value sl obtained at the end of
algorithm 2 (F (sl) = 0) then gives the internal rate of return achievable for the specified
subset I0 of open facilities, i.e., the final value of s gives the best return on investment that
may be achieved with I0.

3 A local search procedure for (ROI)

From the preceding section, we see that once the subset of facility sites that are opened,
I0 ⊆ I, is given, the related problem (ROI-1) may be solved exactly and efficiently using
algorithm 2. Furthermore, for an assumed value of s, the related subproblem (P2) is
solvable in O(mn) time (see property 2). This insight may be readily incorporated in a
heuristic procedure for finding local optima in the original problem (ROI).

The proposed local search borrows the standard drop/add/interchange neighborhood
from the simple plant location problem (e.g., see Kuehn and Hamburger, 1963, Manne,
1964, Feldman et al., 1966, Teitz and Bart, 1968, Arya et al., 2001, Ghosh, 2003, and
Hansen et al., 2003, among others). That is, given a current solution with open facilities
contained in I0, we consider all neighborhood points obtained by one of the following
moves:

(i) closing an open site, i1 ∈ I0 (I0 := I0 \ {i1}),
(ii) opening a closed site, i2 ∈ I \ I0 (I0 := I0 ∪ {i2}), or

(iii) interchanging an open site i1 with a closed site i2 (I0 := I0 \ {i1} ∪ {i2}).
Denote the current solution as x0, and the given neighborhood as Nloc(x0). The solution
x0 is characterized by the set of open facility sites I0, and the vector (Xf , sf ) obtained by
solving (ROI-1). We see that there are generally (m + t(m − t)) points in Nloc(x0), where
again, t = |I0|, with the exception being t = 1 (move (i) not allowed) where the number
in the formula is reduced by 1.
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Two variants of local search are outlined below for the established neighborhood Nloc.
The first solves the related problem (ROI-1) exactly at each neighborhood point:

Local search 1 (LS-1)

Step 1. Set x∗ := x0.

Step 2. Repeat for each point in Nloc(x0):
solve (ROI-1) with algorithm 2 to obtain solution x.
if ROI(x) > ROI (x∗), x∗ := x.

Step 3. If x∗ = x0 (no improvement found in step 2), stop;
else x0 := x∗, and return to step 2. �

The second procedure solves (ROI-1) approximately by fixing the value of s found at
x0 at all the neighborhood points of x0, and, due to its faster speed, is intended for
experimentation on larger problem instances.

Local search 2 (LS-2)

Step 1. Set x∗ := x0.

Step 2. Repeat for each point in Nloc(x0):
solve (P2) for s = sf to obtain solution x′;
if ROI(x′) > ROI (x∗), x∗ := x′.

Step 3. If x∗ = x0, stop;
else solve (ROI-1) with algorithm 2 to upgrade incumbent solution x∗;
x0 := x∗ (sf := sf (new)), and return to step 2. �

Implementation details regarding the data structure used for swap moves, updating
of the next solution, etc., are omitted here since they are adapted from Hansen and
Mladenović (1997) or Hansen et al. (2003).

4 Using metaheuristics with embedded local search

Variable neighborhood search (VNS) is a recent metaheuristic for solving combina-
torial and global optimization problems (e.g., Mladenović and Hansen, 1997, also see the
surveys in Hansen and Mladenović, 2001, 2003), whose basic idea is to move the search
systematically to different neighborhoods in order to “jump” out of a local optimum trap.
Thus, in our case, the objective is to apply VNS in order to improve the incumbent solution
obtained from the local search. To this end, a neighborhood structure must be defined on
the solution space. Fortunately, we may use a similar neighborhood structure as given in
Hansen et al. (2003) for the simple plant location problem (SPLP).

Let S denote any subset of open facilities, and x = (Y, X, s) any optimal solution of
(ROI-1) obtained for S(= I0), where Y is the vector of yi values defined by S. Let X
denote the space of all such possible solutions x. Note that the solution may not be unique
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for given S, so that the total number of points in X is bounded below by 2m − 1 (null set
not included). Let x1(S1), x2(S2), be any two solutions in X ; then we define the distance
between them as

ρ(x1, x2) = |(S1 \ S2) ∪ (S2 \ S1)| = ‖Y1 − Y2‖, (12)

where the last term denotes the Hamming distance between Y1 and Y2. If S2 = S1 \{i1} (a
drop) or S2 = S1 ∪ {i2} (an add), ρ(x1, x2) = 1; if S2 = S1 \ {i1} ∪ {i2} (an interchange),
ρ(x1, x2) = 2. The kth neighborhood Nk(x) of a current solution x is defined as the set of
all possible solutions x′ derived from x by any combination of exactly k total drop, add,
or interchange moves. Note that the neighborhood used before for the local search (Nloc)
corresponds to N1 in the current formulation.

Using the neighborhood structure defined above, we are now ready to apply the steps
of VNS on problem (ROI). The following parameters need to be specified or tailored for
the problem instance at hand:

tmax: limit on execution time (stopping condition)

(kmin, kmax, kstep): respectively, the minimum and maximum neighborhood size and
step between neighborhoods used in the shaking operation.

The basic version of VNS eliminates the requirement to customize parameters except for
tmax, by setting kmin = kstep = 1, and kmax = m, i.e., the total solution space is covered.
(Note that the maximum possible distance between two solutions is equal to m.) Once
an initial solution x(S) is found by local search, our implementation of VNS proceeds as
follows.

Variable neighborhood search (VNS)

Repeat the following sequence until the time limit tmax is reached:

Step 1. k := kmin

Step 2. Until k = kmax, repeat the following steps:

(a) Shaking. Generate a subset Sk at random from the kth neighborhood of the
incumbent solution x, and solve (ROI-1) using algorithm 2 to obtain the asso-
ciated point x′ ∈ Nk(x).

(b) Local search. Apply one of the given variants of local search with x′ as initial
solution; denote by x′′ the output solution.

(c) Move or not. If ROI(x′′) > ROI(x), move there (x := x′′), and continue the
search with Nkmin

(k := kmin); else, k := k + kstep. �

The shaking operation requires some further explanation. In order to obtain a random
point x′ in the kth neighborhood of x(S), drop, add, or interchange moves are chosen
randomly k times while these moves are still available. Note that the maximum allowable
number of drop moves = min{k, |S|} if k 6= |S|, and k − 1, if k = |S|, and maximum
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allowable number of add moves = min{k, m− |S|}. Since the distance from x is increased
by 2 for each interchange move, the maximum number of such moves = min{k, m − |S|},
if k ≤ |S|, and min{|S|, m − k}, if k > |S|. The remaining open sites from S and closed
sites from I \ S are chosen randomly in each move depending on whether the move is a
drop, add, or interchange. Further details of implementation follow closely the primal VNS
procedure in Hansen et al. (2003) for the simple plant location problem.

Tabu search (TS) is a well–known metaheuristic that allows uphill (downhill) moves
when a local minimum (maximum) is reached (see, e.g., Glover, 1989, 1990, Glover and
Laguna, 1997). In our implementation of tabu search, we select a random starting point
x(S) ∈ X and perform a local search (LS–1 or LS–2) starting from that point. The search
is restricted to the N1 neighborhood of the current solution x, and a move is always made
to the best solution x′ ∈ N1(x) \ T , where T ⊂ N1 represents tabus or the set of forbidden
moves.

Two tabu lists are maintained to avoid cycling, and we use the same stopping criterion
(tmax) for comparison purposes with VNS. This is the single parameter used since the
lengths of both tabu lists, that are usual TS parameters, are changed randomly in each
iteration from [1, p] and [1, m − p] for the first and the second tabu list, respectively (p is
the current number of open facilities). In fact, we apply the so-called Chain interchange TS
suggested by Mladenović et al. (1996), where facilities currently in the solution (Vin) and
facilities out (Vout) are both divided into non-tabu and tabu subsets (V n

in, V t
in, V n

out, V t
out).

The interchange of two facilities is performed by changing positions of four elements in the
list: the facility that goes out is chosen from V n

in and replaced with one that belongs to
the solution as well (i.e., from V t

in), but whose turn has come to change tabu status; in its
place comes a facility from V n

out, which is substituted by an element from V t
out; finally, the

chain is closed by placing the facility from V n
in in V t

out. In that way the Tabu Search recency
based memory is easily exploited, i.e., the possibility of getting out of a local optimum is
achieved without additional efforts. For add or drop moves, the corresponding tabu list is
taken into account.

Chain-interchange Tabu search (TS)

Step 1: Initialization:
(1) Find initial solution x; set x∗ := x;
(2) Initialize Tabu lists (V t

in = V t
out = ∅).

Step 2: Repeat until the time limit tmax is reached:
(1) Find the best non-tabu solution x′ in the N1 neighborhood of x;
(2) If it is improved, then save that solution (x∗ := x′);
(3) Update:

(i) the current solution (x := x′);
(ii) the Tabu lists;
(iii) the first and the second most profitable open facilities of each client. �
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The details regarding implementation are again avoided, since the procedure is very
similar to the one already given in Mladenović et al. (2003), where Chain-interchange TS
is applied to the p-center problem.

5 Computational results

Random test instances are generated as follows: (1) the set of potential facilities coincides
with the set of customers (m=n); the coordinates of customers/ potential facilities are
generated by a uniform distribution over a [0,200] × [0,200] square; (2) Euclidean distances
between customers and facilities make up the transportation cost matrix C = [cij ]; (3)

ei = 1, for all i; (4) fi = ⌊45·√n⌋; (5) gi = 200·
√

2·0.5·rand(0, 1); (6) dj = maxi=1,...,m cij/3;
(7) pj = dj · 1.5 · rand(0, 1).

The test instances generated using these parameter settings are intended only to allow
a preliminary comparison of solution quality and running times of the different heuristics
proposed, and not to simulate practical problems or a range of difficult test problems.

Local search. An empirical comparison between the two local search procedures is given
in Table 1. The first two columns give the remaining parameters (m, α) of the problem
instances, while the next two columns report average (out of 10 randomly generated test
instances) objective values obtained by LS-1 and LS-2 respectively. The % deviation is
calculated as

z(LS1) − z(LS2)

z(LS1)
· 100. (13)

The last two columns give corresponding average computing times in seconds. Observe
that LS-1 is 0.60% better on average than LS-2, but several times slower. Hence, we opted
to use LS-2 in all heuristics subsequently tested.

Comparison of heuristics. In Table 2, results obtained by our VNS and TS for solving
ROI with market share constraint are presented. A multistart local search (MLS) procedure
is also included. The columns have the same meaning as in Table 1. The % deviation is
now calculated as (zbest − zheur)/zbest · 100. Each line reports the average values out of
10 randomly generated test instances with the same (m, α). Since ROI is a maximization
problem, a larger value gives a better result. It appears that the VNS and TS methods
are of similar quality, although VNS is slightly better. This is indicated by non-negative
values of the % dev of TS for all test instances. The MLS procedure performs on average
the worst, although it does obtain better results than TS on some of the cases.
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Obj.value Time

m α LS–1 LS–2 % dev LS–1 LS–2

200 0.90 103.67 102.60 1.03 4.09 0.32

0.80 114.58 113.93 0.57 3.37 0.34

0.70 123.45 123.09 0.29 2.75 0.29

0.60 133.56 133.13 0.32 2.47 0.31

0.50 142.15 140.56 1.12 2.00 0.24

0.40 150.73 149.18 1.03 2.64 0.26

0.30 158.14 157.56 0.37 2.34 0.28

0.20 159.93 157.70 1.39 2.24 0.32

0.10 162.75 160.89 1.14 2.52 0.37

500 0.90 114.75 114.05 0.61 140.69 2.34

0.80 126.65 125.84 0.64 134.32 2.38

0.70 137.70 136.88 0.60 95.48 2.48

0.60 148.75 148.35 0.27 68.19 1.71

0.50 157.86 157.53 0.21 73.96 2.01

0.40 167.30 167.29 0.01 59.67 1.89

0.30 174.87 174.34 0.30 56.69 1.86

0.20 179.48 179.14 0.19 69.72 3.29

0.10 179.88 175.96 2.18 70.97 4.18

1000 0.90 120.41 120.02 0.32 972.83 9.08

0.80 133.44 132.73 0.53 770.42 9.73

0.70 145.94 145.17 0.53 770.76 11.55

0.60 157.76 157.03 0.46 711.11 8.29

0.50 168.64 168.22 0.25 451.38 10.09

0.40 178.38 177.98 0.22 482.12 8.51

0.30 187.58 187.16 0.22 502.71 10.92

0.20 193.27 193.12 0.08 567.12 13.64

0.10 197.71 195.34 1.20 505.80 13.73

Aver. 152.57 151.66 0.60 241.79 4.46

Table 1: Comparison of two local search procedures.
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Obj. value % deviation Time

m α VNS TS MLS VNS TS MLS VNS TS MLS

200 0.90 104.90 104.83 104.29 0.00 0.07 0.58 14.74 9.64 18.52

0.80 115.44 115.19 115.03 0.00 0.22 0.36 34.72 11.15 13.56

0.70 125.71 125.45 124.58 0.00 0.21 0.90 26.66 10.38 5.44

0.60 135.21 135.17 134.38 0.00 0.03 0.61 10.59 9.89 2.97

0.50 144.08 143.99 143.12 0.00 0.06 0.67 8.47 9.97 1.49

0.40 152.35 152.12 151.54 0.00 0.15 0.53 9.76 8.15 2.12

0.30 158.71 158.71 158.42 0.00 0.00 0.18 28.61 7.49 0.94

0.20 162.32 162.32 161.12 0.00 0.00 0.74 4.32 2.87 1.42

0.10 164.61 164.61 163.68 0.00 0.00 0.56 2.03 0.92 1.27

500 0.90 115.72 115.38 115.20 0.00 0.29 0.45 42.11 70.69 120.64

0.80 127.77 127.33 127.18 0.00 0.34 0.46 17.97 104.77 152.57

0.70 139.19 138.72 138.45 0.00 0.34 0.53 55.33 130.82 40.02

0.60 149.71 149.39 149.23 0.00 0.21 0.32 43.24 80.71 38.02

0.50 159.65 159.16 158.75 0.00 0.31 0.56 44.09 92.95 50.76

0.40 168.29 167.46 167.79 0.00 0.49 0.30 119.96 37.19 31.72

0.30 175.78 175.73 175.41 0.00 0.03 0.21 44.34 154.68 12.83

0.20 180.24 180.22 179.87 0.00 0.01 0.21 85.80 79.23 5.49

0.10 183.80 183.80 181.84 0.00 0.00 1.07 15.62 18.37 5.10

1000 0.90 121.91 121.28 121.06 0.00 0.52 0.70 122.13 206.48 313.31

0.80 134.55 134.21 133.92 0.00 0.25 0.47 57.97 136.60 291.79

0.70 146.98 146.19 146.45 0.00 0.54 0.36 192.00 278.75 279.93

0.60 159.00 158.08 158.34 0.00 0.58 0.42 78.99 144.42 230.55

0.50 170.13 169.47 169.37 0.00 0.39 0.45 151.49 163.65 144.30

0.40 180.12 178.79 179.25 0.00 0.74 0.48 241.17 139.63 133.06

0.30 187.66 186.86 187.44 0.00 0.43 0.12 126.70 158.16 52.40

0.20 194.13 194.07 193.85 0.00 0.03 0.14 197.37 176.03 22.74

0.10 200.08 200.08 198.90 0.00 0.00 0.59 43.47 72.74 72.32

Aver. 154.00 153.65 153.28 0.00 0.23 0.48 67.39 85.79 75.75

Table 2: Comparison of VNS, TS and MLS.
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6 Conclusions

In this paper, we present a plant location problem which maximizes return on investment
subject to a lower bound on market share. This model is an important extension of the
much-studied simple plant location problem. We give an exact solution procedure when
the market share constraint is relaxed. The model also is amenable to exact solution
when the subset of open facilities is specified. Building on this, we develop a local search
procedure for the problem, and then use this procedure within a variable neighborhood
search and tabu search heuristic. Preliminary computational experience is given. These
heuristics allow realistic problem sizes to be investigated, and to our best knowledge,
represent the first attempt to use heuristics on the maximum return-on-investment plant
location problem. Areas for future research include developing other heuristics, and doing
extensive computational experiments to refine the parameter settings.
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