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Abstract

One critical difficulty in implementing Merton’s (1974) credit risk model is that the
underlying asset value cannot be directly observed. The model requires the unobserved
asset value and the unknown volatility parameter as inputs. The estimation problem
is further complicated by the fact that typical data samples are for the survived firms.
This paper applies the maximum likelihood principle to develop an estimation proce-
dure and study its properties. The maximum likelihood estimator for the mean and
volatility parameters, asset value, credit spread and default probability are derived for
Merton’s model. A Monte Carlo study is conducted to examine the performance of
this maximum likelihood method. An application to real data is also presented.

Key Words: Credit risk, maximum likelihood, option pricing, Monte Carlo simula-
tion.

Résumé

Une des principales difficultés lors de l’implémentation du modèle de risque de
crédit de Merton est que la valeur de la firme sous-jacente ne peut être observée. Le
modèle exige cette valeur inobservée de la firme ainsi que le paramètre de volatilité. Le
problème d’estimation est de plus compliqué par le fait que les données existantes sont
pour les firmes qui n’ont pas fait faillite. Dans cet article, la méthode du maximum de
vraisemblance est appliquée afin de développer une procédure d’estimation du modèle
et ses propriétés sont étudiées. Les estimateurs du maximum de vraisemblance sont
obtenus pour les paramètres de dérive et de volatilité, pour la valeur de la firme, pour
l’écart de crédit et la probabilité de défaut du modèle de Merton. Une étude de Monte
Carlo est menée afin d’étudier les performances de ces estimateurs. Une application à
des données réelles est aussi présentée.
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1 Introduction

In Merton (1974), a pricing model for corporate liabilities was developed using an option

valuation approach. In his setting, the unobserved asset value of the firm is governed

by a geometric Brownian motion. Subsequently, many variants of this model have been

proposed in the literature. Merton’s and its extended models are typically referred to as

structural credit risk (or risky bond) models. Examples abound; Longstaff and Schwartz

(1995), Briys and de Varenne (1997), Madan and Unal (2000) and Collin-Dufresne and

Goldstein (2001). This paper develops a maximum likelihood estimation method for the

Merton (1974) model, and the same idea is applicable to other structural credit risk models.

As pointed out in Jarrow and Turnbull (2000) among others, there are several limitations

associated with the implementation of structural credit spread models. First, the asset

value is an unobserved quantity. This in turn creates problems with the estimation of the

various required parameters such as the drift and volatility of the asset value process and

the correlation among different asset value processes. In the academic literature, three

approaches have been employed to deal with the estimation problem when the underlying

asset value is unobserved.

The first approach was employed in Ronn and Verma (1984) to implement the deposit

insurance pricing model of Merton (1978) and in Jones, Mason and Rosenfeld (1984) to

conduct an empirical study of Merton’s (1974) risky bond pricing model. We will refer to

this approach as the RV-JMR estimation method, which uses some observed quantities and

the corresponding restrictions derived from the theoretical model to extract point estimates

for the asset volatility parameter and the unobserved asset value. The RV-JMR estimation

method relies on two equations: one relating the equity value to the asset value and the

other relating the equity volatility to the asset volatility. The two-equation system can

then be solved for the two unknown variables: the asset value and volatility. The RV-JMR

estimation method has been advocated in standard finance textbook such as Saunders

(1999) and Hull (2003). A three-equation extension of the RV-JMR estimation method

was used in Duan, Moreau and Sealey (1995) to implement their deposit insurance model

with stochastic interest rate where the third equation relates the equity duration to the

asset duration.

The second estimation approach was proposed by Duan (1994, 2000). A likelihood

function based on the observed equity values is derived by employing the transformed data

principle in conjunction with the equity pricing equation. With the likelihood function

in place, maximum likelihood estimation and statistical inference become straightforward.

The maximum likelihood method was applied to Merton’s (1978) deposit insurance pricing

model in Duan (1994), Duan and Yu (1994), and Laeven (2002). Later, Duan and Simonato

(2002) extended the method to deposit insurance pricing under stochastic interest rate. For

credit risk, the estimation method has been applied to a strategic corporate bond pricing

model by Ericsson and Reneby (2001).
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The third approach is based on an iterated scheme known in the financial industry as
the KMV method. One starts with some initial guess of the asset volatility and then use
it to obtain, through the equity pricing equation, the inverted asset values corresponding
to the observed time series of equity prices. The inverted asset values are then used to
update the volatility estimate. The process continues until convergence is achieved. The
KMV method has been used, for example, by Vassalou and Xing (2003) to obtain a default
likelihood indicator in their study of equity premiums.

Theoretically, the maximum likelihood estimation method has several advantages com-
pared to the RV-JMR estimation method. First, the maximum likelihood method provides
an estimate of the drift of the unobserved asset value process under the physical probabil-
ity measure. This can in turn be used to obtain an estimate of the default probability of
the firm. Such an estimate is not available within the context of the RV-JMR estimation
method since the theoretical equity pricing equation does not contain the drift of the asset
value process under the physical probability measure. The second advantage is associated
with the asymptotic properties of the maximum likelihood estimator such as consistency
and asymptotic normality, which in turn allows for statistical inference to assess the quality
of parameter estimates and/or perform testing on the hypotheses of interest. In contrast,
consistency is unattainable with the RV-JMR estimation method because it erroneously
forces a stochastic variable to be a constant (see Duan (1994)).

Interestingly, the KMV method turns out to produce the point estimate identical to the
maximum likelihood estimate. However, the KMV method cannot provide the sampling
error of the estimate, which is critically important for statistical inferences. In short, the
KMV method can be regarded an incomplete maximum likelihood method.

This paper follows the maximum likelihood approach introduced in Duan (1994). Dif-
ferent from the existing works, we explicitly take into account the survivorship issue. In
the credit risk setting, it is imperative for analysts to recognize the fact that a firm in
operation has by definition survived thus far. Estimating a credit risk model using the
sample of equity prices needs to reflect this reality, or runs the risk of biasing the esti-
mator. This contrasts interestingly with the deposit insurance setting for which survived
banks may have actually failed but continue to stay afloat due to deposit insurance. To
our knowledge, this paper is the first to address the survivorship issue as well as apply-
ing the maximum likelihood method to credit risk assessment in a portfolio context. For
credit risk, it is important to work with a portfolio of firms because correctly assessing
correlations is critical to the task of credit risk analysis; for example, standard credit risk
management methods such as CreditMetrics and KMV are known to be highly sensitive
to the correlation coefficients of asset returns (see Crouhy and Mark (1998)).

We develop the likelihood function and implement the maximum likelihood estimation
procedure for Merton’s (1974) model. We also perform a Monte Carlo study to ascertain
the method’s performance for a reasonable sample size. The bias caused by neglecting
survivorship is examined. Finally, we apply the analysis to real data on a portfolio of two
firms.
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2 Merton’s Credit Risk Model

In the Merton (1974) framework, firms have a very simple capital structure. It is assumed

that the ith firm is financed by equity with a market value Si,t at time t and a zero-coupon

debt instrument with a face value of Fi maturing at time Ti. Let Vi,t be the asset value of

the ith firm and Di,t (σVi
) its risky zero-coupon bond value at time t. Let us consider m

firms. Naturally, the following accounting identity holds for every time point and for every

firm:

Vi,t = Si,t + Di,t (σVi
) , for any t ≥ 0 and i = 1, · · · , m. (1)

It is further assumed that the asset values follow geometric Brownian motions; that is, on

the filtered probability space (Ω,F , {Ft : t ≥ 0} , P ), we have

dVi,t = µiVi,tdt + σVi
Vi,t dWi,t, i ∈ {1, · · · , m} (2)

where µi and σVi
are, respectively, the drift and diffusion coefficients under the physical

probability measure P and the m dimensional Brownian motion W = {(W1,t, · · · , Wm,t) :

t ≥ 0} is such that

CovP [Wi,t, Wj,t] = ρijt for any t ≥ 0. (3)

The default-free interest rate r is assumed to be a constant. The default of the ith firm

occurs at time Ti if the asset value Vi,Ti
is below the face value Fi of the debt. Using

these assumptions, formulas for the bond value and default probability can be obtained.

These formulas are provided in Appendix Appendix A. The credit spread formula follows

immediately from the formula for Di,t (σVi
). Because the default-free interest rate is a

constant, the credit spread can be written as

Ci,t(σVi
) = − ln [Di,t (σVi

) /Fi]

Ti − t
− r. (4)

To implement this model empirically, one needs values for the input variables. Specifi-

cally, for the ith firm, the asset value Vi,t, the drift µi and the diffusion coefficient σVi
are

unknown. The correlation coefficient between any two asset values is also unknown. In

the next section, we derive the likelihood function which serves as the basis for maximum

likelihood estimation.

3 The Likelihood Function

The specific idea for constructing the likelihood function is taken from Duan (1994, 2000)

which treats the observed time series of equity prices as a sample of transformed data with

the equity pricing equation defining the transformation. Loosely speaking, the resulting

likelihood function becomes the likelihood function of the implied asset values multiplied

by the Jacobian of the transformation evaluated at the implied asset values.
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In general, one observes a time series of equity values for the ith firm corresponding to a

known face value of debt over a sample period with a time step of length h. Denote the time

series sample up to time t by {si,0, si,h, si,2h, · · · , si,Nh} with t = Nh and i ∈ {1, · · · , m}
The observation period is assumed to be the same for all firms to facilitate the estimation

of the correlation coefficients. Let θ denote the vector containing all parameters associated

with the m-dimensional geometric Brownian motion process; that is,

θ = [µ1, · · · , µm, σV1 , · · · , σVm , ρ12, · · · , ρ1m, ρ23, · · · , ρ2m, · · · ]. (5)

The function defining the critical transformation is the equity pricing equation which is

Si,t = Vi,t − Di,t (σVi
). It can be easily shown that Si,t is an invertible function of Vi,t for

any σVi
. We denote it by Si,t = gi (Vi,t; t, T, σVi

).

The data sample may contain firms that have refinanced during the sample period.

Assessing credit spreads is an exercise of attaching a premium to debt instruments of

a firm that has survived. The fact that a firm survives needs to be incorporated into

the likelihood function. Assume there are refinancing points in the sample, denoted by

n1h < n2h < · · · < nch ≤ Nh. Refinancing occurs in the sample period whenever the

zero-coupon debt of at least one firm reaches its maturity and new zero-coupon debts are

issued. Survivorship is not the relevant issue in the case of Merton’s (1974) model if the

zero-coupon debt did not become due during the sample period because there would be

no possibility of defaulting on the debt obligations. If the data sample contains points

of refinancing, survivorship adjustment may be important. For purposes of addressing

survivorship, we let D be the event “no default for the entire sample period”. The relevant

log-likelihood function is given in the following theorem.

Theorem 1 Assume that refinancing took place but there was no default in the sample

period. The log-likelihood function corresponding to the stock price sample is

L (s0, sh, s2h, · · · , sNh; θ)

= −mN

2
ln (2π) − N

2
ln (|detΣ|) − 1

2

N
∑

k=1kh

w∗′

khΣ−1w∗
kh −

N
∑

k=1

m
∑

i=1

ln v∗i,kh (6)

−
N
∑

k=1

m
∑

i=1

lnΦ
(

d
(

v∗i,kh, kh, σVi
, Fi,kh, Ti,kh

))

+
c
∑

j=1

ln1v∗

njh
∈Vj

− lnP (D; θ) .

where v∗
kh is the m-dimensional vector of v∗i,kh (for i = 1, · · · , m) with v∗i,kh = g−1

i

(si,kh; kh, σVi
, Fi,kh, Ti,kh) being the asset value implied by the equity value, Fi,t and Ti,t

are the face value and maturity date of the debt for the ith firm at time t, Φ(·) is the stan-

dard normal distribution function, d(·, ·, ·) is defined in equation (10) of Appendix Appendix

A, w∗
kh is an m-dimensional column vector defined as

w∗
kh =

(

ln v∗i,kh − ln v∗i,(k−1)h −
(

µi −
1

2
σ2

Vi

)

h

)

m×1
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and

Σ = (σVi
σV jρijh)i,j=1,··· ,m =







σ2
V1

· · · σV1σV mρ1m
...

. . .
...

σV1σV mρ1m · · · σ2
Vm






h

with detΣ being the determinant of Σ. Moreover, Vj =
⋂m

i=1

{

vi,njh > Fi,njh1Ti,njh=njh

}

⊆ R
m is the subset of the sample space at time njh corresponding to no default and P (D; θ)

is the survival probability according to equation (13).

The proof for this theorem is given in Appendix Appendix B. The first four terms

on the right hand side of equation (6) constitute the log-likelihood function if the asset

values were observed and no refinancing took place in the sample period. The fifth term

in equation (6) corresponds to the Jacobian that accounts for the transformation from the

observed equity values to the implied asset values. It is important to note that v∗
kh depends

on the parameters of the model. If it were not,
∑N

k=1

∑m
i=1 ln v∗i,kh could be dropped from

the likelihood function. This would be the case if the asset value could be directly observed.

Finally, the survival probability P (D; θ) reflects the fact that the log-likelihood function is

conditional on no default in the sample period whereas the term
∑c

j=1 ln1v∗

njh
∈Vj

simply

assigns a zero likelihood (or log-likelihood equal to minus infinity) to the parameter value

at which some implied asset value suggesting a default.

If the firms in the sample never faced refinancing during the sample period, survivorship

is not an issue. In terms of the above theorem, both lnP (D; θ) = 0 and
∑c

j=1 ln1v∗

njh
∈Vj

=

0 because the survival probability equals 1 and 1v∗

njh
∈Vj

= 1 when there is no refinancing.

This reduced case actually amounts to a straightforward generalization of Duan (1994,

2000) to a portfolio context. With the likelihood function in place, one can conduct the

maximum likelihood estimation and statistical inference.

4 A Practical Estimation Procedure

Although directly maximizing the log-likelihood function seems a natural approach, it is

actually not practical when many firms are in the data sample. The number of param-

eters involved increases rapidly and quickly becomes unmanageable. We therefore adopt

the following practical three-step estimation procedure, knowing fully well that the true

optimum may not be obtained this way:

• Step 1: Estimate the Merton (1974) model for each firm separately. For firm i,

estimates µ̂i and σ̂Vi
are obtained using the log-likelihood function in (6) by imposing

m = 1. The Monte Carlo study (see Section 5) indicates that the following standard

asymptotic results are applicable to the typical sample size in applications.

Statement: The parameter estimates (µ̂i, σ̂Vi
) are asymptotically normally dis-

tributed around the true parameter values with the covariance matrix being approxi-
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mated by F̂−1
i where

F̂i =





− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µ2

i

− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µi∂σVi

− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µi∂σVi

− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂2σVi



 .

• Step 2: Compute Vi,t(σ̂Vi
), Ci,t(σ̂Vi

) and Pi,t(µ̂i, σ̂Vi
) which represent, respectively,

the point estimates for the asset value, credit spread and default probability. Be-

cause these quantities are continuously differentiable function of the parameter es-

timates, their distribution can be approximated by a normal distribution using the

first derivatives of these quantities with respect to the parameter values and the co-

variance matrix estimate F̂−1
i .(see Lo (1986) or Rao (1973), page 385). Appendix

Appendix C provide the details of these computations.

• Step 3: Compute the sample correlation coefficient between ln (Vi,kh(σ̂Vi
)

/Vi,(k−1)h(σ̂Vi
)
)

and ln
(

Vj,kh(σ̂Vi
)/Vj,(k−1)h(σ̂Vi

)
)

and use it as the estimate for

ρij . The estimated correlation coefficient is expected to distribute normally around

its true value with a variance taken from the corresponding diagonal entry of F̂−1
ij

where F̂ij = − 1
N

∂2L(•)
∂θij(k)∂θij(l)

∣

∣

∣

θij=θ̂ij

. θij =
[

µi, µj , σVi
, σVj

, ρij

]

, θij(k) is the kth el-

ement of θij , θ̂ij is the estimate for θij and L(·) is the joint log-likelihood function

of the data sample for the ith and jth firms. Note that the first four entries of θ̂ij

are taken from the individual estimations for the ith and jth firms in Step 1 whereas

the correlation coefficient estimate is obtained in this step. For any quantity that

is a function of θij , the variance of its distribution can be obtained using the whole

matrix F̂−1
ij in a way similar to those in Step 2. If one is interested in any quantity

that is a function of the parameters for more than two firms, the dimension of F̂ij

can expanded to accommodate the new requirement.

The three-step estimation procedure can be completed fairly quickly; for example, on

a standard desktop computer, the completion for two firms usually takes approximately

10 seconds. Parameter estimation for a large portfolio of firms is thus feasible with the

three-step estimation procedure. The numerical optimization routine used here is the

quadratic hill–climbing algorithm of Goldfeld, Quandt and Trotter (1966) with a con-

vergence criterion based on the absolute values of the changes in parameter values and

functional values between successive iterations. We consider convergence achieved when

both of these changes are smaller than 10−5. The three-step estimation procedure uses

several simplifications. We need to ascertain its performance by a Monte Carlo study.

Such a study is carried out in the next section.
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5 A Monte Carlo Study

In order to assess the quality of the maximum likelihood procedure, we examine how

well the asymptotic normal distribution suggested by the theory approximates the actual

distribution for a reasonable sample size. In other words, we verify whether the parameter

estimates for a sample size N is well approximated by the distribution given in the preceding

section. Similarly, we check the distributions for the asset value Vi,t(θ̂N ), credit spread

Ci,t(θ̂N ) and default probability Pi,t(θ̂N ). Two Monte Carlo experiments are conducted.

The first experiment focuses on the multivariate aspect of the proposed method whereas

the second concentrates on the survivorship issue.

5.1 Description of the Two Experiments

In the first experiment, we consider two firms and simulate the data on a daily basis as

follows:

• Step 1: Let Vi,kh for i = {1, 2} and k = {1, · · · , N} denote the simulated asset

values in accordance with

V1,(k+1)h = V1,kh exp

(

µ1h − 1

2
σ2

V1
h + σV1

√
hǫ1,k

)

(7)

V2,(k+1)h = V2,kh exp

(

µ2h − 1

2
σ2

V2
h + σV2

√
hǫ2,k

)

(8)

where
{

(ǫ1,k, ǫ2,k)
′ : k ∈ {1, · · · , N}

}

is a sequence of independent and identically

distributed vectors of standard normal random variables with a correlation coefficient

of ρ12. To be consistent with daily data, we set h = 1/250. The specific parameter

values used in the simulation are given in the table.

• Step 2: Use the simulated asset values to compute equity values by the equity

pricing equation: Si,kh = Vi,kh −Di,kh(σVi
) with the expression of Di,kh(σVi

) given in

Appendix Appendix A.

For each simulated data sample, we conduct maximum likelihood estimation and compute

the point estimates and their associated variances using the simulated equity prices. We

repeat the simulation run 5, 000 times to obtain the Monte Carlo estimates for the relevant

quantities. Both firms have a debt maturity beyond the sample period. In other words,

there will be no refinancing in the sample period and hence no need to consider the sur-

vivorship issue. Specifically, we have T = 3, t = 2, h = 1/250 and N = 500. This means

that we simulate data daily for two years and at the beginning of the simulated sample,

both firms have zero-coupon debts with three-year maturity.

In the second Monte Carlo experiment, we focus on the survivorship issue and consider

one firm that faced refinancing. The data is also simulated on a daily basis in a way similar

to the first experiment but with a major difference. If the zero-coupon debt of the firm
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comes due at any time point, its asset value may be less than the debt service requirement,

i.e., the equity value becomes zero. When that occurs, the firm is deemed insolvent and

that particular sample is discarded. In other words, we only keep a sample of equity prices

if the firm survives the entire period.

In the second Monte Carlo experiment, we set t = 2.5, h = 1/250 and N = 625. The

firm refinances twice with one-year zero coupon debt. More specifically, it has a zero-

coupon debt with 1.0 year to maturity at the beginning of the data period and refinances

twice in years 1 and 2. One needs to be particularly careful in dealing with refinancing.

At a refinancing point, the market value of the new zero-coupon debt is lower than its face

value. If one strives to maintain the same face value, the amount of the newly raised debt

will be less than the payment required to retire the old debt. We thus adopt the following

procedure at the refinancing points. Given the asset value at the refinancing point, we

first find the face value of new debt that equates the market value of new debt with the

face value of the old debt. To make sure that the ratio of face value of debt to asset value

is the same at each refinancing point, we then adjust upward or downward the simulated

asset value at this point. This adjustment can be regarded as a recapitalization to keep

the target debt-to-asset-value ratio. Recapitalization creates a jump in the asset value and

thus renders the one-period return to the refinancing point unusable. Thus, we drop from

the sample such returns from the likelihood function.

5.2 Simulation Results

Table 1 reports the simulation results for the first experiment when survival is guaranteed.

The following parameter values are used: Vi,0 = 10000, Fi = 9000, µi = 0.1, σV = 0.3, r =

0.05 and ρ = 0.5. These parameter values represent a firm with a high debt-to-asset-value

ratio of Fi/Vi,0 = 0.9 and a high noise to signal ratio of σVi
/µi = 3. This case is inter-

esting because high leverage represents a firm that is more likely to default whereas the

high noise to signal ratio represents a case that is expected to more difficult to obtain

good estimates. The results reveal that for all parameters and the inferred variables, the

maximum likelihood estimators are unbiased (except in the case of the default probabil-

ity). For the default probability, there appears to be an upward bias but the median is

correctly located, indicating the presence of skewness. The coverage rates1 indicate that

the asymptotic distribution approximates well the small sample distribution.

We have also reported in Table 1 the results using the RV-JMR estimation method. A

description of this method is given in Appendix Appendix D. It is clear from this table

that the RV-JMR estimation produces poor estimates. The estimates for volatility are

significantly biased downward. For asset value, they are biased upward substantially. For

the inference on biases, the standard deviations reported in the tables should be divided

by a factor of
√

5000 to reflect the fact that 5000 simulation runs are used to produce the

1The coverage rate represents the percentage of the parameter estimates for which the true parameter
value is contained in the α confidence interval implied by the asymptotic distribution.
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means. Additional simulation results with different parameter values (not reported here)

show that the performance of the RV-JMR estimation method is related to the noise-to-

signal ratio of the firm. For high noise-to-signal firms, the biases are very pronounced

whereas for low noise-to-signal firms, the estimates may be regarded as acceptable. Also

worth noting is that the RV-JMR estimation method cannot yield an estimate for the drift

coefficient and consequently it cannot provide an estimate for the default probability. On

the efficiency side, the maximum likelihood estimators always show a smaller standard

deviation when compared to the RV-JMR estimators. For all parameter estimates and

inferred variables, except for the correlation coefficient, the standard deviations of the

RV-JMR estimators are approximately 10 times larger than their maximum likelihood

counterparts.

The correlation estimate based on the RV-JMR estimation method is very good in terms

of bias and standard deviation. This indicates that, in the context of Merton’s (1974)

model, the correlation between the stock price return is a very good estimate of the true

correlation between the asset returns. This is perhaps not too surprising because the cross

variation process between lnSi and lnSj is a function of the correlation between the two

Wiener processes that drive the asset values. Equity correlation amounts to normalizing

this expression by the two sample standard deviations of the stock returns, and thus yields

an estimate that is close to the asset return correlation.

Table 2 reports the simulation results for the second experiment where survival is not

guaranteed. The parameter values are identical to those used in the previous experiment,

i.e., we consider a firm with a high debt-to-asset-value ratio and a high noise to signal

ratio. In the two panels, the parameter values are obtained by ignoring the last two terms

of equation (6) and incorporating the last two terms, respectively, to assess the impact

of survivorship. The results reveal that ignoring survivorship does not really distort the

estimates except for µ and the default probability.

Ignoring survivorship has a non-trivial effect on the estimate of µ because both the mean

and median become twice the value of the true parameter value. This is not surprising

because only samples corresponding to the survived firm are used in estimation. In other

words, ignoring survivorship will naturally bias upward the estimate for µ. The default

probability, which critically depends on µ, is affected as a result. In fact, one should

expect a downward bias in the default probability estimate, which is confirmed by the

results reported in the first panel. The fact that the volatility estimate does not exhibit

any bias is not surprising. It is well known that the diffusion model’s rapid movement is

a sole manifestation of the diffusion term of the process. Every sample path, whether it

drifts upward or downward, is equally informative about the volatility parameter.

The second panel of Table 2 provides the results when survivorship has been properly

considered. The estimate for µ becomes much closer to the true value viewing from either

the mean or median value. Clearly, properly incorporating survivorship has a meaningful

effect on the drift parameter. Unfortunately, the coverage rates do not improve, suggesting
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that the asymptotic distribution does not adequately match the finite sample distribution

as far as µ is concerned. We have also checked to see whether the coverage rates improve

with the sample size. Indeed, it is the case as expected, but the improvement is rather

slow.

6 Empirical Analysis

In this section, we implement Merton’s (1974) model using real data. Although this model

assumes a zero-coupon debt, most corporations have much more complex liability struc-

tures. Liabilities with different properties such as maturity, seniority and coupon rate must

be aggregated into one quantity to implement the model. Obviously, there is no clear-cut

solution to these problems. One possible approach to determining debt maturity is to

find a “theoretical” zero-coupon bond that has the same duration as the aggregated debt.

Doing so will, however, fundamentally change the pattern of cash flows. Another way of

addressing this issue is to argue that the annual report on profits and losses is perceived

by equity holders as the maturity date of their option, which then leads to a pseudo debt

maturity of one year. At the time of the public reporting of the annual profits and losses,

debt holders may decide to take control of the firm in case of insolvency.

Determining the amount of debt for Merton’s (1994) model is also not an obvious

matter. The simplest approach would be to set the face value of debt equal to the total

amount of short- and long-term liabilities. However, as argued in Crouhy et al. (2000),

the probability of the asset value falling below the total face value of liabilities may not

be an accurate measure of the actual default probability. Default tends to occur when the

asset value reaches a level somewhere between the face value of total liabilities and the face

value of the short-term debt. Moreover, there are unknown undrawn commitments (lines

of credit) which can be used in case of financial distress.

Two companies from the Canadian retailing sector are examined for years 1999-2001:

Hudson’s Bay Company and Sears Canada Inc. Their stock prices are taken from DataS-

tream and the information regarding the long- and short-term debts is extracted from

the Financial Post Historical Reports and Reuters. The short-term debt is defined as the

“Current Liabilities” reported yearly in the consolidated balance sheet. The long-term

debt is the account “Long-term Debt, net” which represents the long-term debt net of

long-term debt maturing during the current year. For Hudson’s Bay, three major new

issues of debt were found while five new issues were recorded for Sears. These new debt

issues are considered as refinancing points.

The first panel of Table 3 reports the results when maturity is set equal to the duration

of the aggregated debt and the face value of debt is set equal to the sum of the short-term

and long-term liabilities. For the time period examined in the table, the average duration

was 2.25 years for Hudson’s Bay and 1.65 years for Sears. The estimates of the drift

coefficients are close to zero for Hudson’s Bay whereas the estimates are large and positive
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for Sears. Most of these estimates are, however, statistically insignificant from zero. The

estimates for the asset return volatility are similar in magnitude and significantly different

from zero. The estimated credit spreads are small and far less than the observed spreads

for their bonds. For example, in May 1999, the credit spread for Hudson’s Bay was in the

order of 200 basis points for a newly issued five year bond while the estimated spread is in

the order of 20 basis points. For Sears in the beginning of year 2000, the estimated spread

is around 1.6×10−8 while the spread on a newly issued 5 year coupon bond was around 60

basis points.

The estimated default probabilities are much higher for Hudson’s Bay with a probability

of 8.5% for 1999 whereas the estimated default probability is 1.6× 10−5 for Sears. Finally,

the estimated correlation between the asset values of these two firms is close to 0.2 for each

year of three years studied, and they are statistically significant.

The second and third panel of the table provide the estimation results when the debt

maturity is set to 5 and 10 years, respectively. When maturity is increased, the estimated

drift becomes smaller for Hudson’s Bay but larger for Sears. The estimated asset volatility

increases for both companies, however. The estimated spreads and default probabilities

for Hudson’s Bay increase to the more sensible levels. The estimates for Sears, however,

remain to be low by a common sense yardstick. The correlation estimates remains stable

with respect to this change in the maturity assumption.

7 Conclusion

We have developed a maximum likelihood estimation method for Merton’s (1974) credit

spread model in a multiple-firm setting. Our method also explicitly takes into account the

survivorship issue inherent to the credit analysis problem. Through two simulation studies,

we show that maximum likelihood method performs very well for all parameters/variables

of interest when refinancing does not occur in the sample period but the quality of the

asymptotic inference related to the drift parameter drops when refinancing enters into the

picture even with the proper consideration of survivorship. This paper also reveals that the

RV-JMR estimation method produces very poor estimates for the asset value and volatility

parameter. The simulation results, however, suggest that approximating the correlation

between asset returns with the correlation between stock returns seem to produce a good

correlation estimate.

Finally, the results of our empirical analysis on two firms show that the parameter

estimates are highly sensitive to changes in the assumptions necessary for performing the

model estimation. Although Merton’s (1974) stylized assumptions are not incompatible

with reality, one hopes that these simplification assumptions do not distort results too

much. The empirical results suggest, however, that these assumptions have non-trivial

effects.
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Table 1: Simulation results for two firms with no refinancing

Maximum Likelihood

µ̂1 µ̂2 σ̂V1
σ̂V2

ρ̂12 V̂1t0 -V1t0 V̂2t0 -V2t0 Ĉ1t0 -C1t0 Ĉ2t0 -C2t0 P̂1t0 -P1t0 P̂2t0 -P2t0

True 0.100 0.100 0.300 0.300 0.500 0.000 0.000 0.000 0.000 0.000 0.000
Mean 0.101 0.095 0.300 0.300 0.500 -0.784 1.853 0.000 -0.000 0.048 0.049
Median 0.102 0.098 0.299 0.299 0.501 0.155 0.118 -0.000 -0.000 -0.000 0.001
Std 0.209 0.208 0.018 0.018 0.033 110.522 116.660 0.020 0.021 0.080 0.080

25 % cvr 0.258 0.251 0.250 0.255 0.244 0.252 0.255 0.252 0.255 0.260 0.259
50 % cvr 0.514 0.516 0.506 0.504 0.497 0.506 0.509 0.507 0.509 0.512 0.512
75 % cvr 0.751 0.756 0.754 0.749 0.757 0.752 0.750 0.753 0.750 0.747 0.759
95 % cvr 0.951 0.955 0.947 0.942 0.953 0.934 0.933 0.934 0.932 0.952 0.955

RV-JMR

µ̂1 µ̂2 σ̂V1
σ̂V2

ρ̂12 V̂1t0 -V1t0 V̂2t0 -V2t0 Ĉ1t0 -C1t0 Ĉ2t0 -C2t0 P̂1t0 -P1t0 P̂2t0 -P2t0

True – – 0.300 0.300 0.500 0.000 0.000 0.000 0.000 – –
Mean – – 0.230 0.228 0.492 612.955 632.409 -0.086 0.023 – –
Median – – 0.243 0.240 0.493 134.507 141.436 -0.016 -0.122 – –
Std – – 0.119 0.120 0.036 1003.317 1022.175 0.153 0.755 – –

True is the parameter value used in the Monte Carlo simulation; Mean, Median and Std are the sample statistics
computed with the 5000 estimated parameter values; cvr is the coverage rate defined as the percentage of the 5000
parameter estimates for which the true parameter value is contained in the α confidence interval implied by the asymptotic
distribution; V0,1 = 10000, V0,2 = 10000, F1 = 9000, F2 = 9000, T = 3.00, t0 = 2.00, r = 0.05 and N = 500.
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Table 2: Simulation results for one firm with refinancing

Incorrect Maximum Likelihood

µ̂ σ̂V V̂t0 -Vt0 Ĉt0 -Ct0 P̂t0 -Pt0

True 0.100 0.300 0.000 0.000 0.000
Mean 0.205 0.299 1.510 -0.000 -0.033
Median 0.201 0.299 0.749 -0.000 -0.025
Std 0.151 0.013 53.946 0.013 0.074

25 % cvr 0.231 0.234 0.234 0.234 0.226
50 % cvr 0.442 0.485 0.482 0.483 0.443
75 % cvr 0.677 0.739 0.740 0.740 0.682
95 % cvr 0.908 0.940 0.931 0.931 0.913

Maximum Likelihood

µ̂ σ̂V V̂t0 -Vt0 Ĉt0 -Ct0 P̂t0 -Pt0

True 0.100 0.300 0.000 0.000 0.000
Mean 0.080 0.300 -0.721 0.000 0.037
Median 0.108 0.299 0.286 -0.000 -0.001
Std 0.241 0.013 55.750 0.013 0.124

25 % cvr 0.191 0.236 0.237 0.237 0.193
50 % cvr 0.369 0.486 0.485 0.485 0.372
75 % cvr 0.624 0.739 0.742 0.742 0.631
95 % cvr 0.904 0.937 0.929 0.930 0.911

True is the parameter value used in the Monte Carlo simulation; Mean, Median and
Std are the sample statistics computed with the 5000 estimated parameter values;
cvr is the coverage rate defined as the percentage of the 5000 parameter estimates
for which the true parameter value is contained in the α confidence interval implied
by the asymptotic distribution; V0 = 10000, F = 9000, r = 0.05 and N = 625.
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Table 3: Maximum likelihood estimation results on two firms

Hudson’s Bay Sears Canada

Year µ̂ σ̂ V̂t0 Ĉt0 P̂t0 µ̂ σ̂ V̂t0 Ĉt0 P̂t0 ρ̂

$000’s $000’s

Maturity equal to duration of total debt

1999 0.007 0.195 3445267 2.219e-003 8.463e-002 0.190 0.186 3486694 2.910e-005 1.579e-005 0.211
( 0.014) ( 0.006) ( 1917) (4.240e-004) (1.928e-002) ( 0.132) ( 0.006) ( 53) (1.967e-005) (6.481e-005) ( 0.045)

2000 0.005 0.200 3638239 4.520e-003 1.403e-001 0.285 0.207 6255902 1.601e-008 5.247e-010 0.206
( 0.011) ( 0.007) ( 3347) (7.800e-004) (2.048e-002) ( 0.135) ( 0.006) ( 0) (5.968e-009) (3.595e-009) ( 0.043)

2001 -0.094 0.231 2680738 1.348e-003 6.680e-002 0.097 0.252 3842943 4.925e-004 4.532e-003 0.171
( 0.244) ( 0.008) ( 570) (3.688e-004) (1.340e-001) ( 0.178) ( 0.008) ( 234) (7.548e-005) (1.325e-002) ( 0.047)

Maturity equal to 5 years

1999 0.003 0.209 3153189 6.514e-003 2.986e-001 0.205 0.199 3252416 1.223e-003 2.070e-004 0.203
( 0.014) ( 0.008) ( 7812) (9.110e-004) (5.474e-002) ( 0.150) ( 0.007) ( 2051) (3.065e-004) (1.315e-003) ( 0.044)

2000 -0.038 0.230 3127037 1.328e-002 6.185e-001 0.289 0.219 5851614 2.439e-004 1.115e-006 0.207
( 0.099) ( 0.009) ( 15271) (1.653e-003) (3.659e-001) ( 0.143) ( 0.007) ( 827) (1.027e-004) (8.077e-006) ( 0.043)

2001 -0.119 0.282 2260213 1.796e-002 7.909e-001 0.105 0.267 3590032 3.845e-003 3.600e-002 0.170
( 0.202) ( 0.012) ( 13612) (2.279e-003) (4.608e-001) ( 0.333) ( 0.009) ( 4978) (7.625e-004) (2.203e-001) ( 0.048)

Maturity equal to 10 years

1999 -0.019 0.240 2684806 1.155e-002 6.524e-001 0.223 0.221 2938729 3.716e-003 1.491e-004 0.203
( 0.020) ( 0.009) ( 16408) (1.316e-003) (9.743e-002) ( 0.278) ( 0.008) ( 6969) (6.800e-004) (2.287e-003) ( 0.044)

2000 -0.136 0.279 2477402 2.072e-002 9.800e-001 0.305 0.239 5428619 1.323e-003 5.551e-007 0.191
( 0.153) ( 0.012) ( 26277) (2.193e-003) (8.356e-002) ( 0.175) ( 0.008) ( 5814) (4.892e-004) (6.523e-006) ( 0.042)

2001 -0.162 0.312 1865562 2.273e-002 9.794e-001 0.109 0.289 3230527 7.781e-003 7.847e-002 0.155
( 0.298) ( 0.013) ( 19433) (2.429e-003) (1.493e-001) ( 0.130) ( 0.010) ( 10953) (1.158e-003) (2.094e-001) ( 0.047)

The maximum likelihood estimates at the beginning of Year are computed using the previous two years of daily time series
data; r = is set to the yield to maturity of a representative one year Canadian government bond; For each firm, the face value
of debt is set equal to the long term debt plus the short term debt obtained from the yearly annual report.



Les Cahiers du GERAD G–2004–81 15

Appendix A Formulas for debt and default probability in
Merton’s (1974) model

In Merton (1974), Di,Ti
(σVi

) = min {Vi,Ti
, Fi}. For valuation, it is well-known that we can

use the risk-neutral asset price dynamic to evaluate the discounted expected payout, where

the risk-neutral dynamic has the risk-free rate as the drift term but the same diffusion term.

Consequently, the bond value at time t is

Di,t (σVi
) = Fie

−r(Ti−t)

(

Vi,t

Fie−r(Ti−t)
Φ(−d(Vi,t, t, σVi

)) + Φ
(

d(Vi,t, t, σVi
) − σVi

√

Ti − t
)

)

(9)

where Φ (•) is the standard normal distribution function and

d(Vi,t, t, σVi
) =

ln (Vi,t) − ln (Fi) +
(

r + 1
2σ2

Vi

)

(Ti − t)

σVi

√
Ti − t

. (10)

Furthermore, Merton’s model implies the following default probability under measure P

at time t:

Pi,t(µi, σVi
) = P [Vi (Ti) < Fi |Ft ] = Φ

(

ln (Fi) − ln (Vi,t) −
(

µi − 1
2σ2

Vi

)

(Ti − t)

σVi

√
Ti − t

)

. (11)

where P [• |Ft ] denotes for the conditional probability taken at time t under the measure

P . The joint probability of default for several firms can be expressed using the multivariate

normal cumulative distribution function N0,ρ : R
m → [0, 1] with mean 0m×1 and covariance

matrix ρ ≡ (ρij)i,j∈{1,··· ,m} and relying on the following quantity:

P [V1,Ti
< α1, · · · , Vm,Ti

< αm |Ft ] = N0,ρ (β1, · · · , βm) (12)

where

βi =
ln (αi) − ln (Vi,t) −

(

µi − 1
2σ2

Vi

)

(Ti − t)

σVi

√
Ti − t

.

This gives rise to the joint default probability of the firms i1, · · · , ik where k ≤ m by setting

αi = Fi for any i ∈ {i1, · · · , ik} and αi → ∞ for all i /∈ {i1, · · · , ik}
in equation (12).

Appendix B The likelihood function for Merton’s (1974)
model with refinancing during the sample
period

In this section we derive the likelihood function for the multivariate version of Merton’s

(1974) model with refinancing during the sampling period. More precisely, at times n1h <



Les Cahiers du GERAD G–2004–81 16

n2h < ... < nch ≤ Nh, the zero-coupon debt of at least one firm reaches its maturity and

is refinanced with the new zero-coupon debt. Let Dj be the event “no default at time njh”

and D is the event “no default for the whole sample period”. That is,

Dj =
m
⋂

i=1

{

Vi,njh > Fi,t1Ti,t=njh

}

, j ∈ {1, 2, · · · , c} ,

D =
c
⋂

j=1

Dj

Recall that Fi,t and Ti,t are the face value and maturity date of the debt for the ith firm

at time t. 1A is the indicator function that is equal one if the event A is realized and

zero otherwise. If the firm i, for example, have a zero coupon debt with a face value of

Fi and a maturity date of tjh and refinances at time tjh with a zero coupon debt with

a face value of F ∗
i and a maturity date of Ti > Nh, then Fi,t = Fi1t≤tjh + F ∗

i 1t>tjh and

Ti,t = tjh1t≤tjh + Ti1t>tjh.

The conditional density function is

fV0,Vh,V2h,...,VNh|D (v0,vh,v2h, · · · ,vNh; θ)

=
fV0,Vh,V2h,...,VNh,D (v0,vh,v2h, · · · ,vNh; θ)

P (D; θ)

provided that P (D; θ) > 0. By the Markov property of the geometrical Brownian motion,

the survival probability can be expressed in terms of the multivariate normal cumulative

distribution function N0,ρ : R
m → [0, 1] with mean 0m×1 and covariance matrix ρ ≡

(ρij)i,j∈{1,··· ,m} :

P (D; θ) =

c
∏

j=1

P
(

V1,njh > F1,t1T1,njh=njh, · · · , Vm,njh > Fm,t1Tm,njh=njh

∣

∣Fnj−1h

)

=

c
∏

j=1

N0,ρ

(

β∗
1,j , · · · , β∗

m,j

)

(13)

where

β∗
i,j = −

(

ln
(

Fi,njh

)

− ln
(

vi,nj−1h

)

−
(

µi − 1
2σ2

Vi

)

(nj − nj−1)h

σVi

√

(nj − nj−1)h
1Ti,njh=njh

−∞1Ti,njh 6=njh

)

.
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Let Vj =
⋂m

i=1

{

vi,njh > Fi,njh1Ti,njh=njh

}

⊆ R
m be the subset of the sample space at

time njh corresponding to no default. The joint density function of the firm values and

the survival event is

fV0,Vh,V2h,...,VNh,D (v0,vh,v2h, · · · ,vNh; θ)

=

c
∏

j=1





nj
∏

k=nj−1+1

f
Vkh|V(k−1)h

(

vkh

∣

∣v(k−1)h ; θ
)

1vnjh∈Vj









N
∏

k=nc+1

f
Vkh|V(k−1)h

(

vkh

∣

∣v(k−1)h ; θ
)





=





c
∏

j=1

1vnjh∈Vj





(

N
∏

k=1

f
Vkh|V(k−1)h

(

vkh

∣

∣v(k−1)h ; θ
)

)

where n0 = 0 and f
Vkh|V(k−1)h

(

vkh

∣

∣v(k−1)h

)

denotes the conditional density function of

Vkh given V(k−1)h. Note that, the value of
∏N

k=N+1 f
Vkh|V(k−1)h

is set to 1 if such a case

occurs.

Since the conditional distribution of Vkh given V(k−1)h is lognormal, we have the follow-

ing conditional log-likelihood function:

L (v0,vh,v2h, · · · ,vNh; θ)

= ln fV0,Vh,V2h,··· ,VNh|D (v0,vh,v2h, · · · ,vNh; θ)

=
N
∑

k=1

(

vkh

∣

∣v(k−1)h ; θ
)

+
c
∑

j=1

ln1vnjh∈Vj
− lnP (D; θ)

= −mN

2
ln (2π) − N

2
ln (|detΣ|) − 1

2

N
∑

k=1

w
′

khΣ
−1wkh −

N
∑

k=1

m
∑

i=1

ln vi,kh

+
c
∑

j=1

ln1vnjh∈Vj
− lnP (D; θ) (14)

where Σ ≡
(

hσVi
σVj

ρij

)

i,j∈{1,...,m}
and wkh is the column vector

wkh ≡
(

ln vi,kh − ln vi,(k−1)h −
(

µi −
1

2
σVi

)

h

)

m×1

.

We of course do not observe v0,vh,v2h, · · · ,vNh. Instead, we have a time series of the

equity values s0, sh, s2h, · · · , sNh. The equity pricing equation is

Si,t = Vi,tΦ(d (Vi,t, t, σVi
; Fi,t, Ti,t)) − Fie

−r(Ti−t)Φ
(

d (Vi,t, t, σVi
; Fi,t, Ti,t) − σVi

√

Ti,t − t
)

(15)
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where

d (Vi,t, t, σVi
; Fi,t, Ti,t) =

ln (Vi,t) − ln (Fi,t) +
(

r + 1
2σ2

Vi

)

(Ti,t − t)

σVi

√

Ti,t − t
(16)

and Φ (•) is the cumulative standard normal distribution function. It defines the transfor-

mation between Si,t and Vi,t. We denote it by Si,t = gi (Vi,t; t, σVi
, Fi,t, Ti,t). This function

is invertible in the sense that for any fixed t and σVi
, Vi,t = g−1

i (Si,t; t, σVi
, Fi,t, Ti,t).

2

Defining v∗kh as the implied asset prices at time kh obtained from the observed equity

prices and a given set of parameters (σV1 , · · · , σVm), that is

v∗
kh =







v∗1,kh
...

v∗m,kh






=







g−1
1 (s1,kh; kh, σV1 , F1,kh, T1,kh)

...
g−1
m (sm,kh; kh, σVm , Fm,kh, Tm,kh)






.

We can express the log-likelihood function for the sample of equity values as

ln fS0,Sh,S2h,··· ,SNh|D (s0, sh, s2h, · · · , sNh; θ)

= ln fV0,Vh,V2h,··· ,VNh|D (v∗
0,v

∗
h, · · · ,v∗

Nh; θ) + ln |detJ |

where the Jacobian J of the transformation is a block diagonal matrix J = (Jnh)n∈{1,...,N}

and the sub-matrix Jkh is the m × m matrix

Jkh =

(

∂v∗i,kh

∂sj,kh

)

i,j∈{1,··· ,m}

.

One can show
∂v∗i,kh

∂sj,kh
=

{

1
Φ(d(v∗

i,kh
,kh,σVi

,Fi,kh,Ti,kh))
if i = j

0 otherwise.
(17)

Therefore

ln |detJ | = ln
N
∏

k=1

m
∏

i=1

1

Φ
(

v∗i,kh

) = −
N
∑

k=1

m
∑

i=1

lnΦ
(

d
(

v∗i,kh, kh, σVi
, Fi,kh, Ti,kh

))

.

Thus, the log-likelihood function based on the sample of observed equity values is

2In the case where we are at a refinancing date for the ith firm, that is Ti,t = t, then

Si,t = max (Vi,t − Fi,t; 0) = Vi,t − Fi,t

if we have conditioned upon the survival of the firm. This case is also invertible.
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L (s0, sh, s2h, · · · , sNh; θ)

= −mN

2
ln (2π) − N

2
ln (|Σ|) − 1

2

N
∑

k=1kh

w∗′

khΣ−1w∗
kh −

N
∑

k=1

m
∑

i=1

ln v∗i,kh

+
c
∑

j=1

ln1v∗

njh
∈Vj

− lnP (D; θ)

−
N
∑

k=1

m
∑

i=1

lnΦ
(

d
(

v∗i,kh, kh, σVi
, Fi,kh, Ti,kh

))

where w∗
kh is an m-dimensional column vector defined as

w∗
kh =

(

ln v∗i,kh − ln v∗i,(k−1)h −
(

µi −
1

2
σVi

)

h

)

m×1

.

Appendix C Point estimates and standard errors for
functions of the parameter values

The point estimate for the asset value can be obtained with

V̂i,t ≡ Vi,t(σ̂Vi
) = g−1

i (Si,t; t, σ̂Vi
) . (18)

Because Vi,t(σ̂Vi
) is a continuously differentiable function of σ̂Vi

, the distribution for the

firm’s asset value can be approximated by a normal distribution (see Lo (1986) or Rao

(1973), page 385). Let ∇̂Vi
=
(

∂Vi,t(σ̂Vi
)

∂µi
,

∂Vi,t(σ̂Vi
)

∂σVi

)

, then3

Vi,t(σ̂Vi
) − Vi,t ∼ N

{

0, ∇̂Vi
F̂−1

i ∇̂′

Vi

}

. (19)

For the credit spread, recall equation (4). Its point estimate can be computed by

Ci,t(σ̂Vi
) = −

ln

(

V̂i,t(σ̂Vi
)−Si,t

Fi

)

Ti − t
− r (20)

3Note that the equity pricing formula does not depend on µi. Thus,
∂Vi,t(σ̂Vi

)

∂µi
= 0. Moreover,

∂Vi,t(σ̂Vi
)

∂σVi

=
1

V̂i (t)
√

T − tφ
(

d
(

V̂i,t, t, σ̂Vi

))

where φ(·) denotes the standard normal density function.
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and its distribution can be approximated by

Ci,t(σ̂Vi
) − Ci,t(σVi

) ∼ N
{

0, ∇̂Ci
F̂−1

i ∇̂′

Ci

}

(21)

where4 ∇̂Ci
=
(

∂Ci,t(σ̂Vi
)

∂µi
,

∂Ci,t(σ̂Vi
)

∂σVi

)

. The default probability is a function of both µi and

σVi
and its expression is given in Appendix Appendix B. The point estimate can thus be

expressed as

Pi,t(µ̂i, σ̂Vi
) = Φ

(

xi,t(µ̂i, σ̂Vi
, V̂i,t)

)

(22)

where Φ is the standard normal distribution function and

xi,t(µ̂i, σ̂Vi
) =

ln (Fi) − ln (Vi,t(σ̂Vi
)) −

(

µ̂i − 1
2 σ̂2

Vi

)

(Ti − t)

σ̂Vi

√
Ti − t

.

The distribution for the default probability estimate should be treated with care. A direct

application of the first-order Taylor approximation as the typical asymptotic theory calls

for is not an advisable approach to this particular estimator. Because the sampling error

associated with µ̂i is quite large and the mapping from (µ̂i, σ̂Vi
) to Pi,t(µ̂i, σ̂Vi

) is highly

non-linear, we thus have adopted a two-step construction and found it work well. First,

we use the first-order Taylor approximation for xi,t(µ̂i, σ̂Vi
); that is,

xi,t(µ̂i, σ̂Vi
) − xi,t(µi, σVi

) ∼ N
{

0, ∇̂xi
F̂−1

i ∇̂′

xi

}

(23)

where ∇̂xi
=
(

∂xi,t(µ̂i,σ̂Vi
)

∂µi
,

∂xi,t(µ̂i,σ̂Vi
)

∂σVi

)

. The 1 − α confidence interval for the default

probability Pi,t(µ̂i, σ̂Vi
) = Φ (xi,t(µ̂i, σ̂Vi

)) is then constructed as:

[

Φ
(

b
(

µ̂i, σ̂Vi
, V̂i,t

))

; Φ
(

b
(

µ̂i, σ̂Vi
, V̂i,t

))]

where b (•) and b (•) are the lower and upper bounds of the 1 − α confidence interval for

xi,t(µ̂i, σ̂Vi
). The validity of this confidence interval can be easily verified as follows:

1 − α

= P
[

b (µ̂i, σ̂Vi
) ≤ xi,t(µ̂i, σ̂Vi

) ≤ b (µ̂i, σ̂Vi
)
]

= P
[

Φ(b (µ̂i, σ̂Vi
)) ≤ Φ(xi,t(µ̂i, σ̂Vi

)) ≤ Φ
(

b (µ̂i, σ̂Vi
)
)]

.

4Again, the first component of ∇̂Ci
is zero. The second one is

∂Ci,t(σ̂Vi
)

∂σVi

= − 1

Ti − t

1

Vi,t(σVi
) − Si,t

∂Vi,t(σ̂Vi
)

∂σVi

,

where
∂Vi,t(σ̂Vi

)

∂σVi

is given in an earlier footnote.
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Appendix D The RV-JMR estimation method

Following Ronn and Verma (1984) and Jones et al. (1984), an equation relating the

diffusion coefficient of the stock price process to that of the asset value process can be

obtained because stock price is a function of the asset value. Formally, Si,t = gi(Vi,t; t, σVi
).

Applying Itô’s lemma gives rise to

d lnSi,t =

(

µiVi,t∆i (t) + θi (t) + 1
2σ2

Vi
V 2

i (t) Γi (t)

Si,t
−

σ2
Vi

V 2
i (t)∆2

i (t)

2S2
i (t)

)

dt

+
σVi

Vi,t∆i (t)

Si,t
dWi,t. (24)

where

∆i (t) ≡
∂gi(Vi,t; t, σVi

)

∂v
= Φ(d (Vi,t, σVi

)),

Γi (t) ≡
∂2gi(Vi,t; t, σVi

)

∂v2
=

φ(d (Vi,t, σVi
))

σVi
Vi,t (Ti − t)1/2

,

θi (t) ≡
∂gi(Vi,t; t, σVi

)

∂t

and φ and Φ denotes respectively the density function and the cumulative function of a

standard normal random variable. The diffusion coefficient of the stock return process can

thus be written as:

σSi
(t) =

σVi
Vi,t∆i (t)

Si,t
.

This coefficient is time dependent and stochastic. Although it is inconsistent with the

model, the RV-JMR estimation method assumes that the sample standard deviation of

stock returns sampled over a time period prior to time t is a good estimate of σSi,t
. This

relationship in conjunction with Si,t = gi(Vi,t; t, σVi
) can be used to solve for two unknowns

- Vi,t and σVi
- using the observed value for Si,t and the estimate for σSi,t

.

In the multi-firm context, the quadratic variation between two stock returns is σSi
(t)

σSj
(t) ρij because

d 〈lnSi, lnSj〉t =
σVi

Vi,t∆i (t)

Si,t

σVj
Vj (t)∆j (t)

Sj (t)
d 〈Wi, Wj〉t

=
σVi

Vi,t∆i (t)

Si,t

σVj
Vj (t)∆j (t)

Sj (t)
ρij dt

= σSi
(t)σSj

(t) ρij dt.

Using the sample correlation may yields to an estimate for ρij . Note that this estimation

procedure is again inconsistent with the model because the quadratic variation process

between lnSi and lnSj is also time dependent and stochastic.



Les Cahiers du GERAD G–2004–81 22

References

[1] Black, F. and M. Scholes, 1973, The Pricing of Options and Corporate Liabilities,

Journal of Political Economy 81, 637–659.

[2] Briys, E. and F. de Varenne, 1997, Valuing Risky Fixed Rate Debt: An Extension,

Journal of Financial and Quantitative Analysis 32, 239–248.

[3] Collin-Dufresne, P. and R. Goldstein, 2001, Do Credit Spreads Reflect Stationary

Leverage Ratios, Journal of Finance 56, 1929–1957.

[4] Crouhy, M., and R. Mark, 1998, Model Risk, Journal of Financial Engineering, forth-

coming.

[5] Crouhy, M., Galai, D. and R. Mark, 2000, A Comparative Analysis of Current Credit

Risk Models, Journal of Banking and Finance 24, 59–117

[6] Duan, J.C., 1994, Maximum Likelihood Estimation Using Price Data of the Derivative

Contract, Mathematical Finance 4, 155–167.

[7] Duan, J.C., 2000, Correction: “Maximum Likelihood Estimation Using Price Data of

the Derivative Contract, Mathematical Finance 10, 461–462.

[8] Duan, J.C., A. Moreau and C.W. Sealey, 1995. Deposit Insurance and Bank Interest

Rate Risk: Pricing and Regulatory Implications, Journal of Banking and Finance 19,

1091–1108.

[9] Duan, J.C. and J.G. Simonato, 2002, Maximum Likelihood Estimation of Deposit

Insurance Value with Interest Rate Risk, Journal of Empirical Finance 9, 109–132.

[10] Duan, J.C. and M.T. Yu, 1994, Assessing the Cost of Taiwan’s Deposit Insurance,

Pacifice Basin Finance Journal 2, 73–90.

[11] Ericsson, J. and J. Reneby, 2001, Estimating Structural Bond Pricing Models, McGill

University working paper.

[12] Goldfeld, S., Quandt, R. and H. Trotter, 1966, Maximization by Quadratic Hill-

Climbing, Econometrica 34, 541–551

[13] Hull, J., 2003, Options Futures and Other Derivatives, fourth edition, Prentice Hall.

[14] Jarrow, R. and S. Turnbull, 2000, The Intersection of Market and Credit Risk, Journal

of Banking and Finance 24, 271–299

[15] Jones, E., Mason, S. and E. Rosenfeld, 1984, Contingent Claims Analysis of Corporate

Capital Structures: An Empirical Investigation, Journal of Finance 39, 611–627.

[16] Laeven, L., 2002, Bank Risk and Deposit Insurance, World Bank Economic Review

16, 109–137.

[17] Lo, A., 1986, Statistical Tests of Contingent-Claims Asset-Pricing Models - A New

Methodology, Journal of Financial Economics 17, 143–173.

[18] Longstaff, F. and Schwartz, E., 1995, A Simple approach to Valuing Risky Fixed and

Floating Rate Debt, Journal of Finance 49, 1213–1252.



Les Cahiers du GERAD G–2004–81 23

[19] Madan, D., and H. Unal, 2000, A Two-Factor Hazard-Rate Model for Pricing Risky

Debt and the Term Structure of Credit Spread, Journal of Financial and Quantitative

Analysis 35, 43–65.

[20] Merton, R.C., 1974, On the Pricing of Corporate Debt: the Risk Structure of Interest

Rates, Journal of Finance 28, 449–470.

[21] Merton, R.C., 1977, An Analytic Derivation of the Cost of Deposit Insurance and

Loan Guarantees, Journal of Banking and Finance 1, 3–11.

[22] Rao, C. R. 1973, Linear Statistical Inference and Its Application, second edition,

Wiley, New York.

[23] Ronn, E.I. and A.K. Verma, 1986, Pricing Risk–Adjusted Deposit Insurance: An

Option-Based Model, Journal of Finance 41, 871–895.

[24] Saunders, A., 1999, Credit Risk Measurement: New Approaches to Value at Risk and

Other Paradigms, Wiley.

[25] Vassalou, M. and Y. Xing, 2003, Default Risk in Equity Returns, to appear in Journal

of Finance.


