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Abstract

This paper deals with the class of uncertain continuous-time linear stochastic hy-
brid systems with Wiener process. The uncertainties we are considering are of norm
bounded type. The robust H∞ stochastic stabilization problem is treated. LMIs based
conditions are developed to design the state feedback controller that robust stochasti-
cally stabilizes the studied class of systems and at the same time rejects the disturbance
rejection of a desired level. The minimum disturbance rejection is also determined. A
numerical example is provided to show the validness of the proposed results.

Key Words: Stochastic systems, Markovien jumping parameters systems, stabiliza-
tion, robustness, LMI.

Résumé

Cet article traite de la classe des systèmes incertains à sauts markovien et processus
de Wiener. Les incertitudes considérées dans ce travail sont du type borné en norme. La
commande H∞ est proposée pour stochastiquement stabiliser cette classe de systèmes
et en même temps garantir le rejet d’une pertubation externe à énergie finie. Un
exemple numérique est donné pour montrer la validté des résultats établis.
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1 Introduction

In practice we find some systems that have abrupt changes in their dynamics that results
from causes like connections or disconnections of some components, failures in the compo-
nents etc. Analysis and design of these systems can’t be done using the linear invariant
system theory since it is unable to model adequately such systems. These systems have
stochastic behavior and examples of such systems can be found in manufacturing systems,
power systems, telecommunications systems, etc. The occurrence of the abrupt changes is
random in more cases. These practical systems have been modelled by the class of linear
systems with Markovian jumps that we will term in this paper as stochastic hybrid sys-
tems. This class of systems has two components in the state vector. The first component
of this state vector takes values in R

n and evolves continuously in time and it represents
the classical state vector that is usually used in the modern control theory. The second
one takes values in a finite set and switches in a random manner between a finite number
of states (see Mariton (Ref. 1), Boukas and Liu (Ref. 2) and Boukas (Ref. 3) and the
references therein. This component is represented by a continuous-time Markov process.
Usually the state vector of the class of stochastic hybrid systems is denoted by (x(t), rt).
We have also to notice that used model will never represent adequately the physical system
for many know reasons. Therefore uncertainties have to be include to the model, to correct
the analysis and the design phases. In this paper, we will assume that the uncertainties of
the system are of norm bounded type.

This class of systems has attracted a lot researchers and many problems have been
tackled and solved. Among these problems, we quote those of stability, stabilizability, H∞
control problem and filtering problem. For more details on what it has been done on this
class of systems, we refer the reader to the recent books by Boukas and Liu (Ref. 2) and
Boukas (Ref. 3) and the references therein. These two books present a good review of the
literature of the subject up to 2004.

The stabilization problem has attracted many researchers from the control community
and many results have been reported in the literature. For more details on this subject,
we refer the reader to (Refs. 2–11). To the best of our knowledge the case of continuous-
time systems with Markovian jumps and multiplicative noise has never studied and our
objective in this paper is to study the H∞ stabilization of such class of systems.

Our goal in this paper consists of designing a state feedback controller that robust
stochastically stabilizes the class of systems we are studying and at the same time reject
the disturbance with a desired level γ > 0. We are also interested by determining the
minimum level of the disturbance rejection. In this paper, we will solve these two problems
and develop LMI conditions that we can use to determine the state feedback controller that
stochastically stabilizes the class of systems of stochastic hybrid systems with multiplicative
noise and guarantees the minimum disturbance rejection.

The rest of the paper is organized as follows. In section 2, the problem we are considering
is stated and some useful definitions are given. Section 3 gives the main results of the paper.
In section 4, some numerical examples are provided to show the usefulness of the proposed
results.
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2 Problem Statement

Let us consider a dynamical system defined in a fundamental probability space (Ω, F , P)
and assume that its dynamics is described by the following differential equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t) = A(rt, t)x(t)dt + B(rt, t)u(t)dt + Bw(rt)w(t)dt + W(rt)x(t)dω(t),
x(0) = x0

y(t) = Cy(rt, t)x(t) + Dy(rt, t)u(t) + By(rt)w(t),
z(t) = Cz(rt, t)x(t) + Dz(rt, t)u(t) + Bz(rt)w(t),

(1)

where x(t) ∈ R
n is the state vector, x0 ∈ R

n is the initial state, y(t) ∈ R
ny is the measured

output, z(t) ∈ R
nz is the controlled output, u(t) ∈ R

m is the control input, w(t) ∈ R
l is

the system external disturbance, ω(t) is a standard Wiener process that is assumed to be
independent of the Markov process {rt, t ≥ 0} which is a continuous-time Markov process
taking values in a finite space S = {1, . . . , N} and that describes the evolution of the
mode at time t, when rt = i the matrices A(rt, t), B(rt, t), Cy(rt, t), Dy(rt, t), Cz(rt, t) and
Dz(rt, t) are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(rt, t) = A(rt) + DA(rt)FA(rt, t)EA(rt),
B(rt, t) = B(rt) + DB(rt)FB(rt, t)EB(rt),
Cy(rt, t) = Cy(rt) + DCy(rt)FCy(rt, t)ECy(rt),
Cz(rt, t) = Cz(rt) + DCz(rt)FCz(rt, t)ECz(rt),
Dy(rt, t) = Cy(rt) + DDy(rt)FDy(rt, t)EDy(rt),
Dz(rt, t) = Dz(rt) + DDz(rt)FDz(rt, t)EDz(rt)

where the matrices A(i), B(i), Bw(i), W(i), Cy(i), Dy(i), By(i), Cz(i), Dz(i), and Bz(i),
are given matrices with appropriate dimension.

The system disturbance, w(t), is assumed to belong to L2[0,∞) which means that the
following holds:

E

[∫ ∞

0
w�(t)w(t)dt

]
< ∞ (2)

This implies that the disturbance has finite energy.
The Markov process {rt, t ≥ 0} beside taking values in the finite set S , the switching

between the different modes is described by the following probability transitions:

P [rt+h = j|rt = i] =

{
λijh + o(h) when rt jumps from i to j

1 + λijh + o(h) otherwise
(3)

where λij is the transition rate from mode i to mode j with λij ≥ 0 when i �= j and
λii = −

∑N
j=1,j �=i λij and o(h) is such that limh→0

o(h)
h = 0.

For system (1), when u(t) ≡ 0 and the uncertainties are equal to zero for all t ≥ 0, we
have the following definitions.



Les Cahiers du GERAD G–2004–17 3

Definition 2.1. System (1) is said to be

(i) stochastically stable (SS) if there exists a finite positive constant T (x0, r0) such that
the following holds for any initial conditions (x0, r0):

E

[∫ ∞

0
‖x(t)‖2dt|x0, r0

]
≤ T (x0, r0); (4)

(ii) mean square stable (MSS) if

lim
t→∞E‖x(t)‖2 = 0 (5)

holds for any initial condition (x0, r0);
(iii) mean exponentially stable (MES) if there exist positive constants α and β such that

the following holds for any initial conditions (x0, r0):

E
[
‖x(t)‖2|x0, r0

]
≤ α‖x0‖e−βt. (6)

Definition 2.2. System (1) is said to be stabilizable in the SS (MES, MSQS) sense if there
exists a controller such that the closed-loop system is SS (MES, MSQS) for every initial
conditions (x0, r0).

When the system’s uncertainties are not equal to zero, the concept of stochastic stability
becomes robust stochastic stability and is defined for system (1), as follows.
Definition 2.3. System (1) is said to be

(i) robustly stochastically stable (RSS) if there exists a finite positive constant T (x0, r0)
such that the condition (4) holds for any initial conditions (x0, r0) and for all admis-
sible uncertainties;

(ii) robust mean exponentially stable (RMES) if there exist positive constants α and
β such that the condition (6) holds for any initial conditions (x0, r0) and for all
admissible uncertainties.

Remark 2.1. From these definitions, we can see that the robust mean exponentially stable
(RMES) implies the stochastically stable (RSS).

In the rest of this paper we will deal with the design of a state feedback controller that
robust stochastically stabilizes the closed-loop systems and guarantees the disturbance
rejection with a certain level γ > 0. Mathematically, we are concerned with the design of
a controller that guarantees the following for all ω ∈ L2[0,∞):

‖z(t)‖2 < γ
[
‖ω(t)‖2

2 + M(x0, r0)
] 1

2

where γ > 0 is a prescribed level of disturbance rejection to be achieved, x0 and r0 are
the initial conditions of the state vector and the mode respectively at time t = 0, and
M(x0, r0) is a constant that depends on the initial conditions (x0, r0).
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Definition 2.4. Let γ > 0 be a given positive constant. System (1) with u(t) ≡ 0 is said
to be robust stochastically stable with γ−disturbance attenuation if there exists a constant
M(x0, r0) with M(0, r0) = 0, for all r0 ∈ S , and for all admissible uncertainties such that
the following holds:

‖z‖2
∆=

[
E

∫ ∞

0
z�(t)z(t)dt|(x0, r0)

]1/2

≤ γ
[
‖w‖2

2 + M(x0, r0)
] 1

2 . (7)

Definition 2.5. System (1) with u(t) ≡ 0 is said to be internally mean square quadrat-
ically stable (MSQS) if there exists a set of symmetric and positive-definite matrices
P = (P (1), . . . , P (N)) > 0, satisfying the following for every i ∈ S :

A�(i)P (i) + P (i)A(i) + W(i)P (i)W(i) +
N∑

j=1

λijP (j) < 0, (8)

By virtue of Definition 2.1, it is obvious that internal MSQS means that system (1) is
MSQS in case of w(t) ≡ 0, i.e., system (1) being free of input disturbance. Likewise, we
can give the following definitions:
Definition 2.6. System (1) with u(t) ≡ 0 is said to be internally SS (MES) if it is SS
(MES) in case of w(t) ≡ 0.
Definition 2.7. System (1) is said to be stabilizable with γ-disturbance in the SS (MES,
MSQS) sense if there exists a control law such that the closed-loop system under this
control law is SS (MES, MSQS) and satisfies (7).

The goal of this paper is to design a state feedback controller that robust stochastically
stabilizes the class of stochastic hybrid systems with Wiener process we are considering in
this paper and at the same time rejects the effect of the external disturbance w(t) with a
desired level γ > 0. The structure of the controller we will be using here is given by the
following expression:

u(t) = K(i)x(t) (9)

where K(i) is a constant gain that we have to determine when rt = i ∈ S .
We are mainly concerned with the design of such controller. LMI based conditions

are searched since the design becomes easier and the gain can be obtained by solving the
appropriate LMIs using the existing developed algorithms. In the rest of this paper, we
will assume the complete access to the mode and to the state vector at time t.

Before closing this section let us give some lemmas that we will use in the rest of the
paper.
Lemma 2.1. (Ref. 10) Let H, F and G be real matrices of appropriate dimensions then,
for any scalar ε > 0 for all matrices F satisfying F T F ≤ I, we have:

HFG + G�F�H� ≤ εHH� + ε−1G�G (10)
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Lemma 2.2. The linear matrix inequality[
H S�

S R

]
> 0

is equivalent to

R > 0, H − S�R−1S > 0

where H = H�, R = R� and S is a matrix with appropriate dimension.

3 Main results

Our goal in this paper consists of designing a state feedback controller that robust stochas-
tically stabilizes the class of stochastic hybrid systems with Wiener process we are consid-
ering and at the same time rejects the external disturbance with a desired level γ > 0.

Based on the previous definition, the uncertain system with u(t),∀t ≥ 0, will be stochas-
tically stable if the following holds for every i ∈ S and for all admissible uncertainties:

A�(i, t)P (i) + P (i)A(i, t) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) < 0

This condition is useless since it contains the uncertainties FA(i, t). Let us now trans-
form it into a useful condition that can be used to check the robust stability.

Now if we use the expression of A(i, t), we get:

A�(i)P (i) + P (i)A(i) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) + P (i)DA(i)FA(i, t)EA(i)

+E�
A (i)F�

A (i, t)D�
A(i)P (i) < 0,

Using now the lemma 2.1, the previous inequality will be satisfied if the following holds:

A�(i)P (i) + P (i)A(i) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) + εA(i)E�
A (i)EA(i)

+ε−1
A (i)P (i)DA(i)D�

A(i)P (i) < 0,

with εA(i) > 0 for all i ∈ S .
Using Schur complement we get the desired condition:[

J0(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0
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with

J0(i) = A�(i)P (i) + P (i)A(i) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) + εA(i)E�
A (i)EA(i)

The results of this development is summarized by the following theorem.
Theorem 3.1. If there exist a set of symmetric and positive-definite matrices P =
(P (1), . . . , P (N)) > 0 and a set of positive scalars εA = (εA(1), . . . , εA(N)) such that
the following LMI holds for every i ∈ S and for all admissible uncertainties:[

J0(i) P (i)DA(i)
D�

A(i)P (i) −εA(i)I

]
< 0

then system (1) with u(t) = 0 for all t ≥ 0 is internally mean square quadratically stable.
Theorem 3.2. If system (1) with u(t) ≡ 0 is internally mean square stochastically stable
for all admissible uncertainties, then it is also robust stochastically stable.

Proof. Let rt = i ∈ S . To prove this theorem, let us consider a candidate Lyapunov
function be defined as follows:

V (x(t), i) = x�(t)P (i)x(t)

where P (i) > 0 is symmetric and positive-definite matrix for every i ∈ S .
The infinitesimal operator L is given as follows (Ref. 12):

L V (x(t), i) = ẋ�(t)P (i)x(t) + x�(t)P (i)ẋ(t)

+ x�(t)W�(i)P (i)W(i)x(t) +
N∑

j=1

λijx
�(t)P (j)x(t)

= x�(t)

⎡
⎣A�(i)P (i) + P (i)A(i) + W

�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤
⎦ x(t)

+ 2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) + 2x�(t)P (i)Bω(i)ω(t)

Using now Lemma 2.1, we get the following:

2x�(t)P (i)DA(i)FA(i, t)EA(i)x(t) ≤ εA(i)x�(t)E�
A (i)EA(i)x(t)

+ ε−1
A (i)x�(t)P (i)DA(i)D�

A(i)P (i)x(t)

2x�(t)P (i)Bω(i)ω(t) ≤ ε−1
w (i)x�(t)P (i)Bω(i)B�

ω (i)P (i)x(t)

+ εw(i)ω�(t)ω(t).
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Combining this with the expression of L V (x(t), i), yields

L V (x(t), i) ≤ x�(t)

⎡
⎣A�(i)P (i) + P (i)A(i) + W

�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤
⎦ x(t)

+ εA(i)x�(t)E�
A (i)EA(i)x(t) + ε−1

A (i)x�(t)P (i)DA(i)D�
A(i)P (i)x(t)

+ ε−1
w (i)x�(t)P (i)Bω(i)B�

ω (i)P (i)x(t) + εw(i)ω�(t)ω(t)

= x�(t)

⎡
⎣A�(i)P (i) + P (i)A(i) + W

�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤
⎦ x(t)

+ εA(i)x�(t)E�
A (i)EA(i)x(t) + ε−1

A (i)x�(t)P (i)DA(i)D�
A(i)P (i)x(t)

+ x�(t)
[
ε−1
w (i)P (i)Bω(i)B�

ω (i)P (i)
]
x(t) + εw(i)ω�(t)ω(t),

= x�(t)Υ(i)x(t) + ε(i)ω�(t)ω(t), (11)

with

Υ(i) = A�(i)P (i) + P (i)A(i) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j)

+ εA(i)E�
A (i)EA(i) + ε−1

A (i)P (i)DA(i)D�
A(i)P (i)

+ ε−1
w (i)P (i)Bw(i)B�

w (i)P (i)

If Υ(i) < 0 for each i ∈ S , we get the following equivalent inequality matrix:

Ξ(i) =

⎡
⎣ Jw(i) P (i)Bw(i) P (i)DA(i)

B�
w (i)P (i) −εw(i)I 0

D�
A(i)P (i) 0 −εA(i)I

⎤
⎦ < 0

with Jw(i) = A�(i)P (i) + P (i)A(i) + W
�(i)P (i)W(i) +

∑N
j=1 λijP (j) + εA(i)E�

A (i)EA(i)
Based on Dynkin’s formula, we get the following:

E[V (x(t), i)] − V (x0, r0)] = E

[∫ t

0
L V (x(s), rs)ds|x0, r0

]
,

which combined with (11) yields

E[V (x(t), i)] − V (x0, r0)] ≤ E

[∫ t

0
x�(s)Ξ(rs)x(s)ds|x0, r0

]

+ εw(i)
∫ t

0
ω�(s)ω(s)ds. (12)
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Since V (x(t), i) is non-negative, (12) implies

E[V (x(t), i)] + E

[∫ t

0
x�(s)[−Ξ(rs)]x(s)ds|x0, r0

]
≤ V (x0, r0)] + εw(i)

∫ t

0
ω�(s)ω(s)ds,

which yields

min
i∈S

{λmin(−Ξ(i))}E
[∫ t

0
x�(s)x(s)ds

]
≤ E

[∫ t

0
x�(s)[−Ξ(rs)]x(s)ds

]

≤ V (x0, r0) + εw(i)
∫ ∞

0
ω�(s)ω(s)ds.

This proves that system (1) is stochastically stable. �

Let us now establish what conditions should we satisfy if we want to get system (1),
with u(t) = 0 for all t ≥ 0, stochastically stable and has γ-disturbance rejection. The
following theorem gives such conditions.
Theorem 3.3. Let γ be a given positive constant. If there exists a set of symmetric and
positive-definite matrices P = (P (1), . . . , P (N)) > 0 such that the following LMI holds for
every i ∈ S ⎡

⎢⎢⎣
Ju(i)

[
C�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2
I

⎤
⎥⎥⎦ < 0, (13)

where
Ju(i) = A�(i, t)P (i)+P (i)A(i, t)+W

�(i)P (i)W(i)+
∑N

j=1 λijP (j)+C�
z (i, t)Cz(i, t), then

system (1) with u(t) ≡ 0 is robust stochastically stable and satisfies the following:

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2
, (14)

which means that the system with u(t) = 0 for all t ≥ 0 is stochastically stable with
γ-disturbance attenuation.

Proof. Let rt = i ∈ S . From (13) and using Schur complement, we get the following
inequality

A�(i, t)P (i) + P (i)A(i, t) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) + C�
z (i, t)Cz(i, t) < 0.

which implies the following since C�
z (i, t)Cz(i, t) > 0

A�(i, t)P (i) + P (i)A(i, t) + W
�(i)P (i)W(i) +

N∑
j=1

λijP (j) < 0.
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Based on Definition 2.5, this proves that the system under study is internally MSQS.
Using now Theorem 3.2, we conclude that system (1) with u(t) ≡ 0 is robust stochastically
stable.

Let us now prove that (14) is satisfied. To this end, let us define the following perfor-
mance function:

JT = E

[∫ T

0
[z�(t)z(t) − γ2ω�(t)ω(t)]dt

]
.

To prove (14), it suffices to establish that J∞ is bounded, i.e:

J∞ ≤ V (x0, r0) = x�
0 P (r0)x0.

First of all notice that for V (x(t), i) = x�(t)P (i)x(t), we have:

L V (x(t), i) = x�(t)

⎡
⎣A�(i, t)P (i) + P (i)A(i, t) + W

�(i)P (i)W(i) +
N∑

j=1

λijP (j)

⎤
⎦ x(t)

+ x�(t)P (i)Bω(i)ω(t) + ω�(t)B�
ω (i)P (i)x(t),

and

z�(t)z(t) − γ2ω(t)ω(t)

= [Cz(i, t)x(t) + Bz(i)ω(t)]� [Cz(i, t)x(t) + Bz(i)ω(t)] − γ2ω(t)ω(t)

= x�(t)C�
z (i, t)Cz(i, t)x(t) + x�(t)C�

z (i, t)Bz(i)ω(t)

+ ω�(t)B�
z (i)Cz(i, t)x(t) + ω�(t)B�

z (i)Bz(i)ω(t) − γ2ω�(t)ω(t)

which implies the following equality:

z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), i) = η�(t)Θu(i)η(t),

with

Θu(i) =

⎡
⎢⎢⎣

Ju(i)
[

C�
z (i, t)Bz(i)

+P (i)Bω(i)

]
[

B�
z (i)Cz(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2
I

⎤
⎥⎥⎦

η�(t) =
[

x�(t) ω�(t)
]
.

Therefore,

JT = E

[∫ T

0
[z�(t)z(t) − γ2ω�(t)ω(t) + L V (x(t), i)]dt

]

−E

[∫ T

0
L V (x(t), i)]dt

]
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Using now Dynkin’s formula, i.e:

E

[∫ T

0
L V (x(t), i)]dt|x0, r0

]
= E[V (x(T ), rT )] − V (x0, r0).

we get

JT = E

[∫ T

0
η�(t)Θu(i)η(t)dt

]
− E[V (x(T ), rT )] + V (x0, r0).

Since Θu(i) < 0 and E[V (x(T ), rT )] ≥ 0, (15) implies the following:

JT ≤ V (x0, r0),

which yields J∞ ≤ V (x0, r0), i.e., ‖z‖2
2 − γ2‖ω‖2

2 ≤ x�
0 P (r0)x0.

This gives the desired results:

‖z‖2 ≤
[
γ2‖ω‖2

2 + x�
0 P (r0)x0

] 1
2

This ends the proof of the theorem. �

Let us first of all see how we can design a controller of the form (9). Plugging the
expression of the controller in the dynamics (1), we get:⎧⎨

⎩
dx(t) = Ā(i, t)x(t)dt + Bw(i)w(t)dt + W(i)x(t)dω(t)

z(t) = C̄z(i, t)x(t) + Bz(i)w(t)
(15)

where Ā(i, t) = A(i, t) + B(i, t)K(i) and C̄z(i, t) = Cz(i, t) + Dz(i, t)K(i).
Using now the results of Theorem 3.3, we get the following ones for the stochastic

stability and the disturbance rejection of level γ > 0 for the dynamics of the closed-loop.
Theorem 3.4. Let γ be a given positive constant and K = (K(1), . . . , K(N)) be a set
of given gains. If there exists a set of symmetric and positive-definite matrices P =
(P (1), . . . , P (N)) > 0 such that the following LMI holds for every i ∈ S⎡

⎢⎢⎣
J̄0(i, t)

[
C̄�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2
I

⎤
⎥⎥⎦ < 0, (16)

with J̄0(i, t) = Ā�(i, t)P (i)+P (i)Ā(i, t)+W(i)P (i)W(i)+
∑N

j=1 λijP (j)+ C̄�
z (i, t)C̄z(i, t),

then system (1) is stochastically stable under the controller (9) and satisfies the following

‖z‖2 ≤
[
γ2‖w‖2

2 + x�
0 P (r0)x0

] 1
2
, (17)

which means that the system is stochastically stable with γ-disturbance attenuation.
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To synthesize the controller gain, let us transform the LMI (16) into a form that can
be used easily to compute the gain for every mode i ∈ S . For this purpose notice that:⎡

⎢⎢⎣
J̄0(i, t)

[
C̄�

z (i, t)Bz(i)
+P (i)Bω(i)

]
[

B�
z (i)C̄z(i, t)

+B�
ω (i)P (i)

]
B�

z (i)Bz(i) − γ2
I

⎤
⎥⎥⎦ =

[
J̄1(i, t) P (i)Bω(i)

B�
ω (i)P (i) −γ2

I

]

+
[

C̄�
z (i, t)
B�

z (i)

] [
C̄z(i, t) Bz(i)

]
with

J̄0(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) + W(i)P (i)W(i) +
N∑

j=1

λijP (j) + C̄�
z (i, t)C̄z(i, t)

J̄1(i, t) = Ā�(i, t)P (i) + P (i)Ā(i, t) + W(i)P (i)W(i) +
N∑

j=1

λijP (j)

Using now Schur complement we show that (16) is equivalent to the following inequality:⎡
⎣ J̄1(i, t) P (i)Bω(i) C̄�

z (i, t)
B�

ω (i)P (i) −γ2
I B�

z (i)
C̄z(i, t) Bz(i) −I

⎤
⎦ < 0

Using now the expression of Ā(i, t) and C̄z(i, t) and the expressions of their components,
we obtain the following inequality:⎡

⎢⎢⎢⎢⎣
J1(i) P (i)Bω(i)

[
C�

z (i)
+K�(i)D�

z (i)

]
B�

ω (i)P (i) −γ2
I B�

z (i)[
Dz(i)K(i)

+Cz(i)

]
Bz(i) −I

⎤
⎥⎥⎥⎥⎦

+

⎡
⎣ E�

A (i)F�
A (i, t)D�

A(i)P (i) 0 0
0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ P (i)DA(i)FA(i, t)EA(i) 0 0

0 0 0
0 0 0

⎤
⎦

+

⎡
⎣ P (i)DB(i)FB(i, t)EB(i)K(i) 0 0

0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ K�(i)E�

B (i)F�
B (i, t)D�

B(i)P (i) 0 0
0 0 0
0 0 0

⎤
⎦

+

⎡
⎣ 0 0 K�(i)E�

Dz
(i)F�

Dz
(i, t)D�

Dz
(i)

0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 0 0

0 0 0
DDz

(i)FDz
(i, t)EDz

(i)K(i) 0 0

⎤
⎦

+

⎡
⎣ 0 0 E�

Cz
(i)F�

Cz
(i, t)D�

Cz
(i)

0 0 0
0 0 0

⎤
⎦ +

⎡
⎣ 0 0 0

0 0 0
DCz

(i)FCz
(i, t)ECz

(i) 0 0

⎤
⎦ < 0
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with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + P (i)B(i)K(i) +
N∑

j=1

λijP (j)

Based on Lemma 2.1, we get:⎡
⎣ J1(i) P (i)Bω(i) C�

z (i) + K�(i)D�
z (i)

B�
ω (i)P (i) −γ2

I B�
z (i)

Dz(i)K(i) + Cz(i) Bz(i) −I

⎤
⎦

+

⎡
⎣ εA(i)P (i)DA(i)D�

A(i)P (i) + ε−1
A (i)E�

A (i)EA(i) 0 0
0 0 0
0 0 0

⎤
⎦

+

⎡
⎢⎢⎣

[
εB(i)P (i)DB(i)D�

B(i)P (i)
+ε−1

B K�(i)E�
B (i)EB(i)K(i)

]
0 0

0 0 0
0 0 0

⎤
⎥⎥⎦

+

⎡
⎣ ε−1

Dz
(i)K�(i)E�

Dz
(i)EDz(i)K(i) 0 0

0 0 0
0 0 εDz(i)DDz(i)D

�
Dz

(i)

⎤
⎦

+

⎡
⎣ ε−1

Cz
(i)K�(i)E�

Cz
(i)ECz(i, t)K(i) 0 0

0 0 0
0 0 εCz(i)DCz(i)D

�
Cz

(i)

⎤
⎦ < 0

with

J1(i) = A�(i)P (i) + P (i)A(i) + K�(i)B�(i)P (i) + P (i)B(i)K(i) +
N∑

j=1

λijP (j)

Let J2(i), W(i) and T (i) be defined as:

J2(i) = J1(i) + ε−1
A (i)E�(i)EA(i) + ε−1

B (i)K�(i)E�
B (i)EB(i)K(i)

W(i) = diag[ε−1
A (i)I, ε−1

B (i)I, εCz(i)I, εDz(i)I]

T (i) =
(
P (i)DA(i), P (i)DB(i), K�(i)E�

Cz
(i), K�(i)E�

Dz
(i)

)
and using Schur complement we get the equivalent inequality:⎡

⎢⎢⎢⎢⎢⎢⎣

J2(i) P (i)Bω(i)
[

C�
z (i)

+K�(i)D�
z (i)

]
T (i)

B�
ω (i)P (i) −γ2

I B�
z (i) 0[

Dz(i)K(i)
+Cz(i)

]
Bz(i) −U(i) 0

T �(i) 0 0 −W(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0
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with U(i) = I − εDz(i)DDz(i)D
�
Dz

(i) − εCz(i)DCz(i)D
�
Cz

(i)
This inequality is nonlinear in K(i) and P (i) and therefore it can not solved using

existing linear algorithms. To transform it to an LMI, let X(i) = P−1(i). Pre- and
post-multiply this inequality by diag[X(i), I, I], where I is an appropriate identity matrix,
gives: ⎡

⎢⎢⎢⎢⎢⎢⎣

J3(i) Bω(i)
[

X(i)C�
z (i)

+X(i)K�(i)D�
z (i)

]
X(i)T (i)

B�
ω (i) −γ2

I B�
z (i) 0[

Dz(i)K(i)X(i)
+Cz(i)X(i)

]
Bz(i) −U(i) 0

T �(i)X(i) 0 0 −W(i)

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0

with

J3(i) = X(i)A�(i) + A(i)X(i) + X(i)K�(i)B�(i) + X(i)W�(i)X−1(i)W(i)X(i)

+B(i)K(i)X(i) + ε−1
A (i)X(i)E�

A (i)EA(i)X(i)

+ε−1
B (i)X(i)K�(i)E�

B (i)EB(i)K(i)X(i)

+
N∑

j=1

λijX(i)X−1(j)X(i)

Notice that:

X(i)T (i) =
(
DA(i), DB(i), X(i)K�(i)E�

Cz
(i), X(i)K�(i)E�

Dz
(i)

)
and

N∑
j=1

λijX(i)X−1(j)X(i) = λiiX(i) + Si(X)X−1(X)S�
i (X)

Letting Y (i) = K(i)X(i) and using Schur complement we obtain:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
X(i)W�(i) Z(i) Si(X)

B�
ω (i) −γ2

I B�
z (i) 0 0 0[

Dz(i)Y (i)
+Cz(i)X(i)

]
Bz(i) −U(i) 0 0 0

X(i)W(i) 0 0 −X(i) 0 0
Z�(i) 0 0 0 −V(i) 0
S�

i (X) 0 0 0 0 −Xi(X)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0
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with

J̃(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i)

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)
+λiiX(i)

Z(i) =
(
X(i)E�

A (i), X(i)E�
B (i), Y �(i)E�

Cz
(i), Y �(i)E�

Dz
(i)

)
V(i) = diag[εA(i)I, εB(i)I, εCz(i)I, εDz(i)I]

The following theorem summarizes the results of this development.
Theorem 3.5. Let γ be a positive constant. If there exist a set of symmetric and positive-
definite matrices X = (X(1), . . . , X(N)) > 0 and a set of matrices Y = (Y (1), . . . , Y (N))
and sets of positive scalars εA = (εA(1), . . . , εA(N)), εB = (εB(1), . . . ,
εB(N)), εCz = (εCz(1), . . . , εCz(N)), and εDz = (εDz(1), . . . , εDz(N)) such that the fol-
lowing LMI holds for every i ∈ S and for all admissible uncertainties:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃(i) Bω(i)
[

X(i)C�
z (i)

+Y �(i)D�
z (i)

]
B�

ω (i) −γ2
I B�

z (i)[
Dz(i)Y (i)

+Cz(i)X(i)

]
Bz(i) −U(i)

X(i)W(i) 0 0
Z�(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Z(i) Si(X)
0 0 0
0 0 0

−X(i) 0 0
0 −V(i) 0
0 0 −Xi(X)

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (18)

with

J̃(i) = X(i)A�(i) + A(i)X(i) + Y �(i)B�(i) + B(i)Y (i)

+εA(i)DA(i)D�
A(i) + εB(i)DB(i)D�

B(i)
+λiiX(i)

U(i) = I − εDz(i)DDz(i)D
�
Dz

(i) − εCz(i)DCz(i)D
�
Cz

(i)

Z(i) =
(
X(i)E�

A (i), X(i)E�
B (i), Y �(i)E�

Cz
(i), Y �(i)E�

Dz
(i)

)
V(i) = diag[εA(i)I, εB(i)I, εCz(i)I, εDz(i)I]
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then, the system (1) under the controller (9) with K(i) = Y (i)X−1(i) is stochastically
stable and moreover the closed-loop system satisfies the disturbance rejection of level γ.

From the practical point of view, the controller that stochastically stabilizes the class
of systems and at the same time guarantees the minimum disturbance rejection is of great
interest. This controller can be obtained by solving the following optimization problem:

Pu :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ν>0,
εA=(εA(1),...,εA(N))>0,
εB=(εB(1),...,εB(N))>0,

εCz =(εDz (1),...,εCz (N))>0,
εDz =(εDz (1),...,εDz (N))>0,

X=(X(1),...,X(N))>0,
Y =(Y (1),...,Y (N))

ν

s.t :⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̃(i) Bω(i)

[
X(i)C�

z (i)
+Y �(i)D�

z (i)

]

B�
ω (i) −νI B�

z (i)[
Dz(i)Y (i)

+Cz(i)X(i)

]
Bz(i) −U(i)

X(i)W(i) 0 0
Z�(i) 0 0
S�

i (X) 0 0

X(i)W�(i) Z(i) Si(X)
0 0 0
0 0 0

−X(i) 0 0
0 −V(i) 0
0 0 −Xi(X)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

where the LMI in the constraints is obtained from (18) by replacing γ2 by ν.
The following theorem gives the results on the design of the controller that stochastically

stabilizes the system (1) and simultaneously guarantees the smallest disturbance rejection
level.
Theorem 3.6. Let ν > 0, εA = (εA(1), . . . , εA(N)) > 0, εB = (εB(1), . . . , εB(N)) >
0, εCz = (εCz(1), . . . , εCz(N)) > 0, εDz = (εDz(1), . . . , εDz(N)) > 0, X = (X(1), . . . ,
X(N)) > 0 and Y = (Y (1), . . . , Y (N)) be the solution of the optimization problem Pu.
Then, the controller (9) with K(i) = Y (i)X−1(i) stochastically stabilizes the class of
systems we are considering and moreover the closed-loop system satisfies the disturbance
rejection of level

√
ν.
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4 Numerical Example

In the previous section, we developed results that determine the state feedback controller
that stochastically stabilizes the class of systems we are treating in this paper and at the
same time rejects the disturbance w(t) with the desired level γ > 0. The conditions we
developed are in the LMI form which makes their resolution easy. In the rest of this section
we will give a numerical example to show the usefulness of our results.
Example 4.1. Let us consider a system with two modes with the following data:

• transition probability rates matrix:

Λ =
[
−2.0 2.0
3.0 −3.0

]

• mode 1:

A(1) =
[
−0.5 1.0
0.3 −2.5

]
, B(1) =

[
1.0 0.0
0.0 1.0

]
, Bw(1) =

[
1.0 0.0
0.0 1.0

]

Cz(1) =
[

1.0 0.0
0.0 1.0

]
, Bz(1) =

[
1.0 0.0
0.0 1.0

]
, Dz(1) =

[
1.0 0.0
0.0 1

]

DA(1) =
[

0.10
0.20

]
, EA(1) =

[
0.20 0.10

]
, DB(1) =

[
0.10
0.20

]

EB(1) =
[

0.20 0.10
]
, DCz(1) =

[
0.10
0.20

]
, ECz(1) =

[
0.20 0.10

]
DDz(1) =

[
0.10
0.20

]
, EDz(1) =

[
0.20 0.10

]
, W(1) =

[
0.1 0.0
0.0 0.1

]

• mode 2:

A(2) =
[
−1.0 0.1
0.2 −2.0

]
, B(2) =

[
1.0 0.0
0.0 1.0

]
, Bw(2) =

[
1.0 0.0
0.0 1.0

]

Cz(2) =
[

1.0 0.0
0.0 1.0

]
, Bz(2) =

[
1.0 0.0
0.0 1.0

]
, Dz(2) =

[
1.0 0.0
0.0 1.0

]

DA(2) =
[

0.13
0.10

]
, EA(2) =

[
0.10 0.20

]
, DB(2) =

[
0.13
0.10

]

EB(2) =
[

0.10 0.20
]
, DCz(2) =

[
0.13
0.10

]
, ECz(2) =

[
0.10 0.20

]
DDz(2) =

[
0.13 0.10

]
, EDz(2) =

[
0.10 0.20

]
, W(2) =

[
0.2 0.0
0.0 0.2

]

The required positive scalars are fixed to the following values:

εA(1) = εA(2) = 0.50
εB(1) = εB(2) = εCz(1) = εCz(2) = εDz(1) = εDz(2) = 0.10
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Solving the problem Pu gives:

X(1) =
[

0.0769 −0.1335
−0.1335 0.5794

]
, Y (1) =

[
−1.0610 0.1437
0.1392 −1.5717

]
,

X(2) =
[

0.1433 −0.1433
−0.1433 0.5533

]
, Y (2) =

[
−1.1449 0.1518
0.1478 −1.5304

]
,

which gives the following gains:

K(1) =
[
−22.2878 −4.8864
−4.8327 −3.8260

]
, K(2) =

[
−10.4069 −2.4204
−2.3394 −3.3718

]

Using the results of Theorem 3.6, it results that the system of this example is stochas-
tically stable under the state feedback controller with the computed constant gain and
assure the disturbance rejection of level γ = 1.01.

5 Conclusion

This paper dealt with the class of uncertain hybrid stochastic systems. The uncertainties we
considered in this paper are of norm bounded type. Both the stability and the stabilizability
problems are treated. A state feedback controller is proposed to robustly stochastically
stabilize the class of hybrid systems and at the same time rejection the disturbance with
a desired level γ > 0. The conditions we developed are in LMI form which makes the
resolution easier using the existing tools.
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