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Abstract

We present a review of the various integer linear programming (ILP) formulations that
have been proposed for the routing and wavelength assignment problem in WDM optical
networks with a unified and simplified notation under asymmetrical assumptions on the traffic.
We show that all formulations proposed under asymmetrical traffic assumptions, both link
and path formulations, are equivalent in terms of the upper bound value provided by the
optimal solution of their linear programming relaxation, although their number of variables
and constraints differ. We also propose some improvements for some of the formulations that
result in the elimination of potential looping lightpaths and lead to further reductions in the
number of variables and constraints. We next discuss the easiness of adding a constraint on
the number of hops (i.e., how to take into account the node/link attenuating effect) depending
on the formulations.

Under the objective of minimizing the blocking rate, we propose an experimental compar-
ison of the best lower and upper bounds that are available. We then discuss the easiness of
exact ILP solution depending on the formulations. We solve exactly for the first time some
RWA (Routing and Wavelength Assignment) instances, including those proposed by Krish-
naswamy and Sivarajan (2001), with a proof of the optimality. The conclusion is that LP
relaxations bounds often provide solutions with a value very close to the optimal ILP one.

Key Words: WDM network, network dimensioning, RWA problem, integer programming,
bounds, hop constraints, optimal solution.

Résumé

Nous présentons une synthèse des différentes formulations de programmation en nom-
bres entiers (PNE) qui ont été proposées pour le problème de routage de d’affectation de
longueurs d’onde dans les réseaux optiques WDM, appelé problème RWA, avec une notation
unifiée et simplifiée sous des hypothèses de trafic asymétrique. Nous montrons que toutes les
formulations proposées avec des hypothèses de trafic asymétrique, à la fois les formulations
en termes de liens et de chemins, sont équivalentes en termes des bornes supérieures fournies
par la valeur optimale de leur relaxation linéaire, bien que leurs nombres de variables et de
contraintes varient. Nous proposons également diverses améliorations pour certaines des for-
mulations, et celles-ci conduisent à l’élimination de boucles dans les chemins optiques virtuels
et à des réductions supplémentaires dans les nombres de variables et de contraintes. Nous
discutons ensuite de la facilité à ajouter une contrainte sur le nombre de sauts (pour tenir
compte de l’effet d’atténuation des noeuds et des liens) pour les différentes formulations.

Avec l’objectif de minimiser le taux de blocage, nous proposons une comparaison expéri-
mentale des meilleures bornes inférieures et supérieures disponibles. Nous discutons ensuite
de la facilité de la résolution en nombres entiers dépendant des formulations. Nous résolvons
exactement pour la première fois certains exemples de problèmes RWA, incluant les problèmes
proposés par Krishnaswamy et Sivarajan (2001), avec une preuve d’optimalité. La conclusion
de notre étude est que les bornes de relaxation continue (programmation linéaire) fournissent
souvent des solutions avec une valeur très proche de celle de la valeur optimale en nombres
entiers.

Mots Clefs: Réseau WDM, dimensionnement de réseaux, problème RWA, programmation
en nombres entiers, bornes, contraintes de sauts, solution optimale.
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1 Introduction

The WDM (Wavelength Division Multiplexing) optical networks offer the promise of pro-
viding the high bandwidth required by the increasing multimedia communication applica-
tions, see, e.g., Ramaswami and Sivarajan [1] for a general reference on optical networks.
This has led to a wide interest in the RWA (Routing and Wavelength Assignment) prob-
lem defined as follows: given the physical structure of a network and a set of requested
connections, select a suitable routing path and wavelength for each connection so that no
two paths sharing a link on the same fiber, are assigned the same wavelength.

Many papers have already appeared on the rwa problem, proposing various heuristic
scheme solutions under different assumptions on the traffic patterns, availability of the
converters, and objectives, cf. the surveys of Dutta and Rouskas [2] and Zang, Jue and
Mukherjee [3] for a summary of the works until 2000, and Jaumard, Meyer and Thion-
gane [4] for a recent survey on symmetrical systems under various objectives. The most
often studied objectives are the minimization of the number of wavelengths (called min-
rwa problem), the maximization of the number of accepted connections (called max-rwa
problem) (Krishnaswamy and Sivarajan [5]), the minimization of the congestion (Krish-
naswamy and Sivarajan [6]) and the minimization of the multiplexing costs.

Several types of heuristics and metaheuristics have been proposed. For the most efficient
or recent ones, see, e.g., various greedy heuristics (Banerjee and Mukherjee [7], Banerjee,
Yoo and Chen [8], Chlamtac, Ganz and Karmi [9], Zhang and Acampora [10]) and different
metaheuristics: Tabu Search (Jaumard and Hemazro [11] for non uniform traffic, Noronha
and Ribeiro [12] for uniform traffic), Simulated Annealing (Katangur, Pan and Fraser [13])
or genetic algorithms (Ali, Ramamurthy and Deogun [14]; Qin, Siew and Li [15]; Banerjee,
Mehta and Pandey [16]). The reader can refer to Hyytiä and Virtamo [17] for a comparison
of some of them.

With respect to exact solutions, the rwa problem has been formulated as an integer
programming problem but most of the times those formulations have not been used for
developing solution schemes except for some rounding off procedures. We review those
formulations for static traffic models, focusing on the max-rwa problem with asymmetrical
traffic matrices. There are two classes of formulations, those with link variables (see [5],
[18]), and those with path variables (see [19], [20], [21], [22]). We compare the optimal
values of their linear programming relaxations (or lp relaxations for short) and show that
they are all leading to the same upper bound. We also propose some further improvements
for some of the formulations that eliminate potential looping lightpaths and lead to some
reductions in the number of variables and constraints. However, the number of variables
and constraints of these formulations differ and the ease of solving the corresponding
integer linear programming formulations (or ilp for short) varies: while some of them can
be solved using ilp software (e.g. with the cplex libraries of ilog inc. [23]), others are just
intractable as soon as the size of the instances is increasing. For the formulations with path
variables, some attempts have been made to solve them using decomposition techniques
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such as column generation (Ramaswami and Sivarajan [22], Lee, Lee and Park [24]) or
Lagrangean relaxation (Saad and Luo [21]). Moreover, if additional constraints need to be
considered such as hop or signal regeneration constraints (Ye et al. [25], Ali, Ramamurthy
and Deogun [26]), some formulations are easier to adapt than others.

We next compare these upper bounds provided by the lp relaxations with the optimal
ilp solutions obtained using the cplex-mip software of ilog [23]. Indeed, using the ilp
formulation with the smallest number of variables and constraints, we solve several rwa
instances exactly for the first time, with a proof of optimality, including the instances of
Krishnaswamy [27], studied, e.g., in Krishnaswamy and Sivarajan [5].

The paper is organized as follows. In the next section, we present a more formal state-
ment of the RWA problem with the objective of minimizing the blocking rate and define
notation that will be used throughout the paper. Section 3 is devoted to the models using
link variables. We present three different formulations: the first two have been initially
proposed by Krishnaswamy and Sivarajan [5], and the third one, a source formulation,
has been studied by several authors (Coudert and Rivano [28]; Tornatore, Maier and Pat-
tavina [20], Krishnaswamy and Sivarajan [6]). We show that their lp relaxations provide
the same upper bounds and discuss how to improve them in terms of reducing their num-
ber of variables and constraints. In Section 4, we study the path ilp formulations, show
that their lp relaxations provide the same upper bound than the link formulations of the
previous sections. Further comparisons are conducted in Section 5 on the overall set of
formulations, where we discuss the easiness of taking into account additional constraints.
Computational experience are reported in Section 6. Conclusions are drawn in the last
section.

2 Statement of the RWA Problem - Notation

We assume that the optical network is represented by a multigraph G = (V, E) with a
node set V = {v1, v2, . . . , vn} where each node is associated with a node of the physical
network, and an arc set E = {e1, e2, . . . , em} where each arc is associated with a link and
a fiber of the physical network: the number of arcs from vi to vj is equal to the number of
fibers supporting traffic from vi to vj , see Figure 1 for an illustration: the two arcs from v2

to v1 indicate that there are two fibers. Note however that most of the networks today are
with only one fiber per link. The traffic is defined by a set K of connections, where each
connection has a capacity corresponding to the capacity of a wavelength. All wavelengths
are assumed to have the same capacity. We denote by Λ the set of wavelengths that we
assume of cardinality W = |Λ|. Moreover, we consider only single-hop connections, as we
do not assume that node converters or signal regeneration schemes are available.

The rwa problem can then be formally stated as follows: given a multigraph G corre-
sponding to a wdm optical network, and a set K of requested connections, find a suitable
lightpath (p, λ) for each (accepted) connection where p is a routing path and λ a wave-
length, so that no two paths sharing an arc of G are assigned the same wavelength.



Les Cahiers du GERAD G–2004–66 3

v

v v

v

v v

ee
e

ee

e
e

1

2 3

1

2 3

1 2

3

4 5

6

7
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Figure 1: Multigraphs and Multifiber Optical Networks.

As we consider asymmetrical traffic matrices, connections and therefore links are direc-
tional. Denote by T a traffic matrix. Each element Tij defines the number of requested
connections from vi to vj . For each connection k, let sk and dk denote the source and
destination nodes respectively.

We define below the main variables that will be used in the different formulations
presented in the forthcoming sections. The first set of variables will be used in the so-
called link formulations, while the second set of variables will be used in the so-called path
formulations.

First set of variables:

xk =

{

1 if connection k is accepted

0 otherwise,

xλ
k =

{

1 if wavelength λ supports connection k

0 otherwise,

xλ
ke =











1 if wavelength λ supports connection k

on arc e

0 otherwise.

Second set of variables:

xλ
p =











1 if there is a lightpath defined with path p

and wavelength λ

0 otherwise.

We will denote by ω+(vi) (resp. ω−(vi)) the set of outgoing (resp. incoming) links at
node vi.
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3 Link ILP Formulations

As already mentioned in the Introduction, there are two classes of formulations. We present
below the formulations of the first class, i.e., those with variables associated with links.
There are mainly three formulations, depending on whether the connections are taken into
account individually (paragraph 3.1), or grouped with respect to their source and destina-
tion nodes (paragraph 3.2), or grouped only with respect to their source (paragraph 3.4).

3.1 First Formulation of Krishnaswamy and Sivarajan

In [5], Krishnaswamy and Sivarajan present two formulations of the rwa problem with the
objective of maximizing the number of connections. We present below the first formulation,
denoted by (ks1), in which each connection is considered individually.

max zks1(x) =
∑

k∈K

xk

subject to:

∑

e∈ω+(vi)

xλ
ke =

∑

e∈ω−(vi)

xλ
ke k ∈ K, λ ∈ Λ, vi ∈ V \ {sk, dk} (1)

∑

e∈ω+(sk)

xλ
ke −

∑

e∈ω−(sk)

xλ
ke = xλ

k k ∈ K, λ ∈ Λ (2)

∑

e∈ω−(dk)

xλ
ke −

∑

e∈ω+(dk)

xλ
ke = xλ

k k ∈ K, λ ∈ Λ (3)

∑

k∈K

xλ
ke ≤ 1 e ∈ E, λ ∈ Λ (4)

∑

λ∈Λ

xλ
k = xk k ∈ K (5)

xλ
ke ≤ xλ

k k ∈ K, e ∈ E, λ ∈ Λ (6)

xk, x
λ
k , xλ

ke ∈ {0, 1} k ∈ K, e ∈ E, λ ∈ Λ. (7)

The first three sets of constraints correspond to the wavelength continuity constraints, i.e.,
a unique wavelength is assigned to connection k throughout its lightpath and are analogous
to the flow conservation constraints in a multicommodity flow problem. Constraints (4)
are the clash constraints: they ensure that no two lightpaths sharing the same arc e (i.e.,
the same link and fiber) can be assigned the same wavelength. Constraints (5) guarantee
that if a lightpath is defined for connection k, exactly one wavelength is assigned to it.
Finally, constraints (6) ensure consistency between variables xλ

ke and xλ
k .
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Even if it does not affect its value, the optimal solution of (ks1) may contain looping
lightpaths involving either the origin or the destination nodes of the connections. In order
to eliminate them, we introduce a slight variation in formulation (ks1), leading to a new
formulation denoted by (rwa). It consists in replacing constraints (2) and (3) by constraints
(2a) and (3a) and adding constraints (8).

max zrwa(x) =
∑

k∈K

xk

subject to:
∑

e∈ω+(vi)

xλ
ke =

∑

e∈ω−(vi)

xλ
ke k ∈ K, λ ∈ Λ, vi ∈ V \ {sk, dk} (1)

∑

e∈ω+(sk)

xλ
ke = xλ

k k ∈ K, λ ∈ Λ (2a)

∑

e∈ω−(dk)

xλ
ke = xλ

k k ∈ K, λ ∈ Λ (3a)

∑

e∈ω−(sk)

xλ
ke =

∑

e∈ω+(dk)

xλ
ke = 0 k ∈ K, λ ∈ Λ (8)

∑

k∈K

xλ
ke ≤ 1 e ∈ E, λ ∈ Λ (4)

∑

λ∈Λ

xλ
k = xk k ∈ K (5)

xλ
ke ≤ xλ

k k ∈ K, e ∈ E, λ ∈ Λ (6)

xk, x
λ
k , xλ

ke ∈ {0, 1} k ∈ K, e ∈ E, λ ∈ Λ. (7)

Note that when solving the above mathematical program, constraints (8) should be elimi-
nated after having set to 0 and eliminated all variables xλ

ke appearing in them. Moreover,
observe that the variables xk are not necessary: for more efficient solution they can be
omitted when solving the (rwa) ilp with the objective being rewritten:

z′rwa(x) =
∑

k∈K

∑

λ∈Λ

xλ
k , (9)

and constraints (5) replaced by
∑

λ∈Λ

xλ
k ≤ 1 k ∈ K. (5a)

Let Ωlp(ks1) and Ωlp(rwa) be the feasible domains of the lp relaxations of (ks1) and
(rwa), i.e., of (ks1) and (rwa) where the constraints (7) have been replaced by:

0 ≤ xk, x
λ
k , xλ

ke ≤ 1 k ∈ K, e ∈ E, λ ∈ Λ.
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Denote by zrwa and zks1 the optimal values of the lp relaxations of formulations (ks1)
and (rwa).

We first show that:

Theorem 1. The optimal values of the lp relaxations of formulations (ks1) and (rwa)
are equal:

zks1 = zrwa.

Proof. It is easy to see that Ωlp(rwa) ⊆ Ωlp(ks1), hence that zrwa ≤ zks1.

Let us now consider an optimal solution of (ks1), say x = (xk, x
λ
k , xλ

ke), such that there
exists at least one connection k ∈ K and a wavelength λ ∈ Λ satisfying

∑

e∈ω−(sk)

xλ
ke 6= 0 or

∑

e∈ω+(dk)

xλ
ke 6= 0. Let us assume that

∑

e∈ω−(sk)

xλ
ke 6= 0. This implies that connection k has

a looping lightpath on its source node sk. Removing the circuit leads to no change on the
objective function value as xk =

∑

λ∈Λ

xλ
k remains unchanged. Thus, by removing all circuits

in all established connections of the optimal solution x, we obtain an optimal solution of
(ks1) which is feasible for (rwa), therefore zrwa ≥ zks1.

We can then conclude that both values zrwa and zks1 are equal.

3.2 Second Formulation of Krishnaswamy and Sivarajan

Let us now examine the second formulation of Krishnaswamy and Sivarajan [5] denoted
by (ks2), in which connections are grouped with respect to their origin and destination
pair (vs, vd) of nodes. Let Ksd denote the set of connections between a pair of origin and
destination nodes vs and vd. New variables ysd =

∑

k∈Ksd

xk and yλ
sde =

∑

k∈Ksd

xλ
ke, y

λ
sde ∈

{0, 1} are introduced, where ysd is the number of accepted connections from vs to vd and
yλ

sde = 1 if a connection from vs to vd uses wavelength λ on link e and 0 otherwise. Note
that, for a given e, λ, at most one connection can be supported.

max zks2(y) =
∑

(vs,vd)∈V ×V :Tsd>0

ysd

subject to:

∑

e∈ω+(vi)

yλ
sde =

∑

e∈ω−(vi)

yλ
sde λ ∈ Λ, vi ∈ V \ {vs, vd},

(vs, vd) ∈ V × V : Tsd > 0 (10)

∑

λ∈Λ

∑

e∈ω+(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
sde = ysd (vs, vd) ∈ V × V : Tsd > 0 (11)



Les Cahiers du GERAD G–2004–66 7

∑

(vs,vd)∈V ×V :Tsd>0

yλ
sde ≤ 1 e ∈ E, λ ∈ Λ (12)

ysd ∈ {0, 1, . . . , Tsd} (vs, vd) ∈ V × V : Tsd > 0 (13)

yλ
sde ∈ {0, 1} e ∈ E, λ ∈ Λ,

(vs, vd) ∈ V × V : Tsd > 0. (14)

Constraints (10) and (11) are the wavelength continuity constraints while (12) correspond
to the clash constraints. However this formulation is incomplete. Indeed it allows the
existence of looping lightpaths passing through the origin and/or the destination of a
connection, and contrarily to what happened for formulation (ks1), the objective function
value is modified. There are two ways to correct the formulation. Either replace (11) by

∑

λ∈Λ





∑

e∈ω+(vs)

yλ
sde −

∑

e∈ω−(vs)

yλ
sde



 =

∑

λ∈Λ





∑

e∈ω−(vd)

yλ
sde −

∑

e∈ω+(vd)

yλ
sde



 = ysd

(vs, vd) ∈ V × V : Tsd > 0

or add to (11) the constraints

∑

λ∈Λ

∑

e∈ω−(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
sde = 0 (vs, vd) ∈ V × V : Tsd > 0 (15)

as for the addition of constraints (8) with respect to constraints (2) and (3) in formulation
(ks1). Note that the first proposal may allow the existence of paths from vd to vs since

∑

e∈ω+(vs)

yλ
sde −

∑

e∈ω−(vs)

yλ
sde may be negative for some λ. These paths can however be

canceled with paths from vs to vd, leading to an optimal solution for the RWA problem.
However we prefer and retain the second solution, as it allows the elimination of some
variables yλ

sde. This leads to the following (rwa sd) formulation:

max zrwa sd(y) =
∑

(vs,vd)∈V ×V :Tsd>0

ysd

subject to:

∑

e∈ω+(vi)

yλ
sde =

∑

e∈ω−(vi)

yλ
sde λ ∈ Λ, vi ∈ V \ {vs, vd},

(vs, vd) ∈ V × V : Tsd > 0 (10)
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∑

λ∈Λ

∑

e∈ω+(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
sde = ysd (vs, vd) ∈ V × V : Tsd > 0 (11)

∑

λ∈Λ

∑

e∈ω−(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
sde = 0 (vs, vd) ∈ V × V : Tsd > 0 (15)

∑

(vs,vd)∈V ×V :Tsd>0

yλ
sde ≤ 1 e ∈ E, λ ∈ Λ (12)

ysd ∈ {0, 1, . . . , Tsd} (vs, vd) ∈ V × V : Tsd > 0 (13)

yλ
sde ∈ {0, 1} e ∈ E, λ ∈ Λ,

(vs, vd) ∈ V × V : Tsd > 0. (14)

Again constraints (15) should be eliminated when solving the above formulation after
having set to 0 and eliminated the variables yλ

sde appearing in them. Observe that the
variables ysd are actually not necessary; for more efficiency they can be omitted when
solving the (rwa sd) ilp with the objective function being rewritten:

z′rwa sd(y) =
∑

λ∈Λ

∑

(vs,vd)∈V ×V :Tsd>0

∑

e∈ω+(vs)

yλ
sde (16)

and the constraints (11) replaced by

∑

λ∈Λ

∑

e∈ω+(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
sde ≤ Tsd

(vs, vd) ∈ V × V : Tsd > 0. (11a)

Although this last formulation does not explicitly provide the set of lightpaths between
a pair (vs, vd) of origin and destination nodes, it ensures that exactly ysd ≤ Tsd lightpaths
will exist between vs and vd. Even if the lightpaths are not explicitly provided in the
solution of (rwa sd), they can easily be deduced from an iterative process: see, e.g., the
proof of Theorem 2.

3.3 Comparison of the lp Relaxations of the Formulations (rwa) and

(rwa sd)

Let us compare the lp relaxations of formulations (rwa) and (rwa sd). We denote by
zrwa and zrwa sd their optimal values.

Theorem 2. The optimal values of the lp relaxations of the ILP formulations (rwa) and
(rwa sd) are equal:

zrwa = zrwa sd.

Proof. Let us first show that starting from a solution of Ωlp(rwa) we can deduce a so-
lution for Ωlp(rwa sd) with the same value and therefore that zrwa ≤ zrwa sd. Given
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(xk, x
λ
k , xλ

ke) ∈ Ωlp(rwa), we define

ysd =
∑

k∈Ksd

xk, (vs, vd) ∈ V × V : Tsd > 0

yλ
sde=

∑

k∈Ksd

xλ
ke, (vs, vd) ∈ V × V : Tsd > 0, e ∈ E.

Observe first that (1) in (rwa) =⇒ (10) in (rwa sd). Consider λ ∈ Λ, (vs, vd) ∈ V × V :
Tsd > 0 and vi ∈ V \ {vs, vd}. We have:

(1) =⇒
∑

e∈ω+(vi)

xλ
ke =

∑

e∈ω−(vi)

xλ
ke k ∈ Ksd

=⇒
∑

k∈Ksd





∑

e∈ω+(vi)

xλ
ke



 =
∑

k∈Ksd





∑

e∈ω−(vi)

xλ
ke





=⇒
∑

e∈ω+(vi)





∑

k∈Ksd

xλ
ke



 =
∑

e∈ω−(vi)





∑

k∈Ksd

xλ
ke



 .

Using the relation yλ
sde =

∑

k∈Ksd

xλ
ke, we derive (10).

Let us next show that (2a), (3a), (5) in (rwa) =⇒ (11) in (rwa sd). Let (vs, vd) ∈
V × V : Tsd > 0, λ ∈ Λ. Considering constraints (2a) for k ∈ Ksd and summing them, we
obtain:

∑

k∈Ksd





∑

e∈ω+(sk)

xλ
ke



 =
∑

e∈ω+(sk)





∑

k∈Ksd

xλ
ke



 =
∑

k∈Ksd

xλ
k ,

or equivalently,
∑

e∈ω+(sk)

yλ
sde =

∑

k∈Ksd

xλ
k . (17)

Moreover, summing (5) over k ∈ Ksd, we get
∑

k∈Ksd

∑

λ∈Λ

xλ
k =

∑

k∈Ksd

xk.

Summing constraints (17) over λ leads then to
∑

e∈ω+(sk)

∑

λ∈Λ

yλ
sde =

∑

k∈Ksd

xk = ysd.

Similarly, using constraints (3a) and (5) in (rwa), we obtain
∑

e∈ω−(dk)

∑

λ∈Λ

yλ
sde =

∑

k∈Ksd

xk = ysd.
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Hence, constraints (11) in (rwa sd) are satisfied. Using the decomposition K =
⋃

(vs,vd):Tsd>0

Ksd, it is easy to see that (4) in (rwa) =⇒ (12) in (rwa sd). Finally, summing the
constraints (8) over k ∈ Ksd, λ ∈ Λ leads to constraints (15). This completes the first part
of the proof.

We next establish the reverse inequality.

Let (ysd, y
λ
sde) be a solution from Ωlp(rwa sd). Let (vs, vd) be fixed. We first show how

to represent the vector yλ
sde(λ ∈ Λ, e ∈ E) by a set of paths from vs to vd. Define β = ysd

and βλ
e = yλ

sde for λ ∈ Λ and e ∈ E. Using (10), (11) and (15), we have
∑

e∈ω+(vi)

βλ
e =

∑

e∈ω−(vi)

βλ
e , λ ∈ Λ, vi ∈ V \ {vs, vd} (18)

∑

λ∈Λ

∑

e∈ω+(vs)

βλ
e = β (19)

∑

λ∈Λ

∑

e∈ω−(vs)

βλ
e = 0. (20)

As long as β > 0, there exist ẽ1 ∈ ω+(vs) and λ̃1 ∈ Λ such that βλ̃1

ẽ1
> 0. Assume that

ẽ1 = (vs, vi1). By (18) for vi = vi1 and λ = λ̃1, there exist ẽ2 ∈ ω+(vi1) such that βλ̃1

ẽ2
> 0.

Denote by vi2 the vertex such that ẽ2 = (vi1 , vi2). We repeat this process until one of the
following 2 cases occur: a) we revisit an already explored vertex or b) we reach vd. Note
that one of these 2 cases necessarily occur after at most n steps. In the case a), we have
generated a circuit. Denote by c this circuit and by E(c) the set of corresponding arcs.

Let δ = min
e∈E(c)

{βλ̃1
e }. Observe that δ > 0 by construction. We redefine βλ̃1

e ← βλ̃1
e − δ for

e ∈ E(c). Note that the resulting vector (β, βλ
e ) still satisfies (18)-(20). Since at least one

βλ
e has been set to 0, the case a) can appear at most mW times.

Assume now that the case b) occurred. The process has defined a path p from vs to
vd, associated with wavelength λ̃1. Let E(p) be the set of arcs of path p. We define

δ = min

{

β, min
e∈E(p)

{βλ̃1
e }

}

. Again δ > 0 by construction. We redefine β ← β − δ and

βλ̃1
e ← βλ̃1

e − δ for e ∈ E(p). Note that the resulting vector (β, βλ
e ) still satisfies (18)-(20),

and that either β = 0 or at least one βλ
e has been set to 0. Hence step b) cannot occur

more than mW times.

At the end of this process, we have a collection {p : p ∈ L} of paths p from vs to vd

with wavelength λ(p) and value δ(p) such that

ysd =
∑

p∈L

δ(p), (21)

yλ
sde ≥

∑

p∈L:e∈p,λ(p)=λ

δ(p), λ ∈ Λ, e ∈ E (22)
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(the inequality in (22) comes from the deletion of circuits with nonnegative values; note
that by (15), no circuit going through vs is possible, hence the equality in (21)).

We will now redistribute the paths of L among the connections of Ksd. This redistri-
bution will involve the splitting of some paths. Consider a numbering of the paths of L,
i.e., L = {p1, p2, . . . , pr} with r = |L|. Assume that Ksd = {k1, .., kq} where q = |Ksd|. We
define the values of the variables xk, k ∈ Ksd as follows:

xkt
=











1 t = 1, 2, . . . , ⌊ysd⌋

ysd − ⌊ysd⌋ t = ⌊ysd⌋ + 1

0 t = ⌊ysd⌋ + 2, . . . , q.

Note that
∑

k∈Ksd

xk = ysd. (23)

Given xk1
, we determine ℓ(k1) such that:

ℓ(k1)−1
∑

ℓ=1

δ(pℓ) < xk1
≤

ℓ(k1)
∑

ℓ=1

δ(pℓ).

If xk1
<

ℓ(k1)
∑

ℓ=1

δ(pℓ), we create a new lightpath (p, λ(p)) that is identical to pℓ(k1) in terms

of the arcs and such that λ(p) = λ(pℓ(k1)) and δ(p) =
ℓ(k1)
∑

ℓ=1

δ(pℓ)− xk1
. We next modify the

value of pℓ(k1) as follows: δ(pℓ(k1)) ← xk1
−

ℓ(k1)−1
∑

ℓ=1

δ(pℓ). This new path p is added at the

end of the list L and r is increased by 1. Note that we still have

ysd =
∑

p∈L

δ(p).

By definition,

xk1
=

ℓ(k1)
∑

ℓ=1

δ(pℓ).

The same procedure is applied iteratively for the next values of kt ∈ {k1, .., kq} such
that xkt

> 0; we obtain ℓ(kt) such that (with the convention ℓ(k0) = 0):

ℓ(kt)−1
∑

ℓ=ℓ(kt−1)+1

δ(pℓ) < xkt
≤

ℓ(kt)
∑

ℓ=ℓ(kt−1)+1

δ(pℓ).
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We have

xkt
=

ℓ(kt)
∑

ℓ=ℓ(kt−1)+1

δ(pℓ), t = 1, . . . , q. (24)

Now let us define xλ
ke:

xλ
kte

=

ℓ(kt)
∑

ℓ=ℓ(kt−1)+1,
ℓ:e∈pℓ,λ(ℓ)=λ

δ(pℓ) λ ∈ Λ, t = 1, . . . , q, e ∈ E. (25)

It follows that for any kt ∈ Ksd:

∑

λ∈Λ

∑

e∈ω+(vs)

xλ
kte

= xkt
.

We define
xλ

kt
=

∑

e∈ω+(vs)

xλ
kte

.

Clearly (5) is satisfied. For any λ ∈ Λ, since each path of {p ∈ L : λ(p) = λ} satisfies
constraints (1), (8) and

∑

e∈ω+(sk)

xλ
ke =

∑

e∈ω−(sk)

xλ
ke,

it follows that (1), (2a), (3a) and (8) are satisfied. Considering that

xλ
kt

=

ℓ(kt)
∑

ℓ=ℓ(kt−1)+1,
ℓ:λ(ℓ)=λ

δ(pℓ), λ ∈ Λ, t = 1, . . . , q.

Comparing this last equality with (24), we conclude that constraints (6) are satisfied.
To show (4), observe that

∑

k∈K

xλ
ke =

∑

(vs,vd)∈V ×V

∑

k∈Ksd

xλ
ke

and that
∑

k∈Ksd

xλ
ke =

q
∑

t=1

xλ
kte

=
r′

∑

ℓ=1,
ℓ:e∈pℓ,λ(ℓ)=λ

δ(pℓ) ≤ yλ
sde (26)
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where r′ is the cardinality of L after possibly splitting some paths. The inequality in (26)
follows from (22). Inequality (4) then follows from (12).

Finally equality (23) ensures that the value of the objective function is preserved. We
are now able to conclude that the reverse inequality zrwa ≥ zrwa sd holds.

The last part of the proof of Theorem 2 uses a technique that is very similar to the rela-
tionship between link and path formulations for flow problems: see, e.g., Ahuja, Magnanti
and Orlin [29, p. 80–81]. As noted by several authors, see, e.g., [28], the rwa problem
can also be formulated as a multicommodity flow problem in a layered graph constructed
as follows for the (rwa sd) formulation: we consider W copies of the graph G, each copy
corresponding to one wavelength. For each pair (vi, vj) of origin/destination nodes, we add
an extra source node vs

ij that is connected to each copy of node vi and similarly we add an

extra destination node vd
ij that is connected to each copy of node vj , see Figure 2 for an

illustration. All arc capacities in the copies of G are equal to 1. A similar layered graph
can be associated with the (rwa) formulation with extra source nodes vs

k1
, vs

k2
, · · · , vs

k|K|

and extra destination nodes vd
k1

, vd
k2

, · · · , vd
k|K|

.

λ

G,

G,

G, λ

λ

1

2

W

v

v

v

vs

s

d

d

v
s d

v

1,2

1,3

s,d s,d

1,2

1,3

Figure 2: General shape of the flow network of the (rwa sd) formulation.

Note also that the second part of the proof of Theorem 2 provides a method to determine
the associated lightpaths from an optimal solution (ysd, y

λ
sde) of (rwa sd).

3.4 Source Formulations

Source formulations, in which connections are grouped with respect to their source nodes,
have been investigated in three papers: Krishnaswamy and Sivarajan [6], Tornatore, Maier
and Pattavina [20], Coudert and Rivano [30]. Although no study exists for destination
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formulation, they can be defined in a similar fashion than the source formulations. De-
pending on the traffic matrices, they even may be more economical formulations than the
source formulations, in terms of the number of variables.

Let us consider the source formulation proposed by Coudert and Rivano [30], denoted
by (cr), and rearrange it so as to minimize the number of constraints and variables, as well
as change the notation in order to unify it with the formulations of the previous sections.
Let Ks denote the set of connections with origin vs and Ds the set of destination nodes
for connections originating from vs. New variables yλ

se =
∑

k∈Ks

xλ
ke ∈ {0, 1} are introduced,

where yλ
se = 1 if a connection originating from vs uses wavelength λ on link e and yλ

se = 0
otherwise. Note that, for a given e, λ, at most one connection can be supported.

We have slightly modified the constraints of the original (cr) model as we do not
consider wavelength conversions. Note also that the graph model considered by Coudert
and Rivano is an adaptation of the layered graph described at the end of the previous
section, see their paper [30] for more details. A difference exists in the modeling of a
multifiber network, instead of using a multigraph as we did, they remain with a simple
graph and modify the clash constraints: the limit on the number of times a wavelength is
used on a physical link is set to the number of fibers on that link.

The (cr) model needs two additional sets of variables: αλ
s and αλ

sd that define the
number of connections from vs, respectively from vs to vd, that use the wavelength λ. Let
Ts =

∑

d:vd∈Ds

Tsd.

max zcr(y) =
∑

vs,vd∈V :Tsd>0

ysd

subject to:
∑

e∈ω+(vi)

yλ
se −

∑

e∈ω−(vi)

yλ
se = 0

λ ∈ Λ, vs ∈ V : Ts > 0, vi ∈ V \ (Ds ∪ {vs}) (27)

∑

e∈ω+(vs)

yλ
se −

∑

e∈ω−(vs)

yλ
se = αλ

s λ ∈ Λ, vs ∈ V : Ts > 0 (28)

∑

e∈ω+(vd)

yλ
se −

∑

e∈ω−(vd)

yλ
se = −αλ

sd vs ∈ V : Ts > 0, vd ∈ Ds, λ ∈ Λ (29)

∑

λ∈Λ

αλ
sd = ysd, vs ∈ V : Ts > 0, vd ∈ Ds (30)

∑

λ∈Λ

αλ
s =

∑

vd∈Ds

ysd vs ∈ V : Ts > 0 (31)

∑

vs∈V :Ts>0

yλ
se ≤ 1 e ∈ E, λ ∈ Λ (32)
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ysd ∈ {0, 1, . . . , Tsd} vs, vd ∈ V : Tsd > 0 (33)

yλ
se ∈ {0, 1} e ∈ E, vs ∈ V : Ts > 0, λ ∈ Λ (34)

αλ
s ∈ N vs ∈ V : Ts > 0, λ ∈ Λ (35)

αλ
sd ∈ N vs, vd ∈ V : Tsd > 0, λ ∈ Λ. (36)

Constraint (27) expresses the flow conservation for connections originating from a node
vs at any node vi corresponding to a node of the physical network, with vi 6= vs and
vi 6∈ Ds. Constraints (28) and (29) express the flow conservation at the origin vs and at
the destination nodes of vs respectively. Constraints (30) take care of the connections from
vs to vd that are assigned a wavelength λ on one of the fibers, while (31) take care of the
outflows routed on lightpaths with λ and that are originating from vs. Finally, constraint
(32) expresses that there is at most one connection per arc and wavelength.

The number of variables of the formulation of Coudert and Rivano can be reduced with
the elimination of the αλ

s and αλ
sd variables. First note that by summing (29) over vd ∈ Ds

and the resulting equality with (27) and (28), we get the equality

αλ
s =

∑

vd∈Ds

αλ
sd, λ ∈ Λ, vs ∈ V : Ts > 0.

Hence (28) can be replaced by (3.4). Constraints (31) can be removed as they are redun-
dant with (30) and (3.4). Summing constraints (29) over λ and using (30) leads to the
replacement of (30) by

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
se −

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
se = −ysd vs ∈ V : Ts > 0, vd ∈ Ds. (37)

At this point, variables αλ
sd and αλ

s appear only in (29) and (3.4). Since yλ
se ∈ {0, 1}

by (34), it follows that αλ
sd and αλ

s are integral. Adding inequalities that guarantee the
nonnegativity of αλ

sd allows the elimination of the variables αλ
sd and αλ

s , leading to a more
economical formulation with flows aggregated according to their origin:

max zrwa s(y) =
∑

vs,vd∈V :Tsd>0

ysd

subject to:
∑

e∈ω+(vi)

yλ
se −

∑

e∈ω−(vi)

yλ
se = 0

λ ∈ Λ, vs ∈ V : Ts > 0, vi ∈ V \ (Ds ∪ {vs}) (27)

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
se −

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
se = −ysd vs ∈ V : Ts > 0, vd ∈ Ds (37)
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∑

e∈ω+(vd)

yλ
se −

∑

e∈ω−(vd)

yλ
se ≤ 0 λ ∈ Λ vs ∈ V : Ts > 0, vd ∈ Ds (38)

∑

vs∈V :Ts>0

yλ
se ≤ 1 e ∈ E, λ ∈ Λ (32)

ysd ∈ {0, 1, . . . , Tsd} vs, vd ∈ V : Tsd > 0 (39)

yλ
se ∈ {0, 1} e ∈ E, vs ∈ V : Ts > 0, λ ∈ Λ. (34)

Theorem 3. The optimal values of the lp relaxations of (rwa sd) and (rwa s) are equal:

zrwa sd = zrwa s.

Proof. Let us first show that zrwa s ≥ zrwa sd starting from a solution of Ωlp(rwa sd) and
deducing from it a solution for Ωlp(rwa s) with same value. Let (ysd, y

λ
sd) ∈ Ωlp(rwa sd).

Define

yλ
se =

∑

vd∈Ds

yλ
sde, λ ∈ Λ, vs ∈ V : Ts > 0, e ∈ E.

Let us show that (ysd, y
λ
se) ∈ Ωlp(rwa s).

∑

e∈ω+(vd)

yλ
se −

∑

e∈ω−(vd)

yλ
se

=
∑

e∈ω+(vd)

∑

v
d′∈Ds

yλ
sd′e −

∑

e∈ω−(vd)

∑

v
d′∈Ds

yλ
sd′e

=
∑

v
d′∈Ds





∑

e∈ω+(vd)

yλ
sd′e −

∑

e∈ω−(vd)

yλ
sd′e





= −
∑

e∈ω−(vd)

yλ
sde ≤ 0 (40)

where we used (10) for vd′ 6= vd and (15) for vd′ = vd. Hence constraints (38) are satisfied.
Summing (40) over λ and using (11) shows that (37) are satisfied. (27) follows easily from
(10). Finally, using (12), we get

∑

vs∈V :Ts>0

yλ
se =

∑

vs∈V :Ts>0

∑

vd∈Ds

yλ
sde =

∑

(vs,vd)∈V ×V :Tsd>0

yλ
sde ≤ 1,

which shows that constraints (32) are also satisfied. Hence (ysd, y
λ
se) ∈ Ωlp(rwa s). Noting

that the objective value remains unchanged, we get the inequality zrwa s ≥ zrwa sd.

Let us now establish the reverse inequality. We use a technique similar to the one used
for proving Theorem 2. Let vs ∈ V be fixed. We first show how to represent the vector
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yλ
se(λ ∈ Λ, e ∈ E) by a set of paths from vs to the destination nodes of vs. Define βd = ysd

for vd ∈ Ds and βλ
e = yλ

se for λ ∈ Λ and e ∈ E. By (27), (37) and (38), we have
∑

e∈ω+(vi)

βλ
e =

∑

e∈ω−(vi)

βλ
e λ ∈ Λ, vi ∈ V \ (Ds ∪ {vs}) (41)

∑

λ∈Λ

∑

e∈ω−(vd)

βλ
e −

∑

λ∈Λ

∑

e∈ω+(vd)

βλ
e = βd vd ∈ Ds (42)

∑

e∈ω+(vd)

βλ
e −

∑

e∈ω−(vd)

βλ
e ≤ 0 λ ∈ Λ, vd ∈ Ds. (43)

Let v
d̃
∈ Ds such that β

d̃
> 0. Then there exist ẽ1 ∈ ω−(v

d̃
) and λ̃1 ∈ Λ such that βλ̃1

ẽ1
> 0.

Assume that ẽ1 = (vi1 , vd̃
). By (41) or (43) depending whether vi1 is one of the destination

nodes of vs or not, there exist ẽ2 ∈ ω−(vi1) and λ̃1 ∈ Λ such that βλ̃1

ẽ2
> 0. Denote by vi2

the vertex such that ẽ2 = (vi2 , vi1). We repeat this process until one of the following 2 cases
occur: a) we revisit an already explored vertex or b) we reach vs. Note that one of these 2
cases necessarily occur after at most n steps. In the case a), we have generated a circuit.

Denote by c this circuit and by E(c) the set of corresponding arcs. Let δ = min
e∈E(c)

{βλ̃1
e }.

Observe that δ > 0 by construction. We redefine βλ̃1
e ← βλ̃1

e − δ for e ∈ E(c). Note that
the resulting vector (βd, β

λ
e ) still satisfies (41)-(43). Since at least one βλ

e has been set to
0, the case a) can appear at most mW times.

Assume now that the case b) occurred. The process has defined a path p from vs to v
d̃
.

Let E(p) be the set of corresponding arcs. We define δ = min
{

β
d̃
, min
e∈E(p)

{βλ̃1
e }

}

. Again

δ > 0 by construction. We redefine β
d̃
← β

d̃
− δ and βλ̃1

e ← βλ̃1
e − δ for e ∈ E(p). Note

that the resulting vector (βd, β
λ
e ) still satisfies (41)-(43), and that either β

d̃
= 0 or at least

one βλ
e has been set to 0. Hence step b) cannot occur more than mW times. We repeat

this for each d such that βd > 0.

At the end of all this process, we have a collection
{

p : p ∈
⋃

vd∈Ds

Ld

}

of paths p

originating at vs with wavelength λ(p) and value δ(p) such that

ysd =
∑

p∈Ld

δ(p), (44)

yλ
se ≥

∑

p∈L:e∈p,λ(p)=λ

δ(p), λ ∈ Λ, e ∈ E (45)

where Ld is the set of paths from vs to vd for vd ∈ Ds (the inequality in (45) comes from
the deletion of circuits with nonnegative values). Define

yλ
sde =

∑

p∈Ld:λ(p)=λ,e∈p

δ(p), λ ∈ Λ, e ∈ E. (46)
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Note that
∑

λ∈Λ

∑

e∈ω−(vd)

∑

p∈Ld:λ(p)=λ,e∈p

δ(p) =
∑

p∈Ld

δ(p),

hence from (44) we deduce

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
sde = ysd.

Since each path p ∈ Ld such that λ(p) = λ satisfies the constraints (10), (15) and

∑

e∈ω+(vs)

yλ
sde =

∑

e∈ω−(vd)

yλ
sde,

it follows that (10), (11) and (15) are satisfied. Since

∑

(vs,vd)∈V ×V :Tsd>0

yλ
sde =

∑

vs∈V :Ts>0

∑

p∈L:e∈p,λ(p)=λ

δ(p)

≤
∑

vs∈V :Ts>0

yλ
se

by (45), it follows from (32) that (12) are satisfied. Hence (ysd, y
λ
sde) is a feasible solution

to Ωlp(rwa sd). Since the objective value depends only on the variables ysd, the value of
the objective function remains unchanged. Hence the result.

3.5 Comparison of the Three Link Formulations

Although the three formulations (rwa), (rwa sd) and (rwa s) differ with respect to the
analytical expression of their constraints, they are equivalent in terms of the upper bounds
provided by their lp relaxations. The comparison of their number of variables and con-
straints is summarized in Table 1. For the comparison, we consider the most economical
formulations in terms of variables, i.e.,

• formulation (rwa) in which variables xk have been eliminated and constraints (5)
replaced by (5a), leading to the objective function z′rwa as defined in (9);

• formulation (rwa sd) in which variables ysd have been eliminated and constraints
(11) replaced by (11a), leading to the objective function expression z′rwa sd as defined
in (16);

• formulation (rwa s) in which variables ysd have been eliminated and constraints (37)
replaced by

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
se −

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
se ≤ Tsd vs ∈ V : Ts > 0, vd ∈ Ds, (37a)
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leading to the objective function

z′rwa s(y) =
∑

vs,vd∈V :Tsd>0

(

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
se −

∑

λ∈Λ

∑

e∈ω+(vd)

yλ
se

)

. (47)

In order to evaluate the number of variables and constraints of these formulations, we
assume that there is at least one connection request for each pair of origin-destination.
This implies that |K| ≥ n(n − 1). An upper bound on |K| is obtained by noting that Tsd

can be bounded from above by mW . Indeed mW is the maximum number of lightpaths
that can be established on the network. If Tsd > mW , we can reject without loss of
generalization Tsd − mW connections. We deduce |K| ≤ n(n − 1)mW . The number of
variables and constraints for each link formulation is reported in Table 1. We observe that
both in terms of variables and constraints the source formulation (rwa s) is the best one,
followed by (rwa sd). Formulation (rwa) is the worst one, except if we need to consider
hop constraints, see Section 5 for more details.

# (binary) variables
(rwa) |K|W (1 + m)

= O(mW |K|)
(rwa sd) mn(n − 1)W

= O(n2mW )
(rwa s) nmW

= O(nmW )
# constraints

(rwa) (n + m + 2)W |K| + mW + |K|

= O
(

(n + m)W |K|
)

(rwa sd) n(n − 1)(n − 2)W + 2n(n − 1) + mW

= O
(

(n3 + m)W
)

(rwa s) n(n − 1)(W + 2) + mW

= O
(

(n2 + m)W
)

Table 1: Number of Variables and Constraints in the Different Formulations for the Asym-
metrical RWA Problem.

4 Path ILP Formulations

In the previous section, we discussed upper bounds derived from lp (i.e. linear programs)
relaxations of formulations of the RWA problem using link variables. In this section, we
discuss other upper bounds derived from formulations using path variables.
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4.1 path Formulation

Let P be the overall set of elementary (e.g., with no loop) paths from vs to vd for all pairs
(vs, vd) of source and destination nodes such that Tsd > 0. It can be decomposed as follows:
P =

⋃

sd

Psd where Psd corresponds to the set of potential paths for node pair vs, vd. We

also define the parameters

aep =

{

1 if arc e belongs to path p

0 otherwise.

for all p ∈ P and e ∈ E. We then have this following path formulation, denoted path,
that has been already proposed by several authors, see, e.g., Lee et al. [19] or Saad and
Luo [21]:

max zpath(x) =
∑

λ∈Λ

∑

p∈P

xλ
p

subject to:

∑

p∈P

aepx
λ
p ≤ 1 e ∈ E, λ ∈ Λ (48)

∑

λ∈Λ

∑

p∈Psd

xλ
p ≤ Tsd (vs, vd) ∈ V × V : Tsd > 0 (49)

xλ
p ∈ {0, 1} p ∈ P, λ ∈ Λ. (50)

Constraints (48) correspond to the clash constraints, i.e., they express that there is at
most one lightpath going through each pair (e, λ), and (49) are the demand constraints.

While the (path) formulation may seem to suffer from a large number of variables, it
can be solved by column generation techniques in which only a small subset of columns
(i.e. variables) need to be on hand at each iteration, see [31] for more details. Moreover
additional constraints like the hop constraints (see Section 5) can reduce the number of
paths that have to be considered.

4.2 A Relaxation of the path Formulation

Let us consider a relaxation of the (path) formulation, denoted by (rλ path), in which we
care only for identifying a path for each connection request that satisfies the link capacities,
but do not assign any wavelength to it. We introduce the set of variables xp for p ∈ P
where xp defines the number of connections carried out by path p. An upper bound can
be obtained by solving the following integer linear program, denoted by (rλ path)

max zrλ path(x) =
∑

p∈P

xp
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subject to:

∑

p∈P

aepxp ≤ W e ∈ E (51)

∑

p∈Psd

xp ≤ Tsd (vs, vd) ∈ V × V (52)

xp ∈ {0, 1, . . . , W} p ∈ P, (53)

where the first constraint reinforce the capacity constraint for each link: no more than W

lightpaths per link, the second constraint corresponds to satisfying at most the requested
connections, and then the integrality condition for variables xp. This problem is sometimes
referred to as the circuit-switched routing problem, see, e.g., Ramaswami and Sivarajan
[22].

4.3 Comparison of the Upper Bounds Provided by the Path

Formulations

Theorem 4. Assume that Psd contains all possible paths from vs to vd for (vs, vd) ∈ V ×V

such that Tsd > 0. Then the optimal values of the lp relaxations of (rwa sd) and (path)
are equal:

zrwa sd = zpath.

Proof. Let us first show that zrwa sd ≥ zpath. We denote by Ωlp(rwasd) and Ωlp(path)
the feasible domain of the lp relaxations of (rwasd) and (path) respectively. Consider a
feasible solution xλ

p , p ∈ P, λ ∈ Λ of Ωlp(path) and let us derive from it a feasible solution

from Ωlp(rwa sd) with an identical value. We define the variables ysd and yλ
sde as follows:

ysd =
∑

λ∈Λ

∑

p∈Psd

xλ
p , (vs, vd) ∈ V × V : Tsd > 0

yλ
sde =

∑

p∈Psd

aepx
λ
p (vs, vd) ∈ V × V : Tsd > 0,

λ ∈ Λ, e ∈ E.

Let us consider constraint (48) of the (path) formulation. We have:

∑

p∈P

aepx
λ
p =

∑

(vs,vd)∈V ×V :Tsd>0

∑

p∈Psd

aepx
λ
p

=
∑

(vs,vd)∈V ×V :Tsd>0

yλ
sde ≤ 1, e ∈ E, λ ∈ Λ.
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Hence constraints (12) are satisfied. Consider next constraint (49) of the (path) formula-
tion. As

∑

e∈ω+(vs)

aep = 1 p ∈ Psd (54)

∑

e∈ω−(vs)

aep = 1 p ∈ Psd, (55)

we deduce:
∑

λ∈Λ

∑

e∈ω+(vs)

yλ
sde =

∑

λ∈Λ

∑

e∈ω−(vd)

yλ
sde =

∑

λ∈Λ

∑

p∈Psd

xλ
p = ysd,

hence constraints (11) are satisfied. By definition of an elementary path, constraint (15)
is satisfied. At last, due to path flow conservation, we easily deduce that constraints (10)
are also satisfied, hence the variables (ysd, y

λ
sde) define a feasible solution to Ωlp(rwa sd),

with same objective value.

The reverse inequality has essentially been shown in the second part of the proof of
Theorem 2.

The following result was proved by Ramaswami and Sivarajan [22].

Theorem 5. The optimal values of the lp relaxations of (rλ path) and (path) are equal:

zrλ path = zpath.

Proof. Clearly (rλ path) is a relaxation of (path), hence we deduce zrλ path ≥ zpath.
Consider now a feasible solution (xp) of the continuous relaxation of (rλ path). We define

xλ
p =

xp

W
, λ ∈ Λ, p ∈ P.

Clearly (xλ
p) is a feasible solution to Ωlp(path) with same objective value. Hence zpath ≥

zrλ path.

In the sequel, we will denote by z the common value of the continuous relaxation of
all formulations considered in this paper, and by z⋆

rλ path ℓ the upper bound obtained by
solving optimally the formulation (rλ path) with the set of paths restricted to those of
length ≤ ℓ.

5 Further Comparisons and Hop Constraints

For, e.g., delay consideration, it may be interesting to bound the number of hops of the
lightpaths. Assuming that the number of hops of a lightpath is defined as the number
of links in the path, observe that not all formulations considered in this paper allow the
inclusion of this constraint.
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Let H be the upper bound on the number of hops. The formulation that is the most
easy to modify is the (path) formulation: instead of considering all possible paths, consider
only the paths with number of hops less than or equal to H.

The hop constraints can be included in formulation (rwa) through the following con-
straints

∑

λ∈Λ

∑

e∈E

xλ
ke ≤ H, k ∈ K. (56)

In contrast, it is not possible to include the hop constraints in formulations (rwa sd) and
(rwa s) as the variables in these formulations do not refer to an unique path.

6 Computational Experience

We compare the values of the upper bounds discussed in the previous sections together with
the optimal ilp value, denoted by z∗ on eight rwa problem instances, six with non-uniform
traffic matrices and two with uniform traffic.

We consider three optical networks, two of them widely used in the literature, the nsf
and the eon networks in addition to the Brazil network available, e.g., in [12]. The nsf
network is a network with 14 nodes and 21 optical links, with a maximum of 4 links per
node, and is, e.g. described in [6]. Miyao and Saito [32] consider a slight variation of the
nsf network where they have added one link in order to make each local degree more than
two. The eon network is described in, e.g., Mahony et al.; it is a network with 20 nodes
and 39 optical links, with a maximum of 7 links per node. Fumagalli et al. [33] consider
a slight variation of the eon network where they have removed one node of degree 2 but
have added two links. The Brazil network contains 27 nodes and 70 optical links with a
maximum of 10 links per node.

We used six non-uniform traffic matrices. Two of them, matrices T 1 and T 4 come from
Krishnaswamy [27]. They correspond to 268 connections for the nsf instance, and 374 for
the eon one. We generated a second traffic matrix, T 2, for the nsf network with around
twice the number of connections than in the Krishnaswamy one, with a random number
of connections between 0 and 6 for each pair of origin and destination nodes. Similarly,
we randomly generated a traffic matrix T 6 for the Brazil network with a random number
of connections between 0 and 3 for each pair of origin and destination nodes. All traffic
matrices are available in [34]. The last two non-uniform traffic matrices T 3 and T 5 come
from [32] and [33] respectively.

We observe that on all 8 instances, the three values, z, the lp relaxation upper bound,
z∗rλ path ℓ, the optimal ilp value of the λ-relaxation of the path formulation introduced in
Section 4.2 and z∗, the ilp optimal value for the original rwa problem (computed using
cplex-mip [23] and the formulation (rwa s)) are very close and equal most of the time.
Indeed the only instance for which we observe a difference between z and z∗rλ path ℓ in our
experiments is for the Brazil network with non-uniform traffic and 10 wavelengths. For a
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difference between z⋆
rλ path and z∗, let us illustrate it on the following small example. Let

us consider the physical network represented on Figure 3 together with the traffic matrix of
Figure 4, the routing provided by z⋆

rλ path do not lead necessarily to feasible rwa solution.
We assume that W = 2. Plain arrows corresponds to directional fibers. Dashed and dotted
arrows to lightpaths, the dashed ones to those with wavelength λ1, the dotted ones to those
with wavelength λ2. Observe that connection (v5, v2) cannot be assigned a wavelength,
whereas it is possible to find 5 routing paths satisfying the capacity constraints for each
arc, leading to z = 5, z⋆

rλ path = 5 and z⋆ = 4.

v

v

v

v v

1

2

3

45

Figure 3: A small network.

v1 v2 v3 v4 v5

v1 - 0 1 0 0
v2 0 - 0 1 0
v3 0 0 - 0 1
v4 1 0 0 - 0
v5 0 1 0 0 0

Figure 4: Traffic matrix of the example

Even if the optimal values of the lp relaxation and the ilp formulations are almost
always equal, it does not entail that rounding off procedures on the optimal lp relaxation
solutions lead to the optimal or near optimal ilp solutions. For instance, looking at the
results obtained by Krishnaswamy and Sivarajan [5] on formulations (ks1) and (ks2), we
observe that most integer solutions derived from rounding off procedures do not provide
the optimal ilp solutions except for some rare cases, and that gaps between the rounding
off and the optimal ilp solutions vary from 1 to 6%.
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In terms of computational effort, z is the easiest value to compute as it corresponds to
the solution of a lp program. The most economical formulation to compute it, as well as
z∗, corresponds to the (rwa s) formulation if no hop constraints are considered. Moreover,
the solution of z∗rλ path ℓ is also easy to compute in practice even if it corresponds to the
optimal solution of an ilp program: a very limited number of nodes need to be developed
in the branch-and-bound search tree when using the cplex-mip package. The computation
of z∗ requires a couple on minutes for all instances except for those involving the Brazil
network that required between 1 and 2 hours for uniform traffic, and from 1 hour (10
wavelengths) to 7 days (14 wavelengths) for non uniform traffic. All experiments have
been done on a Linux Dell machine with a Pentium 4 and the cplex-mip version 8.1 of
ilog [23].

nsf Network - Krishnaswamy non-uniform traffic data [27]
Non-Uniform Traffic - Matrix T 1 Uniform Traffic

# wavelengths z z⋆
rλ path 5 z⋆ z z⋆

rλ path 5 z⋆

10 198.0 198.0 198.0 164.0 164.0 164.0
12 218.0 218.0 218.0 180.0 180.0 180.0
14 238.0 238.0 238.0 182.0 182.0 182.0
16 258.0 258.0 258.0 182.0 182.0 182.0
18 267.0 267.0 267.0 182.0 182.0 182.0

≥ 20 268.0 268.0 268.0 182.0 182.0 182.0

nsf network - Traffic data T 2

Non-Uniform Traffic

# wavelengths z z⋆
rλ path 5 z⋆

26 439.0 439.0 439.0
28 453.0 453.0 453.0
30 467.0 467.0 467.0
32 481.0 481.0 481.0

nsf network and traffic data T 3 adapted from [32]
Non-Uniform Traffic

# wavelengths z z⋆
rλ path 5 z⋆

10 172.0 172.0 172.0
12 190.0 190.0 190.0
14 208.0 208.0 208.0
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eon network - Krishnaswamy traffic data T 4 [27]
Non-Uniform Traffic

# wavelengths z z⋆
rλ path 7 z⋆

10 285.0 285.0 285.0
12 317.0 317.0 317.0
14 337.0 337.0 337.0
16 350.0 350.0 350.0
18 362.0 362.0 362.0
20 370.0 370.0 370.0
22 374.0 374.0 374.0
24 374.0 374.0 374.0

eon network and traffic data T 5 adapted from [33]
Non-Uniform Traffic

# wavelengths z z⋆
rλ path 7 z⋆

10 393.0 393.0 393.0
12 447.0 447.0 447.0
14 498.0 498.0 498.0

brazil network
Non-Uniform Traffic - Matrix T 6 Uniform Traffic

# wavelengths z z⋆
rλ path 7 z⋆ z z⋆

rλ path 7 z⋆

10 721.5 721.0 721.0 560.0 560.0 560.0
12 800.0 800.0 800.0 614.0 614.0 614.0
14 872.0 872.0 872.0 630.0 630.0 630.0

Table 2: Comparison of the Upper Bounds with the Optimal
ilp Values

7 Conclusion

Although several ilp formulations have been proposed for the rwa problem in the litera-
ture, we show in this paper that their lp relaxations all provide the same upper bounds.
Moreover, the optimal values of the lp relaxations are most of the time very close or equal
to the optimal values of the ilp formulations leading to some hopes that it might be no



Les Cahiers du GERAD G–2004–66 27

so difficult to solve exactly some instances, with a proof of the optimality of the solutions.
Comparing the values of some of the upper bounds with heuristic solutions available in
the literature for some of the instances (e.g., [11] recently improved by [35]), we observe
that some heuristics do provide some optimal solutions for some instances, but without
any optimality proof.

An important side contribution of the paper is a review of the various integer linear
programming (ilp) formulations of the rwa problem considering the objective of mini-
mizing the blocking rate with asymmetrical traffic models, with a unified and simplified
notation. We show that depending on whether some constraints are considered or not
(e.g., the hop constraints), the best formulation is not the same. Moreover, we show that
further improvements are possible for some formulations in order to reduce their number
of variables and constraints. A complementary paper on the particular case of symmet-
rical traffic models is also available from the same authors, see [4], where we consider
several objectives, not only the blocking rate. For asymmetrical traffic matrices, further
work is needed to study the ilp formulations with other objectives such as the cost of the
multiplexing equipments or the minimum number of wavelengths per link (i.e., transport
capacities).
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[31] B. Jaumard, C. Meyer, and B. Thiongane, “Decomposition methods for the RWA
problem,” in Preparation.

[32] Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport
networks,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 7, pp.
1190–1198, september 1998.

[33] A. Fumagalli, I. Cerutti, M. Tacca, F. Masetti, R. Jagannathan, and S. Alagar, “Sur-
vivable networks based on optimal routing and WDM self-healing rings,” in IEEE
INFOCOM, vol. 2, 1999, pp. 726–733.

[34] B. Jaumard, “nsf and eon traffic data sets of Krishnaswamy (1998),”
www.iro.umontreal.ca/˜jaumard.

[35] B. Jaumard and X. Yu, “Routing and wavelength assignment with full/partial con-
version and regeneration,” in Preparation.


