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Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
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Abstract

Two methods of analytical approximations for computing the value of a European
option on the conditional variance in a GARCH setting are presented. The first is
based on the Johnson density functions family while the second uses the generalized
Edgeworth expansion of the conditional variance’s risk-neutral density function. The
analytical approximations based on the lognormal system of Johnson densities is found
to be the most accurate one developed in this paper. However, the precision of the ap-
proximation is weaker for deep out-of-the-money options when the conditional variance
dynamics of the NGARCH process displays a high level of persistence or almost no
variability. When the moments of the conditional-variance dynamics display explosive
behaviour, the precision of the approximation is generally good, except for the case
of long-maturity options. The numerical analysis also suggests that the error term
associated with the generalized Edgeworth expansion will have a critical impact when
the skewness and kurtosis to be reproduced deviate, even slightly, from those of the
approximate distribution used in the expansion. The proposed methodology can eas-
ily be adapted to other GARCH processes and generalized to the case of a volatility
option.

Résumé

Nous étudions deux méthodes d’approximations analytiques pour le calcul de la
valeur d’une option d’achat de type européenne sur la variance, et ce dans un contexte
GARCH. La première méthode est basée sur les fonctions de densité des familles de
Johnson, tandis que la seconde utilise le développement généralisé de Edgeworth de la
densité de la variance conditionnelle sous la mesure martingale. Nous montrons, pour le
modèle NGARCH, que les approximations analytiques dérivées du système lognormal
de Johnson donnent les meilleurs résultats. La qualité de l’approximation est cependant
moindre lorsque l’option d’achat à évaluer est hors-jeu et que la dynamique de la
variance conditionnelle du modèle NGARCH démontre un fort niveau de persistance.
Lorsque la dynamique des moments de la variance n’est pas stationnaire, la précision
de l’approximation est généralement bonne, à l’exception du cas des options de longues
échéances. L’analyse des résultats permet également de constater que le terme d’erreur
lié au développement généralisé de Edgeworth est non négligeable lorsque le niveau
des coefficients d’asymétrie et d’aplatissement à reproduire est éloigné de ceux de la
distribution approximative utilisée. La méthodologie proposée peut facilement être
adaptée à d’autres modèles GARCH et peut aussi être généralisée au cas d’options
européennes portant sur la volatilité.
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Fonds québécois de recherche sur la nature et les technologies (FQRNT), and from
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1 Introduction

In the last decade, there has been a significant increase in the trading of financial products
involving exposure to the volatility of financial assets. Events leading to the collapse
of Long Term Capital Management pinpointed the risks associated to the movements of
volatility. Despite these events, until recently1, the tools available to cover such volatility
risks were hardly available. A possible explanation for this state of affairs is the lack of a
simple, flexible, and efficient pricing framework to facilitate the introduction of volatility
derivatives as instruments of risk management.

To our knowledge, Brenner & Galai (1989) were the first to tackle the theme of volatil-
ity derivatives. They present, qualitatively, a variety of examples showing how an investor
might use volatility derivatives either for purposes of speculation or risk hedging. Along
the same lines, Whaley (1993) shows that strategies for hedging volatility risks which rely
on the dynamic management of a portfolio of options could be replaced by the purchase of
volatility derivatives. Neuberger (1994) shows that volatility risk is the primary source of
residual risk for an option hedged against the price variations in an underlying asset. Using
simulations from historical data, he concludes that it is possible to improve option-hedging
strategies by including volatility derivatives. These various empirical observations have en-
gendered the development of a theoretical framework for pricing and hedging variance and
volatility derivatives. The approaches proposed to date can be grouped in two categories.
The first category includes approaches based on static replication of traded securities and
the second category contains models keyed to market equilibrium.

In Carr & Madan (1997), the authors propose implementing a strategy allowing the
linear reproduction of the variance in returns on an asset over a given space of time.
Assuming the existence of options for a continuum of strike prices, it is possible to reproduce
any twice continuously differentiable function of the value of a forward contract, by means
of a static portfolio composed of the options and the forward contract. Since the variance
is a function of the price trajectory, they establish a strategy to create an exposure to the
variance of the asset’s return. An intuitive explanation and an example of this strategy are
presented in Demeterfi, Derman, Kamal & Zou (1999). Approaches based on replication
essentially rely on the usual “no arbitrage” argument and do not require any specification
of the dynamic behavior of volatility. However, these approaches are limited to the class of
linear products based on variance of the return. Moreover, as Carr & Madan (1997) point
out, the hypothesis of the existence of options for a continuum of strike prices seems to be
very restrictive.

Grünbichler & Longstaff (1996) propose analytical solutions for evaluating forward con-
tracts and options on the volatility by assuming that the process governing its dynamic is
the square root process. Given the mean reverting dynamics captured by the square root
process, the long-term volatility will concentrate around the average volatility. Thus the

1In March 2004, the Chicago Board Of Exchange (CBOE) introduced a future contract based on the
VIX index. The VIX Index is an indicator of market expectations of short-term volatility based on S&P
500 stock index option prices.
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value of volatility derivatives with long-term maturities are less sensitive to fluctuations
in the level of volatility and this makes them less suitable for hedging against short-term
variations in volatility. Detemple & Osakwe (2000) generalize the work of Grünbichler
& Longstaff (1996) by extending their analytical framework to other stochastic processes
and by adapting the results to American options. The general equilibrium model offers
additional flexibility for pricing derivative having non-linear payoffs of the variance or the
volatility.

Heston & Nandi (2000) propose an analytical solution to the problem of evaluating a
variance option, a solution which nests in a specific market model in the GARCH fam-
ily. The analytical framework is generalized to the diffusion process corresponding to the
continuous-time limit of the discrete model used. In both cases, the solution depends
on the inversion of the characteristic function of the future conditional variance. The
continuous-time scenario uses a replication strategy capable of reproducing the value of
the derivative’s variations. This replication strategy works through dynamic adjustments
of a portfolio composed of traded financial instruments. The pricing framework proposed
by Heston & Nandi (2000) produces analytical solutions for a general class of variance
derivatives while also providing a replication strategy that does not rely on the restric-
tive hypothesis of a continuum of exercise prices for options. It is, however, impossible
to adapt the pricing framework proposed by Heston & Nandi (2000) to derivatives whose
underlying variable depends on the volatility instead of variance. The discrete model used
is a hybrid GARCH-family model and it is not possible to adapt the methodology to other
GARCH-family models.

As Brockhaus & Long (2000) explain, financial institutions propose linear derivatives
based on variance whereas investors are more interested in a general class of derivative
products linked to volatility. This situation is partially explained by the absence of a
simple, flexible, and efficient pricing framework enabling financial institutions to evaluate
and replicate this type of product and then offer it to their clients. This article proposes
an approach nested in GARCH-type processes that is designed to price a vast array of
derivatives linked to variance and, as an extension, to volatility. Applying the NGARCH
model proposed by Engle & Ng (1993), we propose two analytical approximations capable of
effectively evaluating this type of derivatives. The results obtained can easily be generalized
to other GARCH-type models such as the EGARCH and GJR-GARCH processes. The
first approximation uses Johnson density functions in the same fashion Posner & Milevsky
(1998) used to price basket and Asian options. The second is based on the generalized
Edgeworth expansion similar to the one presented by Jarrow & Rudd (1982).

Characteristics of the NGARCH market model are studied in Section 2. The analyt-
ical approximations developed are presented in Section 3. A numerical study allowing
comparison of the various analytical approximations proposed is carried out in Section 4.
In Section 5, the adjustments needed to adapt the analytical approximations to other
GARCH-family models and to generalize the approach to the pricing of securities tied to
the volatility of asset returns are explained. Concluding remarks are presented at Section 6.
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2 NGARCH market model

The Non-linear Asymmetric GARCH (NGARCH) proposed by Engle and Ng (1993) is
presented in this section. The reasons evoked in Duan, Gauthier & Simonato (1999)
motivated our choice. Among other things, the NGARCH model permits a adequate
reproduction of the dynamics of financial series and, under the risk-neutral measure, it
proves to be the most parsimonious of the GARCH-family models capturing asymmetric
effects. This characteristic makes the NGARCH model an interesting tool for modelling of
returns and for pricing of derivatives.

According to the NGARCH model, the dynamics of the return on a risky asset, under
the real probability measure P , is given by

ln
St+1

St
= rt + λ

√
ht+1 −

1

2
ht+1 +

√
ht+1εt+1 (1)

ht+1 = β0 + β1ht + β2ht(εt − θ)2 (2)

where rt is the one-period continuously compound return on a risk-free asset, λ is a
constant risk premium, ht+1 is the conditional variance of the risky asset’s return, and
{εt : t = 0, 1, 2, . . .}, is a series of independent standard Gaussian variables. Subject to the
restrictions β0 > 0, β1 ≥ 0 and β2 ≥ 0, equation (2) describes the dynamics of the condi-
tional variance of an NGARCH process. Parameter θ is used to capture the relationship
between the level of conditional variance and the return on the risky asset; A positive value
(respectively negative) of θ implies a negative (respectively positive) relation between the
return and the conditional variance. The NGARCH model is thus capable of modelling
the asymmetric effects in the distribution of the risky asset’s return. The information
structure is given by the filtration {Ft : t ∈ {0, 1, 2, . . .}} where F0 is the σ−field generated
by (S0,h1) and Ft is the σ−field generated by {S0, h1, εs : s ∈ {1, 2, . . . , t}}.

In Duan (1995), pricing derivatives in a GARCH-model setting is made possible by
switching from a GARCH-family model under the P measure to what he calls a “locally
risk-neutral measure” Q. Under this measure, the dynamics of the return of a risky asset
becomes

ln
St+1

St
= rt −

1

2
ht+1 +

√
ht+1ǫt+1 (3)

ht+1 = β0 + β1ht + β2ht(ǫt − θ − λ)2. (4)

Note that under measure Q, εt+1 = ǫt+1 − λ where {ǫt : t = 0, 1, 2, . . .} is a series of
independent standard Gaussian variables.

In order to establish the value of a variance option in an NGARCH setting, it is necessary
to characterize the distribution of the future conditional variance ht+s under the locally
risk neutral measure, where t ≥ 0 denotes the present moment and s > 0 represents the
number of periods characterizing the option’s maturity. Under measure Q, ht+s can be
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expressed as

ht+s = β0 + ht

s−1∏

i=0

Yt+i + β0

s−1∑

i=1

i∏

j=1

Yt+s−j (5)

Yt+i = β1 + β2(ǫt+i − θ − λ)2, i ≥ 0. (6)

This is easily proven by induction. For more details, see Duan, Gauthier & Simonato
(1999). The future conditional variance is expressed as a sum of products of random
terms having noncentral chi-square distribution. To our knowledge, it is impossible to
identify the exact density function of such an expression and this precludes any analytical
solution to the problem of pricing variance derivatives in an NGARCH setting. However,
the moments of the future conditional variance can be identified, so it is possible to resolve
the pricing problem with an analytical approximation, either based on the generalized
Gram-Charlier expansion or using calibration to the Johnson family of distribution. In
the case of derivative contracts written on the volatility, we need to determine the first
moments of

√
ht+s.

It is worth noting that for all t, Yt ≥ β1, so the conditional variance is bounded by :

ht+s ≥ β0 + ht

s−1∏

i=0

β1 + β0

s−1∑

i=1

i∏

j=1

β1 = β0
1 − βs1
1 − β1

+ htβ
s
1. (7)

2.1 Conditional moments of ht+s

Let EQt [·] denotes the conditional expectation with respect to the filtration Ft, under Q.

Since ht+1 = β0 + htYt ∈ Ft, it follows that EQt
[
hnt+1

]
= hnt+1.

The evaluation of the n-th conditional moment of ht+s is obtained using a recursive
application of the following lemma, the proof of which is given in Appendix A.

Lemma 1 For any positive integer n, and for any integer s ≥ 2,

EQt
[
hnt+s

]
=

n∑

k=0

(
n

k

)
βn−k0 νkE

Q
t

[
hkt+s−1

]
(8)

where

νk = EQ
[
Y k
t

]
=

k∑

j=0

(
k

j

)
βk−j1 βj2ηj ,

ηj = EQ
[
(ǫt − θ − λ)2j

]
=

j∑

i=0

(
2j

2i

)
(θ + λ)2(j−i)

(2i)!

2ii!
.
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The constants νk, k ≥ 1 determine the asymptotic behaviour of the conditional variance
of the risky asset’s return. In order to make sure that the first n integer moments of the
conditional variance under the Q measure will not explode but rather converge towards a
stationary finite value when s → ∞, then, as the following lemma shows, the NGARCH-
model parameters must test the following conditions: νk < 1 for all k = 1, 2, ..., n. Failing to
respect these conditions for one or more of the moments is to risk lowering the quality of the
analytical approximations based on the generalized Edgeworth expansion or on Johnson’s
density functions.

Lemma 2 Let n = inf{k ≥ 1 : νk ≥ 1}. Then for all 0 ≤ k < n,

lim
s→∞

EQt

[
hkt+s

]
= µk

where µ0 = 1 and

µk =
1

1 − νk

k−1∑

j=0

(
k

j

)
βk−1−j

0 νjµj , 1 ≤ k < n. (9)

Moreover, if n is finite, then

lim
s→∞

EQt
[
hnt+s

]
= +∞.

The proof of Lemma 2 is also given in Appendix A.

Next, one can also ask whether or not there exists a stationary distribution. It is easy
to check that if E[log(Y1)] < 0, which holds true if ν1 < 1 (using Jensen’s inequality), then
for any fixed t, the strong law of large number implies that

lim
s→∞

1

s

s−1∑

i=0

log(Yt+i) = E[log(Y1)] < 0 a.s.

Hence, for any E[log(Y1)] < r < 0, taking the exponential on both sides of the last
expression yields

∏s−1
i=0 Yt+i < rs, for s large enough (depending on the trajectory), proving

that
∏s−1
i=0 Yt+i converges to zero almost surely, as s tends to infinity.

It follows from (5) that when s is large, the behaviour of ht+s is the same as the
behaviour of

ȟt+s = β0


1 +

s−1∑

i=1

i∏

j=1

Yt+s−j


 ,

which in turn has the same law as

h̃s−1 = β0


1 +

s−1∑

i=1

i∏

j=1

Yj


 .



Les Cahiers du GERAD G–2004–57 6

It follows from Vervaat (1979) that the condition E[log(Y1)] < 0 is a sufficient condition
for the existence and the uniqueness of the limiting distribution of ht+s and the almost
sure convergence of h̃s to h̃, having representation

h̃ = β0

∞∑

i=0

i∏

j=1

Yj , (10)

It follows that the law of h̃ is a stationary distribution for ht, in the sense that if ht and

h̃ have the same law, denoted by ht
d
= h̃, then for any s ≥ 1, ht+s

d
= ht. In fact, because

of the almost sure convergence of h̃s to h̃, it is the unique stationary law. Note that β0

appears naturally as a scaling parameter of the unique stationary distribution. It is easy
to see that h̃ satisfies the functional equation

h̃
d
= β0 + Y1h̃.

Unfortunately, the law of h̃ is not known in our case, that is when Y1 has an affine noncentral
chi-square distribution. However, some solutions of the functional equation are known. For
more details, see Dufresne (1996) and references therein.

In the case where we are interested by matching the moments of the volatility in the
NGARCH setting, on could approximate the fractional moment of ht+s using the method
proposed in Duan, Gauthier & Simonato (1999). The proof is based on the Taylor ex-

pansion of h
p
2
s+t around EQt [hs+t]. However, in this particular case, based on intensive

simulations, the latter approximation was found to be unsatisfactory even for p = 1.

Lemma 3 For any positive integer p,

EQt

[
h

p
2
s+t

]
∼=
(
p2

8
− p

4

)(
EQt [hs+t]

) p
2
−2

EQt
[
h2
s+t

]
+

(
1 +

p

4
− p2

8

)(
EQt [hs+t]

) p
2
. (11)

3 Analytical approximations

This section presents four analytical approximations allowing the evaluation of a European
call option and forward contract on the future conditional variance ht+s and, generally,
on any random variable whose first four moments can be identified under a risk neutral
measure. The first two approximations depend respectively on systems SU and SL of
the Johnson distribution family, whereas the third, based on a lognormal distribution,
uses the generalized Edgeworth expansion. Combining these two approaches, the last
approximation is obtained using a generalized Edgeworth expansion based on the SL system
of the Johnson family.

Equation (7) can be used to identify the minimal value of the future conditional variance.
This is important because both the SL system of the Johnson family and the generalized
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Edgeworth expansion based on a lognormal distribution are bounded at zero and, con-
sequently, the random variable whose moments are to be reproduced will, in both cases,
be :

h∗t+s = ht+s −
(
β0

1 − βs1
1 − β1

+ htβ
s
1

)
(12)

This adjustment will make it possible to reproduce the minimal value2 of the distribution
of ht+s as well as the non-centered moments.

3.1 Johnson families of distributions

Johnson (1949) presents families of density functions (the lognormal (SL) system, the
unbounded (SU ) system, and the bounded (SB) system), which are continuous transfor-
mations of a standard normal variable. These families are characterized by four parameters
that can be determined via moment matching for example. The Johnson density functions
are used to approximate various non-Gaussian distributions. This approach takes care of
two problems associated with the generalized Edgeworth expansion, in that the approxima-
tion obtained by the method proposed by Johnson (1949) really yields a density function
and, with the exception of the system SL

3, it permits the exact matching of the first four
moments of the distribution to be approximated.

Hill, Hill & Holder (1976) propose an algorithm capable of determining which of John-
son’s system should be used in setting the parameters of the density function chosen such
that their moments will correspond to the values of the targeted unknown distribution.

3.1.1 Approximation based on the SU system The unbounded system (SU ) is char-
acterized by the non-linear transformation :

SU = ψSU
(Z) (13)

where ψSU
(Z) = a+ b sinh

(
Z−c
d

)
and Z is a standard normal variable. If the parameters

of the vector Θ = [a b c d]
′

are set so that the moments of the random variable SU are
equivalent to those of the future conditional variance ht+s, using formula (8), the value of
a forward contract on the future conditional variance ht+s is given by:

FSU
(s;Θ) = a− be

1
2d2 sinh

( c
d

)
. (14)

Furthermore, the value of a European call option whose exercise price is K and which
matures in s periods can be approximated by the expression :

CSU
(K, s;Θ) = e−rs

(
a− be

1
2d2 sinh

( c
d

)
−K

)
(15)

2The exception being the case of the SU system of the Johnson distributions.
3The SL system allows the calibration of the three first moments of the targeted distribution.
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+
be−rse

1
2d2

2

(
e

c
dN

(
κ+

1

d

)
− e

−c
d N

(
κ− 1

d

))
+ e−rs(K − a)N(κ)

where κ = c+d ln

(
K−a
b +

√(
K−a
b

)2
+ 1

)
and N(·) is the cumulative distribution function

of a standard normal variable.

Note that the initial level of the future conditional variance ht+1 does not appear ex-
plicitly in the call option’s evaluation formula, but nevertheless does influence the value of
the moments of the future conditional variance. The effect of ht+1 is reflected implicitly
in the value of Θ.

Since the level of a forward contract corresponds to the expected value under the risk-
neutral measure of the underlying random variable, the equation (14) giving the value
of the forward contract follows directly from the results of moments of SU , as derived
in Section B. Next, the derivation of the analytical approximation (15) is presented in
Appendix B.2.

3.1.2 Approximation based on the SL system The lognormal (SL) system is char-
acterized by the non-linear transformation :

SL = ψSL
(Z) (16)

where ψSL
(Z) = a + b exp

(
Z−c
d

)
= a + b′ exp

(
Z
d

)
, where Z is a standard normal random

variable, and b′ = b exp
(
− c
d

)
.

Since the density really depends on three parameters a, b′, d, the SL system does permit
the reproduction of only the first three moments of the future conditional variance. More-
over, the density puts no mass on (−∞, a). If the parameters of the vector Θ = [a b c d]

′

are chosen so that the first two moments of the random variable SL − a are equivalent to
those of the translated future conditional variable h∗t+s, the level of a forward contract on
the future conditional variance ht+s is given by :

FSL
(s;Θ) = a+ b exp

(
1

2d2
− c

d

)
. (17)

Furthermore, the value of a European call option whose exercise price is K and which
matures in s periods can be approximated by the expression :

CSL
(K, s;Θ) = e−rs

(
a+ b exp

(
1

2d2
− c

d

)
−K

)
(18)

+e−rs
(

(K − a)N
(
ψ−1
SL

(K)
)
− b exp

(
1

2d2
− c

d

)
N

(
ψ−1
SL

(K) − 1

d

))
.

As for the analytical approximation based on the SU system, the effect of the initial
level of the future conditional variance is hidden in Θ. The proof of the two analytical
approximations (16-18) is very similar to those presented for the SU system and are omitted.
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3.2 Generalized Edgeworth expansion

The next method of approximation is called the “Gram-Charlier” approximation in the
statistical literature. The Edgeworth expansion can be seen as a special case, and usually
refers to the approximation of the density of normalized sums of the form Yn = 1√

n

∑n
i=1Xi,

where the terms in the expansion of the density are grouped according to the powers of
n−1/2.

3.2.1 Approximation based on the lognormal distribution In the expression char-
acterizing the value of a European call option, the first analytical approximation based on
the generalized Edgeworth expansion replaces the density function of the underlying ran-
dom variable by an approximation obtained via an Edgeworth type expansion around a
lognormal density function characterized by the vector of parameters Θ = [α, β]

′

. Denoting

the lognormal density function used in the expansion by gL and setting µi,t = EQt
[
hit+s

]
,

we find

gL(y) =
1√

2πyβ
exp

(
− 1

2β2
(log(y) − α)2

)
, (19)

where

α = 2 log(µ1,t) −
1

2
log(µ2,t),

β =
√

log(µ2,t) − 2 log(µ1,t).

Using a generalized Edgeworth expansion based on gL, the value of a forward contract on
the future conditional variance ht+s is given by

FEL
(s;ΘL) = exp

(
α+

β2

2

)
. (20)

Furthermore, the value of a European call option, whose exercise price is K and which
matures in s periods, is given by the expression :

CEL
(K, s;ΘL) = e−rs

(
eα+β2

2 N(d1) −KN(d2)

)
− e−rs(κ3 − κ̃3)

3!

dgL(K)

dy

+
e−rs(κ4 − κ̃4)

4!

d2gL(K)

dy2
(21)

where
d2 = log(1/K)+α

β ,

d1 = d2 + β,

κ̃3 = e(3α+ 3β2

2
)(eβ

2 − 1)2(eβ
2
+ 2),

κ̃4 = e(4α+2β2)(eβ
2 − 1)2(e4β

2
+ 2e3β

2
+ 3e2β

2 − 6),
κ3 = 2µ3

1,t − 3µ1,tµ2,t + µ3,t,

κ4 = −6µ4
1,t + 12µ2

1,tµ2,t − 3µ2
2,t − 4µ1,tµ3,t + µ4,t.





(22)

Calculations leading to these two expressions are performed in Section C.1.
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3.2.2 Approximation based on the SL system The second analytical approximation

based on the generalized Edgeworth expansion uses the density function associated with

the SL system of Johnson density functions. This function is characterized by the vector

of parameters ΘSL
= [a b c d]T . The density function stemming from the SL system is

given by

gSL
(y) =

d

y − a
n
(
ψ−1
SL

(y)
)

(23)

where n(·) stands for the density function of a standard normal variable and ψSL
(Z) =

a + b exp
(
Z−c
d

)
. Using a generalized Edgeworth expansion around fSL

, the value of a

European call option, whose exercise price is K and which matures in s periods, is given

by the following expression :

CESL
(K, s;ΘSL

) = CSL
(K, s;ΘSL

) +
e−rs(κ4 − κ̃4)

4!

d2gSL
(K)

dy2
(24)

with κ̃4 being the fourth cumulant of the variable obtained from the SL distribution and

κ4, the forth cumulant of the underlying variable.

This analytical approximation makes it possible to adjust the call option to the differ-

ence between the fourth moment of the option’s underlying random variable and that of

the moment reproduced by the SL system.

4 Numerical study

This section presents a comparative numerical analysis of the performance of the four

analytical approximations developed in the last section. We first examine the ability of

the approximations in reproducing certain characteristics of the distribution of the future

conditional variance. Focusing on the analytical approximation selected, the second part

of this numerical analysis will allow us to assess the validity of this approximation under

various conditions, specifically as applied to pricing a European call option on the variance

of the S&P500 stock index’s return.

Two sets of NGARCH-model parameters are considered : {β0 = 0.00001, β1 = 0.70, β2 =

0.10, θ+λ = 0.50} and {β0 = 0.00001, β1 = 0.70, β2 = 0.15, θ+λ = 0.35}, corresponding

respectively to the dynamics of low4 and high5 persistence. Recall from Lemma 2 that

the coefficients νk are linked to the convergence of moments towards a finite stationary

value. Moreover the conditions νk < 1, k = 1, . . . , 4 insure that the first four conditional

moments of ht+s converge to finite values independent of ht.

4{ν1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644}
5{ν1 = 0.868, ν2 = 0.810, ν3 = 0.838, ν4 = 0.996}
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4.1 Reproductions of the characteristics of the distribution of ht+s

Figures 1 to 6 make it possible to compare the shape of the density and distribution

functions obtained from the four approximations to an estimation obtained by a Monte

Carlo simulation. Figures 1 and 4 are associated with the first set of parameters previously

described, whereas Figures 5 and 6 are associated with the second set of parameters. These

figures reveal that, in a context of weak persistence, systems SL and SU do a better job

of reproducing the density and distribution functions of ht+s. Though the SL system fails

to reproduce the fourth moment of ht+s, it does allow a better reproduction of the lower

boundary of the distribution and, unlike the SU system, it does not admit any negative

values. Moreover, one may also observe that the functions obtained with a generalized

Edgeworth expansion are very unstable and not strictly positive.

4.2 Validation in a context of low and high persistence

In this section, we present the pricing results obtained for the two previously defined

sets of parameters. Tables 1 and 2 display the values of a European call option on the

future conditional variance as computed by the four analytical approximations, as well

as the values obtained from a Monte Carlo simulation of 500 000 trajectories, considered

as a benchmark. For each set of parameters, we consider call options with 5 different

maturities (10,30, 90, and 270 days), whose initial level of conditional variance is set at

0.80 EQ[h], 1.00 EQ[h] and 1.20 EQ[h], and whose exercise price corresponds to 0.75 ht+1,

1.00 ht+1 and 1.25 ht+1. In all examples, the annual risk-free interest rate is set at 5 %.

As one can guess from the results of the previous section, the SL analytical approximation

achieves greater accuracy in reproducing the value of a European call option on the future

conditional variance than do approximations based on the generalized Edgeworth expansion

and on the SU system of Johnson density functions. The poorness of the approximation

of both generalized Edgeworth expansions is transferred to the value of the options, even

producing negative values.

Since, under the risk-neutral measure, the level of a forward contract is defined by the

expected value of the underlying random variable and since each of the approximations

proposed does permit reproduction of the first moment of the future conditional variance,

the four analytical approximations are capable of giving a precise reproduction of the value

of the forward contract.

In view of the results, one must not recommend the use of the analytical approximations

based on a generalized Edgeworth expansion. The comparison of the approximations based

on the SU and SL systems also indicates that the analytical approximation based on the

SL system offers greater precision and remains more reliable when the dynamics of the

conditional variance displays a high level of persistence. However, the value obtained for

the SL analytical approximation, as for all the others, often differs significantly from the

Monte Carlo estimation. In order to pinpoint the nature of this reproduction error, the

following section presents an analysis carried out in a stochastic framework.
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4.3 Validation in a stochastic setting

The results proposed in the previous sections are limited to two sets of parameters and

a few option specifications. Though these results do make it possible to determine that

the SL approximation offers the greatest precision of all the analytical approximations

developed, a more general validation setting is needed to obtain a global picture of the

performance of the SL approximation. To perform this task, we develop a stochastic

validation setting similar to the one proposed by Broadie & Detemple (1996), using pre-

specified distributions, NGARCH-process parameters, and characteristics of the call option

to be evaluated. The maturity T of the call option is expressed in years and obtained by

T ∼ U(0.1, 1) with probability 0.75 and T ∼ U(1, 3) with probability 0.25. Here U(a, b)

stands for the uniform distribution on the interval (a, b). The ratio of the option’s exercise

price to the conditional value’s stationary level K/EQ[h] ∼ U(0.75, 1.25) and the risk-

free interest rate r ∼ U(0, 0.10). The ratio of the initial level of the conditional variance

to its stationary level, ht+1/E
Q[h] ∼ U(0.50, 0.90) with probability 0.10, ht+1/E

Q[h] ∼
U(0.90, 1.10) with probability 0.80 and ht+1/E

Q[h] ∼ U(1.10, 2) with probability 0.10.

The NGARCH-process parameters are also generated based on the uniform distributions :

β0 ∼ U(0, 0.0001), β1 ∼ U(0, 1), β2 ∼ U(0, 1) and θ + λ ∼ U(0, 1). The constraints

νk < 1, k = 1, . . . , 4 are imposed in order to respect stationary conditions of the

conditional moments. If these constraints are not respected when a set of parameters is

generated at random, the simulation procedure is repeated until the set of parameters

satisfy the conditions. The Root Mean Square Error (RMSE) is the criterion used to

evaluate the performance of the SL analytical approximation

RMSEn =

√√√√ 1

n

n∑

i=1

ǫ2i

where

ǫi =
|CSL(i) − CMC(i)|

CMC(i)
. (25)

The number of scenarios considered is n = 1000 and the value (CSL) obtained for these

scenario using the SL approximation is compared to the value obtained by a Monte Carlo

(CMC) based on 1 000 000 trajectories. The options for which CMC < 0.005EQ[h] have

been withdrawn from the sample in order to avoid relatively high margins of error caused

by a very low option value in the denominator of equation (25).

Figure 7 presents an histogram of the relative errors of evaluation. Such errors rarely

exceed 0.06 and the global value of the RMSE is 0.03. This type of error is not very

sensitive to the level of the risk-free interest rate and the option’s maturity date. However,

the RMSE of call options whose exercise price is higher than 1.10ht+1 and for which at

least one of the coefficients µk < 0.10, k = 1, . . . , 4 is 0.081. In this case, the RMSE’s
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high value derives from the low value of the option, which, stems, on one side, from the

out-moneyness and, on the other side, from very weak variability in the future conditional

variance. These observations aside, the RMSE is 0.02.

4.4 Validation for the estimated parameters of the S&P500 index

This section analyzes the European call option pricing results for a set of parameters

associated with explosive dynamics of conditional variance moments. These parameters

are obtained by estimating (under the physical measure) the NGARCH process, based on

daily excess returns6 on the S&P500 stock index from January 1, 1992 to December 31,

2001. These estimations yield that the coefficients ν2, ν3 and ν4 are all higher than 1, which

implies that the second, third, and fourth moments of the conditional variance tends to

infinity, as the maturity tends to infinity.

Table 3 presents the value of a European call option as computed by means of analyt-

ical approximations and Monte Carlo simulations, for various maturities, exercise prices,

and initial conditional-variance levels. The results indicate that for short-term maturi-

ties, the SL approximation offers a satisfactory degree of precision, but the quality of the

approximation deteriorates as the option’s maturity lengthens. For maturities exceeding

90 days, the results obtained via the analytical approximation no longer fit the value es-

timated with the Monte Carlo simulation. Therefore, when the dynamics of one of the

conditional-variance moments is explosive, the quality of the analytical approximation SL
is satisfactory for short-term options, but seriously limited for options with longer maturity

horizons.

5 Extension to other GARCH processes

To extend this methodology to other GARCH processes, it suffices to be able to compute

µn,t,s = EQt
[
hnt+s

]
, n = 1, 2, 3, 4.

For the GJR-GARCH and the EGARCH processes, these moments are available in Duan,

Gauthier, Sasseville & Simonato (2003). The expressions of µn,t,s for non-integer values of

n are also presented for the EGARCH process, allowing the pricing of a volatility derivative

instrument in the EGARCH setting.

6 Conclusion

This article proposes two classes of analytical approximations for pricing a European vari-

ance call option in an NGARCH market setting. Of the analytical approximations pro-

posed, the one based on the lognormal system of Johnson density functions obtains the best

6The excess return is defined as ln(St+1/St) − rt
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results. Except for certain specific cases, the approximation error is generally low. The

methodology proposed can easily be adapted to the other GARCH models and generalized

to European options on volatility.

A Proofs of the properties of conditional moments of ht+s

A.1 Proof of Lemma 1

Using the independence between ht+i and Yt+i, i ≥ 0, and the projection property of the

conditional expectation,

EQt
[
hnt+s

]
= EQt [(β0 + ht+s−1Yt+s−1)

n]

=
n∑

k=0

(
n

k

)
βn−k0 EQt

[
hkt+s−1

]
EQ
[
Y k
t+s−1

]

=
n∑

k=0

(
n

k

)
βn−k0 νkE

Q
t

[
hkt+s−1

]
.

Next,

νk = EQ
[
Y k

1

]

= EQ
[(
β1 + β2 (ǫ1 − θ − λ)2

)k]

=

k∑

j=0

(
k

j

)
βk−j1 βj2E

Q
[
(ǫ1 − θ − λ)2j

]

=
k∑

j=0

(
k

j

)
βk−j1 βj2ηj .

Finally, since EQ
[
(ǫ1)

2i
]

= (2i)!
2ii!

and EQ
[
(ǫ1)

2i+1
]

= 0, we get the expression for ηj . �

A.2 Proof of Lemma 2

The proof is based on induction. It follows from Lemma 1 that for any s ≥ 2,

EQt [ht+s] = β0 + ν1E
Q
t [ht+s−1].

Therefore, if ν1 ≥ 1, EQt [ht+s] ≥ β0 + EQt [ht+s−1], so

EQt [ht+s] ≥ (s− 1)β0 + ht+1 → ∞, as s→ ∞.
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If ν1 < 1, it is easy to check that

EQt [ht+s] = νs−1
1 ht+1 + β0

s−2∑

j=0

νj1

= νs−1
1 ht+1 + β0

1 − νs−1
1

1 − ν1

→ β0

1 − ν1
= µ1, as s→ ∞.

Hence formula (9) holds true and the lemma proved when n = 1.

The rest of the proof is based on induction on index n. So suppose that the Lemma

holds true for all indexes k ≤ n. One may assume that νk < 1 for all k ≤ n, for otherwise

there is nothing left to prove. It follows from the induction hypothesis that

lim
s→∞

EQt

[
hkt+s

]
= µk, 1 ≤ k ≤ n,

where for any 1 ≤ k ≤ n,

µk =
k−1∑

j=0

(
k

j

)
βk−j0 νjµj .

One has to show that, as s tends to infinity, EQ
t

[
hn+1
t+s

]
tends to a finite limit when

νn+1 < 1 and EQt
[
hn+1
t+s

]
tends to infinity when νn+1 ≥ 1.

For s ≥ 1, set

Ln,s =
n∑

j=0

(
n+ 1

j

)
βn+1−j

0 νjE
Q
t

[
hjt+s

]
.

First, note that Ln,s ≥ βn+1
0 . Second, it follows from the induction hypothesis that

lim
s→∞

Ln,s =
n∑

j=0

(
n+ 1

j

)
βn+1−j

0 νjµj = Ln.

Next, note that equation (8) can be written as follows:

EQt
[
hn+1
t+s

]
= νn+1E

Q
t

[
hn+1
t+s−1

]
+ Ln,s−1, s ≥ 2.

If νn+1 ≥ 1, then

EQt
[
hn+1
t+s

]
≥ EQt

[
hn+1
t+s−1

]
+ βn+1

0 ,

so

EQt
[
hn+1
t+s

]
≥ hn+1

t+1 + (s− 1)βn+1
0 → ∞, as s→ ∞.
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It only remains to show that if νn+1 ≥ 1, then EQt
[
hn+1
t+s

]
→ µn+1, where µn+1 = Ln

1−νn+1
.

Finally, if νn+1 < 1, then it is easy to see that

EQt
[
hn+1
t+s

]
= νs−1

n+1 +
s−1∑

j=1

νs−1−j
n+1 Ln,j

Since Ln,j → Ln as j → ∞, it follows that

lim
s→∞

EQt
[
hn+1
t+s

]
= lim

s→∞

s−1∑

j=1

νs−1−j
n+1 Ln =

Ln
1 − νn+1

.

Hence the result. �

B Analytical approximations based on Johnson density func-

tions

The density functions fSU
(·) and fSL

(·) are given respectively by

fSU
(y) = n

(
ψ−1
SU

(y)
) d

b

√
1 +

(y−a
b

)2

and

fSL
(y) = n

(
ψ−1
SL

(y)
) d

y − a
,

where n (·) is the standard normal density function. In order to ensure that fSU
is positive,

the parameters b and d must have the same sign, whereas fSL
is positive if parameter d is

positive. ψ(SU ) and ψ(SL) are defined respectively in Sections 3.1.1 and 3.1.2.

B.1 Moments of SU and SL

The moments of SU and SL are needed to estimate the values of parameters a, b, c and d.

For any n ≥ 1, one has

E [SnU ] =
n∑

k=0

(
n

k

)
an−kbkE



(

exp
(
Z−c
d

)
− exp

(
−Z−c

d

)

2

)k


=
n∑

k=0

(
n

k

)
an−kbk

2k

k∑

j=0

(
k

j

)
(−1)k−j E

[
exp

(
− (k − 2j)

Z − c

d

)]

=

n∑

k=0

(
n

k

)
an−kbk

2k

k∑

j=0

(
k

j

)
(−1)k−j exp

(
c

d
(k − 2j) +

(k − 2j)2

2d2

)
(26)
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and

E [SnL] =
n∑

k=0

(
n

k

)
an−kbkE

[
exp

(
k
Z − c

d

)]

=

n∑

k=0

(
n

k

)
an−kbk exp

(
k2 − 2kdc

2d2

)
. (27)

B.2 Value of a European call option for the SU system

Denote by FSU
(·) the distribution function of SU . Since ψSU

is increasing,

FSU
(x) = P

[
Z ≤ ψ−1

SU
(x)
]

= N
(
ψ−1
SU

(x)
)
,

with N is the distribution function of the standard Gaussian law. Following Posner &

Milevsky (1998),

CSU
(K, s,Θ) = e−rs

∫ ∞

−∞
(y −K)+ fSU

(y) dy

= e−rs (E [SU ] −K) − e−rs
(

(y −K) FSU
(z)|K−∞ −

∫ K

−∞
FSU

(y)dy

)

(using integration by part)

= e−rs (E [SU ] −K) + e−rs
∫ K

−∞
N
(
ψ−1
SU

(y)
)
dy

= e−rs (E [SU ] −K) + e−rs
b

d

∫ ψ−1
SU

(K)

−∞
cosh

(
x− c

d

)
N(x)dx,

using the change of variable x = ψ−1
SU

(y). Standard computations completes the proof. �

C Analytical approximations of density functions based on

Edgeworth expansion

Following Jarrow & Rudd (1982), the density function f of a random variable Y is approx-

imated by an Edgeworth expansion based on the density g of a random variable A.

f(y) ∼= fE(y) = g(y) +
4∑

k=1

(−1)kEk
k!

g(k)(y) (28)

where g(k) stands for the derivative of order k of g with respect to y, and

E1 = κ1 − κ̃1, E2 = κ2 − κ̃2 + E2
1 ,

E3 = κ3 − κ̃3 + 3E1E2 − 2E3
1 , E4 = κ4 − κ̃4 + 3E2

2 + 4E3
1E3 − 12E2

1E2 + 6E4
1 ,
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where κi (respectively κ̃i) denotes the ith cumulant of Y (respectively A). Note that fE is

not a density function in general, taking negative values or having surface under the curve

different from one. Recall that the first four cumulants are defined by

κ1 = E[Y ], κ2 = E[Y 2] − κ2
1,

κ3 = E[Y 3] − 3κ1κ2 − κ3
1, κ4 = E[Y 4] − 3κ2

2 − 4κ1κ3 − 6κ2
1κ2 − κ4

1.

C.1 Approximation based on lognormal distribution

The lognormal distribution function gL is characterized by two parameters which allow us

to match the two first moments of the target distribution. Therefore (28) reduces to

fEL
(y) = gL(y) − (κ3 − κ̃3)

3!
g
(3)
L (y) +

(κ4 − κ̃4)

4!
g
(4)
L (y),

where κ3, κ̃3, κ4 and κ̃4 are defined by (22).

C.2 Approximation based on the SL system

The density function of SL is based on three parameters and, therefore, we match the three

first moments of the target distribution. Equation (28) reduces to :

fESL
(y) = gSL

(y) +
(κ4 − κ̃4)

4!
g
(4)
SL

(y).

where κ4 is given by (22) and

κ̃4 = E[S4
L] − 4E[SL]E[S3

L] − 3E2[S2
L] + 12E[S2

L]E2[SL] − 6E4[SL],

and the moments of SL are given by (27).
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Figure 1: Reproduction of ht+s density function in a low persistence framework

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1000, θ + λ = 0.5000
Critical constants : µ1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644
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The estimated density function is obtained using a kernel methodology based on a Monte Carlo simulation with

500000 trajectories. The initial value of ht+s is set to its stationary level. The two density function approximations

based on Edgeworth expansion are presented separately since they were out of scale.
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Figure 2: Reproduction of ht+s density function in a low persistence framework

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1000, θ + λ = 0.5000
Critical constants : ν1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644

ht+1 = E[h]
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Edgeworth L is the density function approximation based on the Edgeworth expansion using the log normal distri-

bution.
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Figure 3: Reproduction of ht+s density function in a low persistence framework

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1000, θ + λ = 0.5000
Critical constants : ν1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644

ht+1 = E[h]
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Edgeworth SL is the density function approximation based on the Edgeworth expansion using the SL system of

Johnson’s distribution.
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Figure 4: Reproduction of ht+s cumulative distribution function in a low persistence frame-
work

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1000, θ + λ = 0.5000
Critical constants : ν1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644

ht+1 = E[h]
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The estimated cumulative distribution function is obtained with a Monte Carlo simulation using 500000 trajectories.

The initial value of ht+s is set to its stationary level. The cumulative distribution functions from the Edgeworth

expansions are omitted here since they were way out of scale.
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Figure 5: Reproduction of ht+s density function in a high persistence framework

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1500, θ + λ = 0.3500
Critical constants : {ν1 = 0.868 , ν2 = 0.810, ν3 = 0.838, ν4 = 0.996}
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The estimated density function is obtained using a kernel methodology based on a Monte Carlo simulation with

500000 trajectories. The initial value of ht+s is set to its stationary level. The approximated density functions from

the Edgeworth expansions are omitted here since they were way out of scale.
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Figure 6: Reproduction of ht+s cumulative distribution function in a high persistence
framework

NGARCH parameters : β0 = 0.00001, β1 = 0.70, β2 = 0.1500, θ + λ = 0.3500
Critical constants : {ν1 = 0.868 , ν2 = 0.810, ν3 = 0.838, ν4 = 0.996}

ht+1 = E[h]
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The estimated cumulative distribution function is obtained with a Monte Carlo simulation using 500000 trajectories.

The initial value of ht+s is set to its stationary level. The cumulative distribution functions from the Edgeworth

expansions are omitted here since they were way out of scale.
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Figure 7: Histogram of the relative pricing errors obtained from the SL approximation
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The relative errors are computed with the ratio of the absolute error by the Monte Carlo estimate using 1 000 000

trajectories. The error term is the difference between the Monte Carlo estimate and the value obtained by the SL

approximation.
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Table 1: The performance of the approximations for European Call option prices in a low persistance framework

β0 = 0.00001, β1 = 0.70, β2 = 0.10, λ + θ = 0.50

ν1 = 0.825, ν2 = 0.711, ν3 = 0.650, ν4 = 0.644

s = 10 days s = 30 days s = 90 days s = 270 days

K/ht+1 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25

ht+1 = 0.80 × E[h]

Johnson SU 2.081e-005 1.071e-005 5.079e-006 2.273e-005 1.247e-005 6.208e-006 2.251e-005 1.236e-005 6.160e-006 2.172e-005 1.193e-005 5.944e-006

Johnson SL 2.079e-005 1.064e-005 5.118e-006 2.268e-005 1.229e-005 6.269e-006 2.245e-005 1.218e-005 6.220e-006 2.166e-005 1.175e-005 6.002e-006

Edgeworth L 1.887e-005 4.235e-006 4.748e-006 2.008e-005 2.534e-006 4.466e-006 1.983e-005 2.314e-006 4.364e-006 1.904e-005 1.843e-006 4.118e-006

Edgeworth SL 2.823e-005 9.011e-006 5.422e-006 4.550e-005 5.175e-006 6.112e-006 4.593e-005 4.902e-006 6.079e-006 4.521e-005 4.535e-006 5.902e-006

Monte Carlo 2.075e-005 1.063e-005 5.114e-006 2.266e-005 1.235e-005 6.299e-006 2.248e-005 1.228e-005 6.287e-006 2.165e-005 1.181e-005 6.026e-006

Std. Deviation (2.351e-008) (2.206e-008) (1.781e-008) (2.577e-008) (2.456e-008) (2.052e-008) (2.556e-008) (2.438e-008) (2.037e-008) (2.454e-008) (2.339e-008) (1.953e-008)

ht+1 = 1.00 × E[h]

Johnson SU 1.476e-005 6.181e-006 2.730e-006 1.480e-005 6.233e-006 2.791e-006 1.462e-005 6.160e-006 2.758e-006 1.411e-005 5.944e-006 2.661e-006

Johnson SL 1.461e-005 6.218e-006 2.790e-006 1.457e-005 6.295e-006 2.890e-006 1.440e-005 6.220e-006 2.856e-006 1.390e-005 6.002e-006 2.756e-006

Edgeworth L 6.160e-006 4.751e-006 5.175e-006 4.125e-006 4.449e-006 5.672e-006 3.934e-006 4.364e-006 5.640e-006 3.390e-006 4.118e-006 5.544e-006

Edgeworth SL 8.222e-006 6.625e-006 3.042e-006 1.836e-006 7.003e-006 3.280e-006 1.639e-006 6.931e-006 3.249e-006 1.135e-006 6.716e-006 3.152e-006

Monte Carlo 1.468e-005 6.274e-006 2.796e-006 1.462e-005 6.330e-006 2.870e-006 1.446e-005 6.260e-006 2.840e-006 1.396e-005 6.055e-006 2.739e-006

Std. Deviation (2.493e-008) (2.022e-008) (1.510e-008) (2.536e-008) (2.068e-008) (1.564e-008) (2.502e-008) (2.039e-008) (1.538e-008) (2.414e-008) (1.966e-008) (1.483e-008)

ht+1 = 1.20 × E[h]

Johnson SU 1.028e-005 3.935e-006 1.695e-006 8.855e-006 3.266e-006 1.389e-006 8.718e-006 3.211e-006 1.365e-006 8.412e-006 3.099e-006 1.317e-006

Johnson SL 1.022e-005 4.015e-006 1.746e-006 8.815e-006 3.372e-006 1.448e-006 8.680e-006 3.315e-006 1.422e-006 8.375e-006 3.199e-006 1.372e-006

Edgeworth L 3.258e-006 6.140e-006 3.867e-006 2.626e-006 5.920e-006 3.375e-006 2.550e-006 5.855e-006 3.332e-006 2.205e-006 5.738e-006 3.297e-006

Edgeworth SL 9.243e-006 4.490e-006 1.898e-006 8.930e-006 4.607e-006 1.933e-006 8.839e-006 4.545e-006 1.908e-006 8.486e-006 4.407e-006 1.848e-006

Monte Carlo 1.027e-005 4.006e-006 1.714e-006 8.890e-006 3.358e-006 1.409e-006 8.732e-006 3.294e-006 1.382e-006 8.450e-006 3.186e-006 1.338e-006

Std. Deviation (2.441e-008) (1.795e-008) (1.285e-008) (2.281e-008) (1.648e-008) (1.177e-008) (2.242e-008) (1.615e-008) (1.148e-008) (2.183e-008) (1.583e-008) (1.141e-008)

“Johnson SU” is the analytical approximation based on the Johnson SU density function, “Johnson SL” is the analytical approximation based on the Jonhson SL

density function, “Edgeworth L” is the approximation based on the Edgeworth expansion using the log normal distribution , “Edgeworth SL” is the analytical

approximation based on the Edgeworth expansion using the SL system of Johson’s distribution, “Monte Carlo” is the Monte Carlo estimate of the option’s value

using 500000 trajectories and “Std. Deviation” is the standard deviation of the Monte Carlo estimate. Results presented in bold indicates that the pricing error

is statistically different from zero using a confidence level of 5%.



L
e
s

C
a
h
ie

r
s

d
u

G
E

R
A

D
G

–
2
0
0
4
–
5
7

27

Table 2: The performance of the approximations for European Call option prices in a high persistence framework

β0 = 0.00001, β1 = 0.70, β2 = 0.15, λ + θ = 0.35

ν1 = 0.868, ν2 = 0.810, ν3 = 0.838, ν4 = 0.996

s = 10 days s = 30 days s = 90 days s = 270 days

K/ht+1 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25

ht+1 = 0.80 × E[h]

Johnson SU 2.709e-005 1.583e-005 9.402e-006 3.204e-005 1.933e-005 1.089e-005 3.224e-005 1.907e-005 9.465e-006 3.110e-005 1.814e-005 8.303e-006

Johnson SL 2.627e-005 1.556e-005 9.658e-006 2.997e-005 1.833e-005 1.199e-005 2.985e-005 1.821e-005 1.193e-005 2.881e-005 1.757e-005 1.152e-005

Edgeworth L -6.834e-005 -1.705e-005 1.600e-005 -7.246e-004 -2.563e-004 1.819e-005 -3.094e-003 -1.148e-003 -1.002e-007 -7.641e-003 -2.863e-003 -3.675e-005

Edgeworth SL -4.072e-004 2.607e-005 2.324e-005 -1.337e-002 3.401e-004 4.292e-004 -7.833e-002 1.915e-003 2.465e-003 -2.046e-001 4.976e-003 6.422e-003

Monte Carlo 2.650e-005 1.591e-005 9.806e-006 3.032e-005 1.934e-005 1.264e-005 3.020e-005 1.931e-005 1.266e-005 2.911e-005 1.861e-005 1.219e-005

Std. Deviation (4.810e-008) (4.420e-008) (3.879e-008) (5.703e-008) (5.355e-008) (4.845e-008) (5.670e-008) (5.329e-008) (4.824e-008) (5.435e-008) (5.104e-008) (4.614e-008)

ht+1 = 1.00 × E[h]

Johnson SU 2.192e-005 1.188e-005 6.987e-006 2.250e-005 1.091e-005 6.127e-006 2.219e-005 9.418e-006 4.885e-006 2.124e-005 8.295e-006 4.123e-006

Johnson SL 2.117e-005 1.208e-005 7.399e-006 2.078e-005 1.212e-005 7.766e-006 2.049e-005 1.193e-005 7.654e-006 1.977e-005 1.152e-005 7.386e-006

Edgeworth L -5.644e-005 1.321e-005 2.750e-005 -4.460e-004 1.691e-005 1.203e-004 -1.680e-003 -1.276e-006 3.901e-004 -4.018e-003 -3.732e-005 9.003e-004

Edgeworth SL -3.264e-005 3.543e-005 1.733e-005 -1.151e-003 5.207e-004 2.238e-004 -5.571e-003 2.439e-003 1.040e-003 -1.399e-002 6.093e-003 2.594e-003

Monte Carlo 2.164e-005 1.234e-005 7.423e-006 2.186e-005 1.280e-005 7.962e-006 2.164e-005 1.271e-005 7.924e-006 2.079e-005 1.219e-005 7.578e-006

Std. Deviation (5.097e-008) (4.449e-008) (3.799e-008) (5.501e-008) (4.880e-008) (4.262e-008) (5.496e-008) (4.887e-008) (4.282e-008) (5.205e-008) (4.606e-008) (4.010e-008)

ht+1 = 1.20 × E[h]

Johnson SU 1.828e-005 9.708e-006 5.731e-006 1.463e-005 6.742e-006 3.952e-006 1.344e-005 5.393e-006 3.122e-006 1.246e-005 4.592e-006 2.665e-006

Johnson SL 1.798e-005 1.013e-005 6.180e-006 1.497e-005 8.547e-006 5.396e-006 1.461e-005 8.316e-006 5.237e-006 1.410e-005 8.024e-006 5.053e-006

Edgeworth L -2.333e-005 3.151e-005 2.970e-005 -1.397e-004 1.360e-004 1.239e-004 -4.934e-004 3.871e-004 3.634e-004 -1.153e-003 8.535e-004 8.097e-004

Edgeworth SL 5.066e-005 3.038e-005 1.347e-005 5.642e-004 3.485e-004 1.280e-004 2.154e-003 1.334e-003 4.827e-004 5.115e-003 3.168e-003 1.143e-003

Monte Carlo 1.844e-005 1.023e-005 6.095e-006 1.592e-005 8.856e-006 5.357e-006 1.555e-005 8.606e-006 5.167e-006 1.501e-005 8.300e-006 4.981e-006

Std. Deviation (5.348e-008) (4.550e-008) (3.851e-008) (5.240e-008) (4.486e-008) (3.854e-008) (5.116e-008) (4.369e-008) (3.747e-008) (4.873e-008) (4.143e-008) (3.530e-008)

“Johnson SU” is the analytical approximation based on the Johnson SU density function, “Johnson SL” is the analytical approximation based on the Jonhson

SL density function, “Edgeworth L” is the approximation based on the Edgworth expansion using the log normal distribution, “Edgeworth SL” is the analytical

approximation based on the Edgworth expansion using the SL system of Johson’s distribution, “Monte Carlo” is the Monte Carlo estimate of the option’s value

using 500000 trajectories and ”Std. Deviation” is the standard deviation of the Monte Carlo estimate. Results presented in bold indicates that the pricing error

is statistically different from zero using a confidence level of 5%.
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Table 3: The performance of the SL approximation in the case of the S&P500 index

β0 = 1.3348e − 006, β1 = 0.87, β2 = 0.07, λ + θ = −0.85

ν1 = 0.994, ν2 = 1.011, ν3 = 1.061, ν4 = 1.156

s = 10 days s = 30 days s = 90 days s = 180 days

K/ht+1 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25 0.75 1.00 1.25

ht+1 = 0.80 × E[h]

Johnson SL 3.411e-005 1.721e-005 1.026e-005 5.377e-005 3.791e-005 2.946e-005 6.909e-005 5.700e-005 5.013e-005 5.482e-005 4.600e-005 4.172e-005

Monte Carlo 3.415e-005 1.707e-005 1.009e-005 5.507e-005 3.848e-005 2.959e-005 8.090e-005 6.659e-005 5.816e-005 9.248e-005 7.953e-005 7.180e-005

Std. Deviation (9.539e-008) (7.487e-008) (6.102e-008) (1.935e-007) (1.754e-007) (1.619e-007) (4.623e-007) (4.500e-007) (4.406e-007) (9.063e-007) (8.990e-007) (8.933e-007)

ht+1 = 1.00 × E[h]

Johnson SL 6.278e-005 3.575e-005 2.304e-005 7.912e-005 5.823e-005 4.657e-005 8.682e-005 7.261e-005 6.445e-005 6.394e-005 5.379e-005 4.896e-005

Monte Carlo 6.314e-005 3.582e-005 2.298e-005 8.119e-005 5.949e-005 4.728e-005 9.988e-005 8.367e-005 7.391e-005 1.058e-004 9.214e-005 8.389e-005

Std. Deviation (1.325e-007) (1.126e-007) (9.617e-008) (2.497e-007) (2.317e-007) (2.174e-007) (5.585e-007) (5.465e-007) (5.371e-007) (1.251e-006) (1.245e-006) (1.240e-006)

ht+1 = 1.20 × E[h]

Johnson SL 9.723e-005 6.098e-005 4.185e-005 1.071e-004 8.149e-005 6.664e-005 1.054e-004 8.909e-005 7.965e-005 7.364e-005 6.200e-005 5.659e-005

Monte Carlo 9.774e-005 6.135e-005 4.196e-005 1.099e-004 8.356e-005 6.807e-005 1.203e-004 1.023e-004 9.124e-005 1.180e-004 1.037e-004 9.502e-005

Std. Deviation (1.662e-007) (1.499e-007) (1.333e-007) (3.101e-007) (2.932e-007) (2.790e-007) (6.732e-007) (6.618e-007) (6.527e-007) (1.151e-006) (1.144e-006) (1.139e-006)

“Johnson SL” is the analytical approximation based on the SL system of the Johnson density functions family, “Monte Carlo” is the monte carlo estimate of the

option’s value based on 500 000 scenarios, “Std.Deviation” is the standard deviation of the monte carlo estimate. Results presented in bold indicates that the

pricing error is statistically different from zero with a confidence level of 5%.
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