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recherche sur la nature et les technologies.



Stochastic Hybrid Systems: Stability and

Stabilization

E.K. Boukas
GERAD and Mechanical Engineering Department
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Abstract

This paper deals with the control of the class of uncertain hybrid stochastic sys-
tems. The uncertainties we are considering are of norm bounded type. The stochastic
stabilization and robust stabilization problems are treated. LMIs based conditions are
developed to design the state feedback controller with constant gain that stochastically
(robust stochastically) stabilizes the studied class of systems. Numerical examples are
given to show the usefulness of the proposed results.

Résumé

Cet article traite de la commande des systèmes incertains stochastiques à sauts
markoviens. Les incertitudes considérées dans ce travail sont du type bornées en norme.
Les problèmes de stabilité et de stabilisation de cette classe de systèmes sont considérés
ainsi que leur robustesse. Des conditions en forme d’inegalités matricielles linéaires
pour le design d’un correcteur par retour d’état à gain constant (indépdent du mode
du système) sont développées. Des exemples numériques pour montrer l’éfficacité des
résultats développés sont présentés.
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1 Introduction

In practice there exist some systems that unfortunately the linear invariant system is unable
to model. Among these systems, we quote those with abrupt changes in their dynamics
that results from causes like connections or disconnections of some components, failures in
the components etc. Examples of such systems are manufacturing systems, power systems,
telecommunications systems, etc. The occurrence of these events is random in more cases.
These practical systems have been modelled by the class of linear systems with Markovian
jumps that we will term in this paper as stochastic hybrid systems. It has two components
in the state vector. The first component of this state vector takes values in R

n and evolves
continuously in time and it represents the classical state vector that is usually used in the
modern control theory. The second one takes values in a finite set and switches in a random
manner between a finite number of states (see Mariton [9], Boukas and Liu [5] and Boukas
[3] and the references therein. This component is represented by a continuous-time Markov
process. Usually the state vector of the class of stochastic hybrid systems is denoted by
(x(t), rt).

This class of systems has attracted a lot researchers and many problems have been
tackled and solved. Among these problems, we quote those of stability, stabilizability, H∞
control problem and filtering problem. For more details on what it has been done on this
class of systems, we refer the reader to the recent books by Boukas and Liu [5] and Boukas
[3] and the references therein. These two books present a good review of the literature of
the subject up to 2004.

Regarding the stabilization problem all what have been reported in the literature con-
sider the case of controllers with mode dependent gains which requires the knowledge of
the mode at each time we want to switch the controller gain. For more details on this, we
refer the reader to ([5, 3, 12, 4, 6, 11, 8, 7]). But practically, this is not always possible
which restricts the use of such controllers. It is possible to estimate the mode as it was
done by Zhang [13] and therefore continue to use the controller. But if we are interested
by real time applications this is not possible unless the size of the system is small.

Our goal in this paper consists of dealing with this limitation and develop a design pro-
cedure for state feedback controllers with constant gain that do not require the knowledge
of the system mode. We will deal with the stability and the stabilizability problems. It is
also question to deal with the robust stabilization.

The rest of the paper is organized as follows. In Section 2, the problem we are consid-
ering is stated and some useful definitions are given. Section 3 gives the main results of
the paper. In Section 4, some numerical examples are provided to show the usefulness of
the proposed results.

2 Problem Statement

Let us consider a dynamical system defined in a fundamental probability space (Ω, F , P)
and assume that its dynamics is described by the following differential equations:
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{
ẋ(t) = A(rt, t)x(t) + B(rt, t)u(t),
x(0) = x0

(1)

where x(t) ∈ R
n is the state vector, x0 ∈ R

n is the initial state, u(t) ∈ R
m is the control

input, {rt, t ≥ 0} is the continuous-time Markov process taking values in a finite space S
and that describes the evolution of the mode at time t, when the mode rt takes the value
i ∈ S , A(i, t) ∈ R

n×n and B(i, t) ∈ R
n×m are matrices with the following forms:

A(i, t) = A(i) + DA(i)FA(i, t)EA(i)
B(i, t) = B(i) + DB(i)FB(i, t)EB(i)

with A(i), DA(i), EA(i), B(i), DB(i) and EB(i) are real known matrices with appropriate
dimensions, and FA(i, t) and FB(i, t) are unknown real matrices that satisfy the following:{

F�
A (i, t)FA(i, t) ≤ I

F�
B (i, t)FB(i, t) ≤ I

(2)

The Markov process {rt, t ≥ 0} beside taking values in the finite set S , the switching
between the different modes is described by the following probability transitions:

P [rt+h = j|rt = i] =

{
λijh + o(h) when rt jumps from i to j

1 + λijh + o(h) otherwise
(3)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when i �= j and
λii = −∑N

j=1,j �=i λij and o(h) is such that limh→0
o(h)

h = 0.

For system (1), when u(t) ≡ 0 for all t ≥ 0, we have the following definitions.

Definition 2.1 System (1) with FA(i, t) = FB(i, t) = 0 for each i ∈ S and for all t ≥ 0,
is said to be

(i) stochastically stable (SS) if there exists a finite positive constant T (x0, r0) such that
the following holds for any initial conditions (x0, r0):

E

[∫ ∞

0
‖x(t)‖2dt|x0, r0

]
≤ T (x0, r0); (4)

(ii) mean square stable (MSS) if

lim
t→∞E‖x(t)‖2 = 0 (5)

holds for any initial condition (x0, r0);



Les Cahiers du GERAD G–2004–28 3

(iii) mean exponentially stable (MES) if there exist positive constants α and β such that
the following holds for any initial conditions (x0, r0):

E
[‖x(t)‖2|x0, r0

] ≤ α‖x0‖e−βt. (6)

Definition 2.2 System (1) with FA(i, t) = FB(i, t) = 0 for all modes and for t ≥ 0, is
said to be stabilizable in the SS (MES, MSQS) sense if there exists a controller such that
the closed-loop system is SS (MES, MSQS) for every initial conditions (x0, r0).

When the uncertainties are not equal to zero, the different types of stability and the
stabilizability are defined in the same way and termed respectively as robust stability and
robust stabilizability.

The goal of this paper is to design a state feedback controller with constant gain that
stochastically (robust stochastically) stabilizes the class of systems we are considering in
this paper. The structure of the controller we will be using here is given by the following
expression:

u = K x(t) (7)

where K is a constant gain that we have to determine.
We are mainly concerned with the design of such controller. LMI based conditions

are searched since the design becomes easier and the gain can be obtained by solving the
appropriate LMIs using the existing developed algorithms.

Before closing this section let us give some lemmas that we will use in the rest of the
paper.

Lemma 2.1 [10] Let H, F and G be real matrices of appropriate dimensions then, for any
scalar ε > 0 and for all matrices F satisfying F T F ≤ I, we have:

HFG + G�F�H� ≤ εHH� + ε−1G�G (8)

Lemma 2.2 The linear matrix inequality[
H S�

S R

]
> 0

is equivalent to

R > 0, H − S�R−1S > 0

where H = H�, R = R� and S is a constant matrix.
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3 Main Results

Our goal in this paper consists of designing a state feedback controller with constant gain
that stochastically (robust stochastically) stabilizes the class of systems we are considering.
The rest of this section will develop results for the nominal systems and then extend
the obtained ones to handle the case of stochastic hybrid systems with norm bounded
uncertainties.

Let all the uncertainties of the system be equal to zero and pose u(t) = 0 for all t ≥ 0.
In this case the dynamics becomes:{

ẋ(t) = A(rt)x(t)
x(0) = x0

(9)

The stability of this system is given by the following theorem.

Theorem 3.1 If there exists a symmetric and positive-definite matrix, P , such that the
following holds for each i ∈ S :

A�(i)P + PA(i) < 0 (10)

then, system (9) is stochastically stable under the state feedback controller with constant
gain.

Proof: The proof of this theorem is similar to the one of the next Theorem. Therefore we
will skip its proof. The interested reader by the details of this proof can adapt the one of
the next theorem. �

Remark 3.1 Since the results developed in this paper are only sufficient conditions for
robust stochastic stability, we will restrict ourselves to the proofs of the sufficient condition
only.

Let us start with the nominal system. Using the system dynamics and the expression
of the controller (7), we get the following expression for the closed-loop:

ẋ(t) = [A(i) + B(i)K ] x(t) (11)

The following theorem states the first results on stochastic stabilizability of the nominal
system.

Theorem 3.2 Let K be a given gain matrix. If there exists a symmetric and positive-
definite matrix, P , such that the following holds for each i ∈ S :

A�(i)P + K �B�(i)P + PA(i) + PB(i)K < 0 (12)

then system (1) is stochastically stable under the state feedback controller with constant
gain.
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Proof: Let P be a symmetric and positive-definite matrix and definite the Lyapunov
candidate function as follows:

V (xt, i) = x�(t)Px(t) (13)

Let L denote the infinitesimal generator of the Markov process (x(t), i). Its expression
is given by:

L V (x(t), i) = ẋ�(t)Px(t) + x�(t)Pẋ(t) +
N∑

j=1

λijx
�(t)Px(t)

Using the fact that
∑N

j=1 λij = 0 we get:

L V (x(t), i) = ẋ�(t)Px(t) + x�(t)Pẋ(t)
= [[A(i) + B(i)K ]]x(t)]�Px(t) + x�P [A(i) + B(i)K ]

= x�(t)
[
A�(i)P + K �B�(i)P + PA(i) + PK B(i)

]
x(t)

= x�(t)Λ(i)x(t)

with Λ(i) = A�(i)P + K �B�(i)P + PA(i) + PB(i)K .
Using condition (12) we get:

L V (x(t), i) ≤ −min
i∈S

{λmin (−Λ(i))}x�(t)x(t)

Combining this again with Dynkin’s formula (see Arnold [1]) yields:

E [V (x(t), i)] − E [V (x(0), r0)] = E

[∫ t

0
L V (x(s), rs)ds|(x0, r0)

]

≤ −min
i∈S

{λmin(−Λ(i))}E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
,

implying, in turn,

min
i∈S

{λmin(−Λ(i))}E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
≤ E [V (x(0), r0)] − E [V (x(t), rt)]
≤ E [V (x(0), r0)] .

This yields that

E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]
≤ E [V (x(0), r0)]

mini∈S {λmin(−Λ(i))}
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holds for any t > 0. Letting t goes to infinity implies that

E

[∫ t

0
x�(s)x(s)ds|(x0, r0)

]

is bounded by a constant T (x0, r0) given by:

T (x0, r0) =
E [V (x(0), r0)]

mini∈S {λmin(−Λ(i))}
which ends the proof of Theorem 3.2. �

From this theorem, it is possible to stochastically stabilize the class of systems we are
considering by a constant gain state feedback controller of the form (7) if the condition
(12) is satisfied. The P we are searching is constant.

To determine the gain K , let us transform the condition (12). For this purpose, let
X = P−1 and pre- and post-multiply this inequality by X gives the following inequality:

XA�(i) + XK �B�(i) + A(i)X + B(i)K X < 0

Letting K = K X, we get:

XA�(i) + K�B�(i) + A(i)X + B(i)K < 0

If this LMI is feasible, the controller gain is then given by:

K = KX−1 = KP

The controller gain can be determined by solving the LMI of the following theorem.

Theorem 3.3 If there exist a symmetric and positive-definite matrix X > 0 and a constant
gain K such that following LMI holds for each i ∈ S :

XA�(i) + A(i)X + K�B�(i) + B(i)K < 0 (14)

then, the state feedback controller with the gain KX−1 stochastically stabilizes the system.

If the uncertainties are acting on the dynamics, the previous results can be extended to
handle this case. In fact, if we replace A(i) and B(i) by A(i)+∆A(i, t) and B(i)+∆B(i, t)
respectively in the previous condition that determines the controller gain, we get:

XA�(i) + A(i)X + K�B�(i) + B(i)K + X∆A�(i) + ∆A(i)X
+K�∆B�(i) + ∆B(i)K < 0

Using now lemma 2, we get:

X∆A�(i) + ∆A(i)X ≤ εA(i)DA(i)D�
A(i) + ε−1

A (i)XE�
A (i)EA(i)X

K�∆B�(i) + ∆B(i)K ≤ εB(i)DB(i)D�
B(i) + ε−1

B (i)K�E�
B (i)EB(i)K
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Based on these inequalities, to guarantee the stochastic stability of the closed-loop, we
need to have the following:

XA�(i) + A(i)X + K�B�(i) + B(i)K + εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)
+ε−1

A (i)XE�
A (i)EA(i)X + ε−1

B (i)K�E�
B (i)EB(i)K < 0

Using Schur complement, we get:⎡
⎣ J (i) XE�

A (i) K�E�
B (i)

EA(i)X −εA(i)I 0
EB(i)K 0 −εB(i)I

⎤
⎦ < 0

with

J (i) = XA�(i) + A(i)X + K�B�(i) + B(i)K

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)

The following theorem gives the results that determines the controller with constant gain
that robustly stochastically stabilizes the class of systems with norm bounded uncertainties
we are studying.

Theorem 3.4 If there exist a symmetric and positive-definite matrix X > 0 and sets of
positive constants εA = (εA(1), · · · , εA(N)) and εB = (εB(1), · · · , εB(N)) and a constant
gain K such the following LMI holds for each i ∈ S :⎡

⎣ J (i) XE�
A (i) K�E�

B (i)
EA(i)X −εA(i)I 0
EB(i)K 0 −εB(i)I

⎤
⎦ < 0 (15)

with

J (i) = XA�(i) + A(i)X + K�B�(i) + B(i)K

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)

then, the stabilizing controller gain is KX−1.

The advantage of the developed results in this paper is that the expression of the
controller does not depend of the mode and therefore has the power to be implemented for
systems with abrupt changes in the dynamics that can be modelled by the class of systems
we are treating here in real-time. No estimation for the mode is needed.

4 Numerical Examples

In the previous section, we developed results that determine the constant gain that stochas-
tically (robust stochastically) stabilizes the class of systems we are treating in this paper.
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The advantage of the results proposed in this paper is that the controller expression does
not require the knowledge the system mode. It require only the accessibility of the state
vector. The conditions we developed are in the LMI form which makes their resolution
easy. In the rest of this section we will give some numerical examples to show the usefulness
of our results. Two numerical examples are presented.

Example 4.1 Let us consider a system with two modes with the following data:

• transition probability rates matrix:

Λ =
[ −2.0 2.0

3.0 −3.0

]

• mode 1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, B(1) =

[
1.0 0.0
0.0 1.0

]

• mode 2:

A(1) =
[ −0.2 −0.5

0.5 −0.25

]
, B(1) =

[
1.0 0.0
0.0 1.0

]

First of all notice the system is instable in mode 1 and it is stochastically instable.
Solving the LMI (12), we get:

X =
[

0.4791 0.1129
0.1129 0.4698

]
,

K =
[ −1.0478 −22.8520

22.8557 −1.1226

]
,

which are both symmetric and positive-definite matrices. Using (7) gives the following
constant gain:

K =
[

9.8277 −51.0015
51.1597 −14.6804

]
.

With this controller, the closed-loop becomes:

ẋ(t) = Acl(rt)x(t)

with

Acl(i) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
10.8277 −51.5015
51.2597 −13.6804

]
when i = 1[

9.6277 −51.5015
51.6597 −14.9304

]
otherwise

(16)
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The standard conditions for stochastic stability, which can be summarized as follows
says: If there exists a set of symmetric and positive-definite matrices P = (P (1), P (2))
such that the following holds for each i ∈ S :

A�(i)P (i) + P (i)A(i) +
N∑

j=1

λijP (j) < 0

then the closed-loop is stochastically stable.
Using now these conditions, we get the following matrices:

P (1) =
[

8.5974 −2.0276
−2.0276 8.4410

]
, P (2) =

[
5.5621 −0.4028
−0.4028 5.6338

]

which are both symmetric and positive-definite matrices and therefore the closed-loop system
is stochastically stable under the constant gain state feedback controller.

Example 4.2 To design a robust stabilizing controller with constant gain, let us consider
again a system with two modes and the following data:

• mode 1:

A(1) =
[

1.0 −0.5
0.1 1.0

]
, DA(1) =

[
0.1
0.2

]
, EA(1) =

[
0.2 0.1

]
B(1) =

[
1.0 0.0
0.0 1.0

]
DB(1) =

[
0.1
0.2

]
, EB(1) =

[
0.2 0.1

]
• mode 2:

A(2) =
[ −0.2 0.5

0.0 −0.25

]
, DA(2) =

[
0.13
0.1

]
EA(2) =

[
0.1 0.2

]
B(2) =

[
1.0 0.0
0.0 1.0

]
, DB(2) =

[
0.13
0.1

]
, EB(2) =

[
0.1 0.2

]
The transition probability rates matrix between the two modes is given by:

Λ =
[ −2.0 2.0

3.0 −3.0

]
.

Letting εA(1) = εA(2) = 0.5 and εB(1) = εB(2) = 0.1 and solving the LMIs (15), we
get:

X =
[

0.2641 0.0897
0.0897 0.2001

]
,

K =
[ −0.5365 −0.0496
−0.0315 −0.5139

]
.
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which gives the following gain:

K =
[ −2.2975 0.7827

0.8891 −2.9678

]
.

Using the results of this theorem, it results that the system of this example is stochastically
stable under the state feedback controller with the computed constant gain. We can also
show this by following the steps of the previous example.

5 Conclusion

This paper dealt with the class of hybrid stochastic systems. Both the stability and the
stabilizability problems are treated. A state feedback controller with constant gain is
proposed to stochastically (robust stochastically) stabilize the class of hybrid systems.
The uncertainties we considered in this paper are of norm bounded type. The conditions
we developed are in LMI form which makes the resolution easier using the existing tools.
The advantage of the proposed results in this paper is that the controller expression does
not require the knowledge the system mode. It require only the accessibility of the state
vector.
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