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Abstract

This paper introduces the first exact approach for constructing aircrew member
personalized monthly work schedules when a preferential bidding system (PBS) is
used. With such a system, each employee bids for their preferred activities, yielding a
bidding score for each feasible schedule. The PBS problem thus consists of assigning
to each employee a schedule that maximizes, in order of seniority, its preferences while
covering all crew pairings. The proposed exact solution approach relies on column
generation and, when a tentative maximum score for a crew member is established, it
explicitly enumerates for that employee all feasible schedules with that score. Tests
on real-life cases show that this approach can substantially improve the quality of the
solutions produced by the best known existing method (Gamache et al., 1998b) in
similar solution times.

Résumé

Dans cet article nous proposons une approche exacte de résolution du problème
de fabrication d’horaires personnalisés avec priorités. À notre connaissance, aucune
méthode optimale n’a été rapportée dans la littérature pour résoudre ce problème. La
difficulté de l’obtention d’une solution optimale est montrée à travers la discussion de la
résolution de deux formulations alternatives. On présente donc l’utilité du choix d’une
méthode séquentielle satisfaisant tous les critères d’optimalités. La non fixation des
horaires des pilotes lors de la résolution des problèmes par la technique de génération de
colonnes intégrée dans un algorithme de branchement est un élément déterminant pour
assurer l’optimalité de cette méthode. On propose un nouveau schéma de branchement
pour permettre le choix d’un horaire parmi plusieurs de pointage quivalent pour un
employ senior dans la mesure où cet horaire permet de trouver un meilleur horaire
à l’employé possédant le moins d’ancienneté. Des tests sur des instances réelles des
préférences des pilotes d’Air Canada ont été effectués et leurs horaires ont été con-
sidérablement améliorés.
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1 Introduction

In the airline industry, the problem of constructing personalized monthly work schedules
consists of designing a monthly schedule for each employee while taking into account their
preferences and a list of preassigned activities such as vacations and training periods.
The set of constructed schedules must cover a set of previously determined crew pairings.
Usually, integer values are assigned to the activities (pairings, rest periods, ...) in order to
reflect the preferences of each employee. The score of each schedule for each employee is
computed as the sum of the employee values of the activities it contains. Two modes can
be used to build these schedules. In the first mode, the objective consists of maximizing
the global satisfaction of the employees, that is, the overall sum of the selected schedule
scores. Typically, the set of activities only includes the pairings in this case. This mode is
known as the rostering problem and is mainly used in large European airlines such as Air
France (Giafferri et al., 1982, Gontier, 1985, Gamache et al., 1998a), Alitalia (Nicoletti,
1975, Marchettini, 1980, Sarra, 1988, Lufthansa (Glanert, 1984), and SwissAir (Tingley,
1979). This mode has also been used at Air New-Zealand (Ryan, 1992) and El-Al Israel
Airline (Mayer, 1980).

The second mode is similar to the first one except that the choice of preferences is more
elaborate and the assignment of these preferences must be done in accordance with the
seniority of the employees. Employees can formulate preferences based on the destinations,
the pairing departure times, the pairing durations, the number of weekends off, etc. This
mode of constructing schedules with priorities is most often used in large North American
carriers and is known as the preferential bidding system (PBS).

The PBS problem consists of constructing the maximum-score feasible schedule for each
employee according to his seniority order. A schedule is said to be feasible if it respects
constraints imposed by the security rules in the airline industry, the collective agreement
between the employees and the company, and the activities preassigned to the employees.
Moreover, the set of computed schedules must cover the set of pairings planned during the
month. Due to the complexity of the PBS problem, no exact approaches have yet been
proposed in the literature for solving it. This paper fulfills this gap by proposing the first
exact solution method. It also reports computational results on real-world problems which
show that this new method can substantially improve the quality of the solutions produced
by the best known existing heuristic method, that of Gamache et al. (1998b), in similar
computational times.

This paper is organized as follows. In Section 2, we describe the problematic raised by
the PBS problem and briefly review the heuristic approaches proposed in the literature to
deal with this problem. In Section 3, we present the new exact method. Test results are
reported in Section 4, while conclusions are drawn in Section 5.

2 Problematic and literature review

When solving the PBS problem, one has to optimize m different objectives (one for each of
the m employees) that must be treated in lexicographic order from the objective of the most
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senior employee, numbered k = 1, to the objective of the most junior employee, numbered
k = m. This order implies that a tiny increase in the value of the kth objective must be
prioritized over any other increase in any subsequent objective l > k. Sherali and Soyster
(1983) proposed an approach that consists of finding a set of weights {λ1, λ2, . . . , λm} to
reflect the priority of the different objectives. A first model, denoted M1, for the PBS
problem based on the Sherali and Soyster’s approach is:

(M1)






Max Z =
m∑

i=1



λi

∑

j∈Ωi

cijxij



 (1)

subject to

m∑

i=1

∑

j∈Ωi

aijpxij = bp p = 1, . . . , P (2)

∑

j∈Ωi

xij = 1 i = 1, . . . , m (3)

xij ∈ {0, 1} i = 1, . . . , m, ∀j ∈ Ωi (4)

In this model, Ωi is the set of feasible schedules for employee i; cij represents the score
of schedule j for employee i; xij is a binary variable that takes the value 1 if schedule j is
chosen for employee i, and 0 otherwise; P is the set of pairings to cover; aijp is a parameter
equal to 1 if schedule j for employee i contains pairing p, and 0 otherwise and bp represents
the number of employees required by pairing p.

In M1, the objective function (1) aims at maximizing the weighted sum of the scores
of the employee schedules, where the λi prioritize the scores of the most senior employees.
The constraint set (2) ensures that the set of selected schedules covers all the pairings with
the appropriate number of employees. Constraints (3) guarantee that a schedule is built
for each employee. Binary requirements on the xij variables are given by (4).

The schedule scores, cij , are positive or negative numbers that may necessitate 32 bits
to write. According to Sherali and Soyster (see Theorem 2.1 in their paper), the weights
λi can be determined by first computing the following two constants for each employee i:
νi and αi, the largest and the smallest positive difference between the scores of two feasible
schedules for employee i, respectively. Then, these values are used to define two other
constants:

ν = max {νi : i = 1, . . . , m},

α = min {αi : i = 1, . . . , m}.

Finally, to take into account the seniority order, the weights are set to λi = (ν/α)m−i

for i = 1, . . . , m. In the PBS problem, ν may be as large as 232 while α is often equal to 1.
Therefore, this approach cannot be used in practice because these weights are much too
large for any computer, even for small values of m.
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Following this observation, it becomes obvious that schedules must be built sequentially,
that is, one after the other, from the most senior employee to the most junior one. In such
a sequential approach, a problem is defined for each employee. It consists of constructing
the best schedule for this employee and involves an objective function defined only with
the employee preferences. While looking for the best schedule of the current employee,
the method must ensure that the senior employees (those that are more senior than the
current employee) are also assigned to a schedule that maximizes their score, the junior
employees (those that are more junior than the current employee) will receive a feasible
schedule, and that it will be possible to cover all pairings. Moreover, when more than one
schedule with the highest score can be built for the current employee, the method must
choose the one schedule that has the smallest impact on the scores of the schedules of the
junior employees. In summary, to be exact, a sequential approach must construct for each
employee a schedule that:

1. is feasible;

2. ensures that the set of residual pairings (those remaining to cover after choosing the
schedule of the current employee) can be covered by a set of feasible schedules for
the junior employees;

3. is a maximum score schedule among the set of schedules satisfying th two preceding
criteria;

4. among the set of schedules satisfying the three preceding criteria, allows building the
best schedules for the junior employees.

A sequential approach that fulfills these four exactness criteria is as follows. For k =
1, . . . , m, solve M2(k), the following model:

(M2(k))






Max Z =
∑

j∈Ωk

ckjxkj (5)

subject to

m∑

i=1

∑

j∈Ωi

aijpxij = bp p = 1, . . . , P (6)

∑

j∈Ωi

cijxij = Zi
IP i = 1, . . . , k − 1 (7)

∑

j∈Ωi

xij = 1 i = 1, . . . , m (8)

xij ∈ {0, 1} i = 1, . . . , m, ∀j ∈ Ωi. (9)

In this model, Zi
IP represents the score of the best schedule for employee i ∈ {1, . . . , k−

1} that has been identified when solving M2(i). The objective function of M2(k) maximizes
only the score of the schedule of employee k while imposing through constraints (7) that
the first k − 1 employees receive a schedule whose score is equal to the one found in the
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previous iterations. Constraints (6), (8) and (9) are identical to constraints (2)–(4). Note
that the equivalence between the sequence of problems M2(k) and the model M1 is ensured
by the Sherali and Soyster (1983) theorem.

For real-world cases, solving the sequence of problems M2(k) is also impractical since
it involves finding an integer solution for m generalized set partitioning problems. In fact,
to the best of our knowledge, no exact solution approaches for the PBS problem have been
proposed in the literature. Most known methods use similar greedy heuristics. Quantas
(Moore at al., 1978), and CP Air (Byrne, 1988) developed their own method for solving
the PBS problem. For each employee starting from the most senior, such a method builds
its feasible schedule by iteratively selecting the activities with the highest scores among
those not yet completely covered by the senior employees. During this construction phase,
the method checks that there are enough junior employees available to cover the remaining
pairings on each day of the month. When this is not the case for a given day, the current
employee is forced to take a pairing on that day. When a schedule has been designed for
each employee, a local search phase that swaps pairings between the schedules is usually
applied to improve the schedule scores.

Gamache et al. (1998b) have proposed another sequential solution approach, which
is, to our knowledge, the most efficient known heuristic for the PBS problem. It has the
advantage of building for each employee a schedule that is considered optimal given the
schedules previously assigned to the senior employees. It consists of solving for each em-
ployee, from the most senior to the most junior, an integer linear program whose objective
is to maximize the score of the current employee schedule while taking into account the
schedules built at the previous iterations. This program also ensures that a feasible sched-
ule can be built for all remaining junior employees and that all pairings can be covered. The
computed solution for this problem provides a schedule for the current employee, which
is fixed before moving on to the construction of the next employee schedule. The integer
program, denoted M3(k), solved for employee k is:

(M3(k))






Max Z =
∑

j∈Ωk

k

ckjxkj (10)

subject to

k−1∑

i=1

aijip +
m∑

i=k

∑

j∈Ωk

i

aijpxij = bp p = 1, . . . , P (11)

∑

j∈Ωk

i

xij = 1 i = k, . . . , m (12)

xij ∈ {0, 1} i = k, . . . , m, ∀j ∈ Ωk
i (13)

where ji is the index of the schedule fixed for the employee i ∈ {1, . . . , k − 1} and Ωk
i rep-

resents the set of feasible schedules for the employee i ∈ {k, . . . , m} that are still available
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at iteration k (i.e., they do not contain any pairing fully covered by the fixed schedules
of the previous employees). To obtain acceptable solution times, Gamache et al. (1998b)
proposed to solve each model M3(k) using a branch-and-price approach, that is, a col-
umn generation method embedded in a branch-and-bound search tree (see Barnhart et
al., 1998, and Desaulniers et al., 1998). For a given k, a column generation subproblem
is defined for each of the remaining employees, i.e., employees i ∈ {k, . . . , m}. Each sub-
problem corresponds to a longest path problem with resource constraints (see Irnich and
Desaulniers, 2004) on an acyclic network Gk

i specific to the corresponding employee i, and
is solved by a generalization of the dynamic programming algorithm of Desrochers and
Soumis (1988). The index k indicates that the network changes with k since all arcs repre-
senting a pairing are removed when the corresponding pairing becomes completely covered
by the fixed schedules of the senior employees. The resource constraints are used to model
various security and collective agreement rules that restrict the legality of a schedule (see
Gamache et al., 1998b). Examples of the resources considered are the number of flight
credits, the number of consecutive working days, and the number of days off per month.
The first two resources must not exceed prescribed values while the last must be at least
equal to another prescribed value. Each path in Gk

i that satisfies all resource constraints
corresponds to a feasible schedule for employee i. Furthermore, all feasible schedules in
the set Ωk

i of available schedules for this employee are represented by a resource-feasible
path in this network.

In order to speed up the overall solution process, Gamache et al. (1998b) proposed to
solve a relaxed version of M3(k) where the constraints (13) for i = k+1, . . . , m are replaced
by their continuous relaxations. However, after fixing the schedule of several employees, this
strategy sometimes leads to an infeasible relaxed problem M3(k). In this case, backtracking
is performed, that is, the (non relaxed) models M3(i) for i = k − 1, k − 2, . . . , ℓ are solved
in this reverse order until finding a feasible problem M3(ℓ). The newly computed schedule
for the employee ℓ is then fixed and the solution process returns to a forward mode by
solving a newly defined relaxed problem M3(ℓ + 1).

This solution approach is heuristic since it does not allow exchanging the best-score
schedules of the senior employees when solving the problem for a junior employee, that
is, it does not satisfy the last of the four exactness criteria mentioned above. Indeed, the
existence of several schedules with the same score is quite frequent in real-world instances
because of the diversity of the preferences offered to the employees and the number of
possible substitutions. One way to improve the overall solution could be to exchange
pairings between the schedules in a post-optimization phase as in Ryan et al. (1997).
However, this would not guarantee optimality. It would be preferable to perform such
exchanges durin the optimization process.

The next section introduces the first exact solution approach for the PBS problem. This
approach is based on that of Gamache et al. (1998b). Therefore, in order to lighten the
text, we will not provide all the details for the parts that are common to both approaches.
The interested reader should also consult the paper of Gamache et al. (1998b).
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3 An exact solution approach

The proposed exact solution approach is also a sequential approach in th sense that it
solves a sequence of integer programs, one for each employee, from the most senior to the
most junior employee, and fixes as the solution process progresses, the schedules of the
senior employees. However, contrary to the heuristic method of Gamache et al. (1998b),
these schedules are not necessarily fixed in the seniority order (although there is a high
probability that this order will be followed) and, at each iteration, there might be more
than one schedule fixed or none at all. Recall that, to be exact, this approach must satisfy
the four criteri listed in the previous section. Therefore, since selecting prematurely and
arbitrarily the schedule of a senior employee (among those with the same best score) may
reduce the best score of a junior employee, the new approach postpones this selection until
we can prove that there is a unique best-score schedule for the senior employee that can
yield the optimal scores for all junior employees. To do so, the solution method includes
a procedure that enumerates all the best-score schedules for each employee and applies
different techniques for gradually discarding all these schedules but one. Note that this
approach also backtracks when needed.

Throughout the solution process, the approach identifies certain pairings that must be
part of the schedules of some senior employees so that they can attain their best scores.
When these pairings are fully covered by these employees, they cannot be included in the
other employee schedules. In the following we use the expression residual schedules to refer
to the schedules for the other employees that do not contain these pairings.

This section describes the sequence of integer programs to be solved. Then, it discusses
how this overall process can be sped up by using two relaxations of these programs. Finally,
it explains how to enumerate the set of all best-score schedules for each employee and how
this set can be reduced throughout the solution process to obtain a unique schedule.

3.1 The sequence of integer programs IP (k)

The exactness of the proposed method resides in the solution of a sequence of integer
programs, denoted IP (k), k = 1, 2, .., m. Each of these problems consists of finding a set
of m feasible schedules, i.e., one for each employee, such that the score of the schedule
assigned to the kth employee is maximized while optimal schedules are assigned to the
senior employees. The problem IP (k) is formulated as follows:
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(IP (k))






Max Z =
∑

j∈Ωk

k

ckjxkj (14)

subject to

k−1∑

i=1

∑

j∈Ω̂k

i

aijpxij+

m∑

i=k

∑

j∈Ωk

i

aijpxij = bp p = 1, . . . , P (15)

∑

j∈Ω̂k

i

xij = 1 i = 1, . . . , k − 1 (16)

∑

j∈Ωk

i

xij = 1 i = k, . . . , m (17)

xij ∈ {0, 1} i = 1, . . . , k − 1, ∀j ∈ Ω̂k
i (18)

xij ∈ {0, 1} i = k, . . . , m, ∀j ∈ Ωk
i . (19)

In this model, Ω̂k
i denotes the set of residual schedules for employee i ∈ {1, . . . , k − 1}

that have the optimal score computed at iteration i, while Ωk
i is the set of residual schedules

for employee i ∈ {k, . . . , m}. Model IP (k) can be derived from model M2(k) by simply
removing all schedules j ∈ Ωi, i = 1, . . . , k − 1, such that cij 6= Zi

IP .

Note that the problems IP (k) are all bounded. The following proposition relates the
feasibility of these problems to the feasibility of the first one.

Proposition 1 If problem IP (1) is feasible, then all the problems IP (k), k ∈ {2, . . . , m},
are also feasible.

Proof: Assume that IP (k) is feasible for k = 1. Since it is bounded, it possesses at
least one optimal solution. It is easy to see that this solution is feasible for the problem
IP (k + 1), showing that IP (2) is feasible. This argument can be repeated iteratively for
k = 2 until k = m − 1. �

In practice, solving the sequence of problems IP (k) (like the problems M2(k)) requires
a huge amount of time that is unacceptable. In order to substantially accelerate the solu-
tion time, our approach relies on a relaxation of IP (k) and on a feasibility problem. In the
relaxation of IP (k), constraints (18) and constraints (19) for i 6= k are replaced by non-
negativity constraints. Given the scores computed for the senior employees, this relaxed
version of IP (k) provides an upper bound on the score of the best schedule for employee
k. The feasibility problem is defined by replacing the constraints (19) in IP (k + 1) by
non-negativity requirements and deleting the objective function. This problem is solved
occasionally to verify that compatible best-score schedules can be found for the first k
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employees. These two problems are denoted MIPk→k(k) and MIP (1 → k), respectively,
where k1 → k2 indicates that integrality requirements are imposed on the variables associ-
ated with the employees from k1 to k2.

A summary of the solution approach is provided in Figure 1. An iteration begins by
solving model MIP (k → k) to derive a tentative best-score S∗

k for employee k. Then

the set Ω̂k
k containing all residual schedules of score S∗

k for employee k is constructed and

techniques reducing the sets Ω̂k
i and Ωk

i are applied. If a set of residual schedules Ω̂k
i

i ∈ {1, . . . , k}, is reduced to a singleton (that is, there is a unique schedule that can
be assigned to a senior employee), problem MIP (1 → k) is solved. If this problem is
feasible, we continue with the next employee. Otherwise, the problem MIP (k → k) is
altered by adding a cut restricting the score of the employee k schedule and solved again.
As in Gamache et al. (1998b), this overall strategy may sometimes lead to an infeasible
MIP (k → k) problem. In this case, backtracking is performed by solving the previous
IP (i) models, for i = k − 1, k − 2, . . . , ℓ, until finding a feasible problem IP (ℓ). Each
component of the proposed approach are detailled in the following subsections.

3.2 Finding an upper bound S
∗

k

The search for S∗

k , an upper bound on the score of the best schedule that can be assigned to
employee k given the scores S∗

i already computed for the senior employees i = 1, . . . , k−1,
is done by solving the following model MIP (k → k):

(MIP (k → k))






Max Z =
∑

j∈Ωk

k

ckjxkj (20)

subject to (21)

k−1∑

i=1

∑

j∈Ω̂k

i

aijpxij

+
m∑

i=k

∑

j∈Ωk

i

aijpxij = bp p = 1, . . . , P (22)

∑

j∈Ω̂k

i

xij = 1 i = 1, . . . , k − 1 (23)

∑

j∈Ωk

i

xij = 1 i = k, . . . , m (24)

xij ≥ 0 i = 1, .., k − 1,∀j ∈ Ω̂k
i (25)

xkj ∈ {0, 1} ∀j ∈ Ωk
k (26)

xij ≥ 0 i = k + 1, .., m,∀j ∈ Ωk
i . (27)
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Figure 1: A diagram of the solution approach
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Problem MIP (k → k) is solved by the exact branch-and-price method proposed by
Gamache et al. (1998b), which will not be explained here. The existence of a feasible
solution for this problem ensures that there exists a feasible schedule for employee k that
can be completed by “fractional” feasible schedules for the other employees. The score of
the computed schedule for employee k thus provides an upper bound on the best score.
However, this upper bound is valuable only if it is possible to find an integer solution for all
the employees. This is verified by solving the subsequent MIP (k → k) and MIP (1 → k)
problems. It should be noted that MIP (k → k) is much easier to solve than IP (k).
Moreover, the schedules that can be obtained for the employees i = k + 1, . . . , m by
imposing integrality requirements on their associated variables would probably be useless
(not optimal) because their preferences are not yet taken into account.

3.3 Creating Ω̂k
k

After solving a feasible MIP (k → k) whose optimal value is S∗

k , one must enumerate all
feasible residual schedules for employee k that have a score of S∗

k . Two dynamic program-
ming algorithms can be considered. Both are based on the generalization of the longest
resource constrained path algorithm of Desrochers and Soumis (1988) (see Desaulniers et
al., 1998), that is, the algorithm used to solve the column generation subproblem for em-
ployee k. Both use the network Gk

k. The first algorithm works with the cost of the arcs,
the second one with their reduced cost (as in the column generation subproblem).

Given the network Gk
k and the value S̄k of the maximum-cost feasible (resource-

constrained) path between the source node o(k) and the sink node d(k), the first ap-
proach consists of solving a longest path problem with resource constraints while relaxing
the dominance rule in order to accept all the partial paths that can lead to a solution with
a cost of S∗

k . In the generalized version of the Desrochers and Soumis (1988) algorithm,
any partial path between o(k) and a node i is represented by a label Li = (Zi, Ti), where
Zi is the cost of the partial path and Ti is an array indicating, for each resource, the
quantity accumulated since node o(k). Let L1

i = (Z1
i , T 1

i ) and L2
i = (Z2

i , T 2
i ) be two labels

corresponding to two partial paths at a node i. The dominance rule used by Desrochers
and Soumis can be described as follows: if Z1

i ≥ Z2
i and T 1

i ≤ T 2
i (i.e., each component

of T 1
i is less than or equal to the corresponding component of T 2

i ), then the label L2
i can

be eliminated since it is dominated by label L1
i . Indeed, the second partial path cannot

lead to an o(k)-to-d(k) path that will be better than the one obtained by extending the
first partial path. Since, in our case, we do not want only a path with the maximum cost,
but all the paths having the score S∗

k , the dominance rule that we use is a relaxed one:
eliminate L2

i if and only if Z1
i > Z2

i + S̄k − S∗

k and T 1
i ≤ T 2

i . Thus, any partial path that
can lead to an o(k)-to-d(k) path with a cost of at least S∗

k is kept. Consequently, the first
approach contains the following steps:

1. Compute S̄k by solving the longest resource constrained path problem on Gk
k with

the generalized algorithm of Desrochers and Soumis (1988).

2. Solve this problem again using this time the modified dominance rule to obtain a list
of labels at node d(k).
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3. Among these labels, keep only those for which their cost component is equal to S∗

k .
They represent all the feasible residual schedules for employee k with the maximum
score S∗

k .

The second approach relies on the following assumption: the value of the linear relax-
ation of MIP (k → k) is S∗

k . When this assumption does not hold, one can solve again
(after obtaining S∗

k) this relaxation with a cut added in the employee k subproblem that
restricts all schedules generated for this employee to have a cost lower than or equal to S∗

k

(see Gamache et al., 1998b). This restriction forces the value of the linear relaxation to
be equal to S∗

k . The result stated in the following proposition is the basis of the second
approach.

Proposition 2 Assume that MIP (k → k) is feasible and that its optimal value S∗

k is equal

to that of its linear relaxation. Let X̃LP and Π̃LP be a pair of primal and dual optimal
solutions for its linear relaxation, and consider any variable xkj of cost S∗

k for which there

exists a feasible solution X̃MIP to MIP (k → k) with xkj = 1. The reduced cost c̄kj of xkj

with respect to Π̃LP is zero.

Proof: Two cases can occur depending on whether or not xkj is a basic variable in X̃LP .

The first case (xkj is basic) is trivial. Therefore, assume that xkj is nonbasic in X̃LP . By
linear programming theory, we can write the cost z of any solution X as

z = S∗

k + c̄HXH (28)

where XH is the vector of the components of X corresponding to the nonbasic variables
in XLP , and c̄H is the vector of the reduced costs of these variables with respect to ΠLP .
Now, notice that X̃MIP is a feasible solution of cost S∗

k . Therefore, setting X = X̃MIP in
equation (28) yields

S∗

k = S∗

k + c̄HX̃MIP,H

⇒ c̄HX̃MIP,H = 0, (29)

where X̃MIP,H is the vector of the components of X̃MIP corresponding to the nonbasic

variables in X̃LP .

Since c̄H ≤ 0 (Π̃LP is optimal) and X̃MIP,H ≥ 0 (X̃MIP is feasible), we obtain that each
term in the left-hand side of (29) is null. In particular, this applies to the term involving
the variable xkj , that is, c̄kjxkj = 0. Finally, since we assumed that xkj = 1 in X̃MIP , we
find that c̄kj = 0. �

This proposition shows that all feasible residual schedules for employee k with a score
S∗

k correspond to paths in Gk
k with a null reduced cost. Furthermore, since the dual solution

Πk
LP is optimal, we know that all the feasible paths in this network have a non-positive

reduced cost. Consequently, to enumerate all the schedules with a null reduced cost, it
suffices to solve the longest resource constrained path problem with the reduced costs as
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arc costs and the following dominance rule: eliminate L2
i if and only if Z̄1

i > Z̄2
i and

T 1
i ≤ T 2

i , where L1
i = (Z̄1

i , T 1
i ) and L2

i = (Z̄2
i , T 2

i ) are two labels corresponding to partial
paths between o(k) and node i, and the component Z̄i of these labels specifies the reduced
cost of the associated partial path.

The second approach consists of the following steps:

1. Keep the dual solution Πk
LP of the linear relaxation if this one has an optimal value

equal to S∗

k . Otherwise, obtain such a solution Πk
LP by solving the linear relaxation

without allowing the generation of schedules for employee k whose score is greater
than S∗

k .

2. Solve, using the generalized algorithm of Desrochers and Soumis (1988), the longest
resource constrained path problem on Gk

k with the arc reduced costs and the domi-
nance rule presented above. A list of labels is then obtained at node d(k)

3. Among these labels, keep only those associated with a schedule of cost S∗

k . They
represent all the feasible residual schedules for employee k with a score S∗

k

Since the dominance rule used in the second approach is tighter than the one used in
the first approach, the second approach is more efficient when there is an important gap
between the values S∗

k and S̄k. Thus, we retained the second approach for creating the set

Ω̂k
k.

3.4 Updating Ω̂k
i and Ωk

i

Solving the problem MIP (k → k) provides an upper bound on the score of the best
schedule for employee k. The computed optimal dual solution of its linear relaxation can
also be used to eliminate some schedules from the sets Ω̂k

i , i = 1, . . . , k − 1 as suggested in
the following proposition.

Proposition 3 Assume that MIP (k → k) is feasible, its optimal value is S∗

k and that

of its linear relaxation is SLP
k . Let X̃LP and Π̃LP be a pair of primal and dual optimal

solutions for its linear relaxation, and consider any variable xij, i = 1, . . . , k − 1, j ∈ Ω̂k
i ,

whose reduced cost c̄ij with respect to Π̃LP is strictly less than S∗

k − SLP
k . There exists no

feasible solution to MIP (k → k) in which xij = 1 and whose value is S∗

k.

Proof: Assume that there exists a feasible solution X̃MIP to MIP (k → k) in which
xij = 1 and denote its value by Z̃MIP . We will show that Z̃MIP < S∗

k . First, notice that

xij is a nonbasic variable in X̃LP because its reduced cost is not null. Therefore, as in the
proof of Proposition 2, we can write

Z̃MIP = SLP
k + c̄HX̃MIP,H , (30)

where X̃MIP,H is the vector of the components of X̃MIP corresponding to the nonbasic

variables in X̃LP . Since c̄H ≤ 0 (Π̃LP is optimal) and X̃MIP,H ≥ 0 (X̃MIP is feasible), we
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obtain from (30) that

Z̃MIP ≤ SLP
k + c̄ijxij

< SLP
k + (S∗

k − SLP
k ) = S∗

k .

�

Consequently, to maintain a score of S∗

k for employee k, any schedule j ∈ Ω̂k
i for any

employee i ∈ {1, . . . , k−1} such that c̄ij < S∗

k−SLP
k cannot be assigned to the corresponding

employee i. Thus, these schedule can be removed from the set Ω̂k
i .

By analyzing the schedules in the set Ω̂k
ℓ , ℓ ∈ {1, . . . , k}, it might also be possible to

reduce the sets Ω̂k
i , i = 1, . . . , k, i 6= ℓ, and the sets Ωk

i , i = k + 1, . . . , m. Indeed, a pairing
may be identified as essential to construct a best-score schedule for employee ℓ.

Definition

A pairing p ∈ P is said to be essential for employee ℓ ≤ k if aℓjp = 1, ∀j ∈ Ω̂k
ℓ .

When a pairing p becomes essential for bp employees, then it should not be included in
the schedules of any other employees as stated in the following proposition.

Proposition 4 Assume that MIP (k → k) is feasible and that its optimal value is S∗

k. Let
p ∈ P be an essential pairing for bp employees and denote by Ep the set of these employees.
There exists no feasible solution to MIP (k → k) whose value is S∗

k and for which xij = 1

where i ∈ {1, . . . , m} \ Ep, j ∈ Ω̂k
i or j ∈ Ωk

i (depending on the value of i), and aijp = 1.

The proof of Proposition 4 is omitted since it is trivial. This proposition allows updating
the sets Ω̂k

i and Ωk
i by removing from these sets all schedules that satisfy the conditions

stated above. Since column generation is used to generate the schedules in the sets Ωk
i ,

the networks Gk
i must also be updated by removing all arcs representing a pairing p that

is essential for bp employees.

3.5 Integrality and infeasibility

When the set Ω̂k
ℓ for ℓ ∈ {1, . . . , k} contains a single schedule jℓ, i.e., | Ω̂k

ℓ |= 1, this
schedule is the only residual schedule left for employee ℓ with a score S∗

ℓ . Given the loss of
flexibility in the choice of a schedule for this employee, we propose to verify that a partially
integer feasible solution exists when jℓ is chosen and the scores for the first k employees
(i = 1, . . . , k) are set to their computed upper bound S∗

i . In fact, we propose to solve the
following feasibility problem, MIP (1 → k), that involves integrality requirements on the
variables associated with the schedules of the first k employees:
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(MIP (1 → k))






Max Z = 0 (31)
subject to

k∑

i=1

∑

j∈Ω̂k

i

aijpxij

+
m∑

i=k+1

∑

j∈Ωk

i

aijpxij = bp p = 1, . . . , P (32)

∑

j∈Ω̂k

i

xij = 1 i = 1, . . . , k (33)

∑

j∈Ωk

i

xij = 1 i = k + 1, . . . , m (34)

xij ∈ {0, 1} i = 1, . . . , k,

∀j ∈ Ω̂k
i (35)

xij ≥ 0 i = k + 1, . . . , m,
∀j ∈ Ωk

i (36)

Problem MIP (1 → k) is also solved by the branch-and-price algorithm used to solve
MIP (k → k). On the one hand, when this problem is feasible, we know that schedule jℓ is
compatible with best-score schedules for the other first k− 1 employees i = 1, . . . , k, i 6= ℓ.
In this case, the solution process moves on to the next employee after fixing the schedule
jℓ for employee ℓ as in the solution approach of Gamache et al. (1998b). Note that several

schedules can be fixed at the same time if | Ω̂k
ℓ |= 1 for several values of ℓ ∈ {1, . . . , k}.

On the other hand, when MIP (1 → k) is infeasible, this indicates that at least one of
the upper bounds S∗

i , i = 1, . . . , k overestimates the optimal score of the corresponding
employee, as shown by the following proposition.

Proposition 5 Assume that problem IP (1) is feasible (that is, all problems IP (k), k =
1, . . . , m, are feasible according to Proposition 1) and denote the optimal value of IP (k) by
Zk

IP . If MIP (1 → k) is infeasible, then Zℓ
IP < S∗

ℓ for at least one employee ℓ ∈ {1, . . . , k}.

Proof: The proof proceeds by contradiction. Assume that, for all employees ℓ = 1, . . . , k,
Zℓ

IP = S∗

ℓ . Then it easy to see that, in this case, an optimal solution for IP (k) is also a
feasible solution for MIP (1 → k). This contradicts the infeasibility of MIP (1 → k). �

Therefore, when MIP (1 → k) is infeasible, one must backtrack to find the overestimat-
ing upper bound. We noticed that this upper bound is often the current one S∗

k . To verify
that this is the case, one can solve the problem IP (k). However, this might be very time
consuming. Instead we resort to solving a modified MIP (k → k) problem that forces the
optimal score of the employee k to be smaller than or equal to S∗

k − 1. This is done by
adding a cut in the subproblem of employee k (see Gamache et al., 1998b). The solution
process then continues as if MIP (k → k) was solved for the first time. In practice, very
few modified MIP (k → k) problems are solved for the same employee.
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At any time during the solution process, a problem MIP (k → k) might be found to be
infeasible. The next proposition points out the cause of this infeasibility.

Proposition 6 Assume that problem IP (1) is feasible (that is, all problems IP (k), k =
1, . . . , m, are feasible according to Proposition 1) and denote the optimal value of IP (k)
by Zk

IP . If MIP (1 → k) is infeasible, then Zℓ
IP < S∗

ℓ for at least one employee ℓ ∈
{1, . . . , k − 1}.

Proof: The proof proceeds by contradiction. Assume that, for all employees ℓ = 1, . . . , k−
1, Zℓ

IP = S∗

ℓ . Then it easy to see that, in this case, an optimal solution for IP (k) is also
a feasible solution for MIP (k → k) since this problem is a relaxation of IP (k). This
contradicts the infeasibility of MIP (k → k). �

When MIP (k → k) is infeasible, one could try to solve a modified MIP (k−1 → k−1)
problem with an additional cut to see if S∗

k−1
is the wrong upper bound. However, since a

MIP (k → k) problem is less constrained than a MIP (1 → k) problem, it is less obvious
that the wrong upper bound is S∗

k−1
. Consequently, very often, a long series of modified

MIP (k − 1 → k − 1) problems would need to be solved to finally yield an infeasible
MIP (k − 1 → k − 1) and move on to the preceding employee k − 2. To avoid this
long series of problems, the proposed approach backtracks by solving the previous IP (i)
problems, for i = k − 1, k − 2, . . . , ℓ, until finding one (IP (ℓ)) that is feasible if one exists.
This can also be very time consuming, but it seems preferable. If no feasible IP (ℓ) problem
exists, the overall problem is infeasible.

The problems IP (i) are also solved by branch-and-price. Note that, once a feasible

IP (ℓ) problem is found, the set Ω̂ℓ
ℓ can be created and the sets Ω̂ℓ

i , for i = 1. . . . , ℓ − 1,
and Ωℓ

i , for i = ℓ + 1, . . . , m, can be updated from the solution of IP (ℓ), as explained in
Sections 3.3 and 3.4. Finally, note that, when the computed solution for MIP (m → m) is
fractional, the problem MIP (m → m) needs to be solved to obtain an integer solution.

4 Computational Results

The exact approach described in the previous section was tested on real-life cases corre-
sponding to the December 2001 PBS problems for the pilots at Air Canada. Table 1 reports
the results obtained for several fleets (Airbus A320, A340, Boeing 767 and CRJ) at sev-
eral bases (Montreal (yul), Toronto (yyz), Vancouver (yvr), and Winnipeg (ywg)). These
problems have been chosen for their respective size and also because December is known
in the airline industry for being one of the most difficult months for constructing monthly
work schedules since employee preferences are often similar. Table 1 presents, for each
problem, an overview of the results. It shows the improvements of the solutions by com-
paring the scores of th schedules constructed using the new approach with those obtained
by the method developed by Gamache et al. (1998b). In this table, the second column
indicates the average number of columns with a score equal to S∗

k that was enumerated at
each iteration. Th third one, entitled the number of unassigned employees, indicates the
average number of employees whose se Ω̂k

i , i ≤ k, contains more than one schedule at each
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iteration. The fourth one gives the average number of essential tasks identified at each
iteration. The fifth column shows the relative increase of the solution value for the first
employee (denoted α) whose schedule’s score has been modified compared to the previous
method. The first improvement is calculated as follows:

First Improvement =
S∗ New

α − S∗ Old
α

S∗ Old
α

where S∗ New
α and S∗ Old

α are the score of the best schedule assigned to α in the new and
the old (Gamache et al., 1998b) approaches, respectively. Sinc scores are based on a variable
scale which differs from one pilot to another, this measurement is not always the best one
for showing the amplitude of the improvement, especially if S∗ Old

α is a huge number. In
order to have a better indicator of the improvement, a second ratio is used. In this ratio,
SBest

α indicates the score of the best schedule that employee α can have at iteration α.
This score is evaluated by solving the longest path problem in the network associated with
employee α while taking into account the schedules already assigned to the most senior
employees at the previous iterations. According to this process, SBest

α is an upper bound
on the score of the schedule of that employee and constitutes a stopping criteria during the
solution of th MIPα→α(α). The sixth column, called the improvement on the upper bound,
indicates the relative increase of the value of the solutions by calculating the following ratio

Bound Improvement =
S∗ New

α − S∗ Old
α

SBest
α − S∗ Old

α

.

This ratio indicates, in percentage, the improvement of the solution value compared
with the best possible improvement.

One should note that from employee α + 1 to employee m, the old and the new ap-
proaches are solving different problems; thus, any comparison between the two approaches
is worthless. However, in order to have an indicator for the overall improvement of the
new approach, in the last two columns of the table we indicate the number of employees
whose schedule has been improved by this approach and those whose schedule has been
deteriorated.

One notices that there is a net improvement in the score of the schedules assigned to
employees when using this new approach. For example, the first improvement is positive in
all cases and increases to 25% in the best case. However, an improvement in the solution
obtained for more senior employees inevitably involves a degradation of the scores of some
more junior employees whose preferences are quite similar. This result is in accordance
with the lexicographic objective of this problem where employees having a higher seniority
are advantaged. However, it can be mentioned that the ratio of the number of schedules
that have been improved over those that have been deteriorated is, on average, always
greater than 2.33.

Besides, the most significant improvement of the new approach over the old one is
observed when one compares how far the value of the solution obtained by the new approach
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Table 1: Improvement of solution

Problem Solution process Solution quality

(Nb Nb of Nb of Nb of First Bound Nb of Nb of

of columns unassigned essential improvement improvement improved deteriorated

employees) enumerated employees tasks (%) (%) scores scores

yyz-340(91) 5.59 5.78 3.98 14.4 52.67 31 10

yul-crj(36) 8.16 1.09 10.96 1.46 20.11 16 2

yyz-crj(91) 9.56 12.34 9.92 1.55 57.5 30 5

yul-320(90) 10.83 5.14 4.66 5.06 48.78 28 9

yvr-737(91) 40.34 5.93 4.21 5.21 68.47 22 9

yvr-320(68) 76.81 5.16 3.54 3.77 60.11 18 7

ywg-320(56) 4.2 2.7 4.2 0.01 70.55 23 5

ywg-crj(17) 2 1.33 3 24.99 65 4 0

is from the value of the best possible solution, i.e. the upper bound. When using the new
approach, the average improvement is greater than 20% and it reaches 70% in some cases.

It is also important to note that the average number of employees to whom a schedule
has not yet been assigned remains small; i.e. on average this number is 4.9. This can be
explained by the identification of an important number of essential tasks at each iteration.
Since the number of optimal schedules enumerated at each iteration and the size of problem
LP (k) solved at each iteration are small, the solution time does not increase considerably
when using this optimal method compared to the old approach.

Table 2 compares the solution times (in seconds) of both approaches (Old and New).
The table first presents the solution time (in seconds) for solving MIP (k → k) and
MIP (1 → k). The next two columns show the total time spent solving IP (k) when back-
tracks were necessary and also the number of times they were needed by both approaches.
The seventh column indicates the time spent enumerating columns of Ω̂k

k. Finally, the last
two columns indicate the total solution time.

This comparison can be divided into two groups: those cases associated with the prob-
lems that are easy to solve (yyz-340, yul-crj, yvr-737, yvr-320, and ywg-crj) and those
associated with the more difficult ones (yyz-crj, yul-320, and ywg-320). In the first group,
one notices that the solution time increases with the new approach and this increase is due
essentially to the time devoted to the solution of MIP (1 → k). However, the solution time
remains quite small in spite of the increase. However, for the second group of problems, i.e.
those that needed the backtracking process in Gamache et al (1998b), the new optimal ap-
proach is competitive with the old one and moreover the number of backtracks is reduced.
This results in a significative reduction of the solution time. Indeed, the backtrack is due
essentially to a bad decision taken during the solution of MIP (k → k). Since no schedules
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Table 2: Solution times in seconds

Problem MIP (k → k) MIP (1 → k) Backtrack Enum Total Time

(Nb of employees) Old New New Old (Nb) New (Nb) New Old New

yyz-340(91) 147 170 102 - - 163 210 492

yul-crj(36) 148 1302 18 - 86(2) 381 187.17 2307

yyz-crj(91) 114115 415878 1955 545034(14) 36508(1) 2768 659935 457780

yul-320(90) 1875 26953 3394 18286(9) 36203(8) 1863 20448 69340

yvr-737(91) 117 189 30 - - 144 182 481

yvr-320(68) 68 79 8 - - 44 80 126

ywg-320(56) 145 147 7 1354(7) - 78 1476 189

ywg-crj(17) 0.71 0.83 0.01 - - 0.31 0.73 1.08

are chosen a priori then the solution approach has more flexibility for the construction of
schedules for the most junior employees. In general, the number of backtracks has been
reduced when using the new method (excepted for problem yul-crj-ca) and in some cases
backtracks have been eliminated. Problem ywg-320-ca is a good example where the new
approach performs quite well avoiding the backtracks while 7 backtracks that were needed
with the old approach.

5 Conclusion

We have presented an exact sequential approach for solving the PBS problem in the air-
line industry. The implementation of this new approach has considerably improved the
schedule of the pilots at Air Canada in comparison to the current approach which, to our
knowledge, is the best currently available. In fact, better schedules are constructed for
several employees. Although, the solution time has increased in some cases, it remains
acceptable or is even less for some of the most difficult problems. This is due to the fact
that the new approach often reduces the number of backtracks.
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