
Les Cahiers du GERAD ISSN: 0711–2440

On the Design of Optimum Order 2
Golomb Ruler

B. Jaumard, Y. Solari
P. Galinier

G–2003–79

November 2003

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
recherche sur la nature et les technologies.

On the Design of Optimum Order 2

Golomb Ruler

Brigitte Jaumard
GERAD and Computer Science and Operations Research Department

Université de Montréal and
CRC Chair – Optimization of Communication Networks

jaumard@iro.umontreal.ca

Yannick Solari
Computer Engineering Department

École Polytechnique de Montréal
yannick.solari@polymtl.ca

Philippe Galinier
Computer Engineering Department

École Polytechnique de Montréal
philippe.galinier@polymtl.ca

November, 2003

Les Cahiers du GERAD

G–2003–79

Copyright c© 2003 GERAD

Abstract

A Golomb ruler with M marks can be defined as a set {ai} of integers so that all
differences δij = aj − ai, i �= j, are distinct. An order 2 Golomb ruler is a Golomb
ruler such that all differences δijk� = |δk� − δij |, {i, j} �= {k, �}, are distinct as much
as possible. Construction of optimum order 2 Golomb ruler, i.e., of rulers of minimum
length, is a highly combinatorial problem which has applications, e.g., in the design of
convolutional self doubly orthogonal codes (CSO2C). We propose here a first exact al-
gorithm, different from a pure exhaustive search, for building optimum order 2 Golomb
rulers and provide optimal rulers for up to 9 marks and new rulers which improve on
the previous ones for up to 20 marks.

Résumé

Une règle de Golomb avec M marques peut être définie comme un ensemble d’entiers
{ai} tel que toutes les différences δij = aj − ai, i �= j, sont distinctes. Une règle de
Golomb d’ordre 2 est une règle de Golomb telle que toutes les différences δijk� =
|δk�− δij |, {i, j} �= {k, �}, sont le plus possible distinctes. La construction des règles de
Golomb d’ordre 2, c’est-à-dire des règles de longueur minimum, est un problème haute-
ment combinatoire qui a des applications dans, par exemple, la conception de codes
doublement orthogonaux convolutionnels (CSO2C). Nous proposons ici un premier al-
gorithme exact, distinct d’une énumération purement exhaustive, pour la construction
des règles optimales de Golomb d’ordre 2. Nous construisons également de nouvelles
règles qui améliorent les valeurs des règles précédemment connues jusqu’à 20 marques.

Les Cahiers du GERAD G–2003–79 1

1 Introduction

A Golomb ruler with M marks can be defined as a set of M integers 0 ≤ a1 < a2 < · · · < aM

such that all differences δij = aj − ai, 1 ≤ i < j ≤ M are distinct. This condition is
equivalent to requiring that the sums ai + aj , 1 ≤ i ≤ j ≤ M be distinct. The value aM

defines the length of the ruler. An order 2 Golomb ruler, or 2-Golomb ruler for short, is
again defined by a set of M integers 0 ≤ a1 < a2 < · · · < aM which satisfy the all difference
conditions of Golomb rulers and the additional condition that all differences of differences,
or δ-differences for short, δijk� = |δk� − δij |, 1 ≤ i < j ≤ M, 1 ≤ k < � ≤ M, {i, j} �=
{k, �} are distinct as much as possible (details are given in Section 2.2). This is in turn
equivalent to the condition that, for all i, j, k, � such that j > � ≥ i, i �= k, � > k, differences
δij − δk� = (aj −ai)− (a�−ak) are all distinct. The rulers of interest to researchers are the
rulers of minimum length (or of shortest possible length), i.e., such that aM is minimum
for a given number M of marks. Without any loss of generality, we will assume from now
on that a1 = 0.

2-Golomb rulers have been recently studied in the context of Turbo decoding using
convolutional self doubly orthogonal codes by Cardinal et al. [3] and Baechler, Haccoun
and Gagnon [2]. It corresponds to a novel coding/decoding technique which circumvents
both the complexity and latency shortcomings of the usual Turbo codes. These authors
have studied several approaches for designing optimum 2-Golomb rulers, starting from
the different approaches that have been developed for Golomb rulers, mainly backtracking
algorithms and finite projective geometry methods. Details are provided in Baechler [1]:
some 2-Golomb rulers were obtained for M up to 10, but minimum length rulers, with a
proof of optimality, were generated only for M ≤ 6.

We propose to revisit the shift (Dollas et al. [4]) and garsp [5] backtracking algorithms
that have been proposed for the design of optimum Golomb rulers. Their success heavily
depends on bitmap data structures and their efficient updatings. We generalize them
for 2-Golomb rulers. The paper is organized as follows. In Section 2, general properties
of 2-Golomb rulers are identified. The data structures and the backtracking algorithm
are described in Section 3. Computational experiences are discussed in Section 4, and
conclusions are drawn in the last section.

2 Unavoidable Repetitions and Properties of 2-Golomb
Rulers

2.1 Definitions and Notation

Let ∆ be the set of differences of a Golomb ruler. It can be represented in a difference
triangle, denoted by ∆-triangle, as illustrated on a 5-mark Golomb ruler on Figure 1. The
first two lines correspond to the mark positions on the ruler, the third line to the differences
between two consecutive marks, i.e. 0-hop differences, the fourth line to 1-hop differences,
i.e., differences of the type ai+2 − ai, and so on.

Les Cahiers du GERAD G–2003–79 2

a1 a2 a3 a4 a5

0 11 12 54 57
11 1 42 3

12 43 45
54 46

57

Figure 1: The ∆-triangle representation of a 5-mark Golomb ruler

We have generalized the difference triangle for 2-Golomb rulers. Let ∆∆ be the set of
differences of differences of a 2-Golomb ruler, also called set of δ-differences. Again, it can
be represented in a difference of difference triangle, denoted by ∆∆-triangle, where the first
two lines correspond to the ordered set of differences δ12, δ23, δ13, δ34, δ24, δ14, . . . , δM−1,M ,
δM−2,M , . . . , δ1,M with δij = aj − ai, the third line corresponds to differences of differences
with a 0-hop, i.e., of two consecutive differences, the fourth line corresponds to differences
of differences with a 1-hop, and so on. The ∆∆-triangle of a 2-Golomb ruler with 5 marks
associated with the ∆-triangle of Figure 1, is represented on Figure 2.

δ12 δ23 δ13 δ34 δ24 δ14 δ45 δ35 δ25 δ15
11 1 12 42 43 54 3 45 46 57

10 11 30 1 11 51 42 1 11
1 41 31 12 40 9 43 12

31 42 42 39 2 8 54
32 53 9 3 3 3

43 2 33 4 14
8 44 34 15

34 45 45
35 36

46

Figure 2: The ∆∆-triangle representation of a 5-mark 2-Golomb ruler (repeated δ-
differences are underlined)

2.2 Unavoidable Repetitions

Unlike the ∆-triangle, the ∆∆-triangle contains some unavoidable repetitions. This point
was outlined in Baechler [1], but not thoroughly addressed. Indeed, there are two types
of repetitions that we characterize and take a census of below. For a given pair i, k ∈
{1, 2, . . . , M} of distinct indices, a first set of repetitions, the repetitions of type 1, corre-
sponds to the set of differences

δij − δkj = aj − ai − (aj − ak)

= ak − ai, j = 2, 3, . . . , M ; i < j; k < j,

δji − δjk = ai − aj − (ak − aj)

= ai − ak, j = 1, 2, . . . , M − 1; j < i; j < k.

Les Cahiers du GERAD G–2003–79 3

We say that such a repetition is of order t if the value |ak − ai| cannot be encountered less
than t times in a given ∆∆-triangle. It is easy to verify that there are at least M − t− 1
differences of order M − t for 1 ≤ t ≤M − 2. There is a second type of repetitions which
corresponds to the following ones. Given a 4-uple (i, j, k, �), 1 ≤ i < j < k < � ≤ M ,
consider the set of δ-differences:

δk� − δij = (a� − ak)− (aj − ai)

= a� − ak − aj + ai

δj� − δik = (a� − aj)− (ak − ai)

= a� − ak − aj + ai.

There are
(
M
4

)
such repetitions.

We summarize in Table 1 the number of unavoidable repetitions for 2-Golomb rulers
(3 ≤ M ≤ 10). We denote by N∆∆ the overall number of δ-differences and by Nd

∆∆ the
number of distinct δ-differences. N∆∆ = N∆(N∆−1)

2 where N∆ = M(M−1)
2 is the number of

differences, i.e., of elements in a ∆-triangle. We then have:

Nd
∆∆ = N∆∆ −

M−2∑
t=1

(M − t)(M − t− 2)−
(

M

4

)
.

M t N∆ N∆∆ Nd
∆∆

2 3 4 5 6 7 8

3 - - - - - - - 3 3 3
4 3+ 1 - - - - - - 6 15 11
5 3+ 5 4 - - - - - 10 45 29
6 3+ 15 4 5 - - - - 15 105 64
7 3+ 35 4 5 6 - - - 21 210 125
8 3+ 70 4 5 6 7 - - 28 378 223
9 3+ 126 4 5 6 7 8 - 36 630 371

10 3+ 210 4 5 6 7 8 9 45 990 584

Table 1: Counting the number of unavoidable repetitions

The comparison of the values of N∆ and Nd
∆∆ leads to expect a huge increase in the com-

binatorics of finding optimal 2-Golomb rulers that the computational results will confirm
in practice, see Section 4.

2.3 Structure of the ∆∆-triangle

Any sub-ruler of a 2-Golomb ruler is a 2-Golomb ruler. Let us consider the sub-ruler
made of the first m marks. The associated ∆∆-triangle can be partitioned into three
sub-triangles as follows (see Figure 3 for an illustration):

Les Cahiers du GERAD G–2003–79 4

• ∆∆L-triangle or left sub-triangle, denoted ∆∆L
m: the δ-differences are of the form

|(aj − ai)− (ak − a�)|, i < j < m, � < k < m.
• ∆∆C-triangle or center sub-triangle, denoted ∆∆C

m: the δ-differences are of the form
|(am − ai)− (a� − ak)|, i < m, k < � < m ;
• ∆∆R-triangle or right sub-triangle, denoted ∆∆R

m: the δ-differences are of the form
|(am − ai)− (am − a�)| = |a� − ai|, i �= �, i < m, � < m.

We have the following properties.

Proposition 1 All elements of the ∆∆C-triangle must be different from the elements of
the ∆∆L and ∆∆R triangles in order to define a 2-Golomb ruler.

Proof. Elements of the ∆∆C-triangle are the only elements that depend on am and can
all be written under the form am± a with a > 0. Therefore taking am large enough makes
it always possible to avoid repetitions with elements of ∆∆L ∪∆∆R. �

Proposition 2 All elements of the ∆∆R triangle belong to the ∆∆L triangle except for
one element.

Proof. First observe that the elements of ∆∆L contains all the differences except for
δm−1,1. Consider the δ-differences of ∆∆L: |(aj − ai)− (ak − a�)|, i < j < m, � < k < m.
When j = k, we can obtain all differences

δi� = a� − ai for i �= � < m− 1. (1)

When i = �, we can obtain all differences aj−ak for 1 < j �= k < m, therefore in particular
all differences

δk,m−1 = am−1 − ak for k = 2, 3, . . . , m− 2. (2)

Now considering the δ-differences of ∆∆R, they are indeed differences including δ1,m−1,
hence the result. �

2.4 Symmetry

The ruler R′ = [a′1, a′2, . . . , a′M] is a symmetrical ruler of the ruler R = [a1, a2, . . . , aM] if
a′i = aM −aM−i+1 for all i = 1, 2, . . . , M . For instance R = [0 1 9 12] and R′ = [0 3 11 12]
are symmetric rulers. In order to be efficient when building a ruler, it is then wise to
eliminate the generation of symmetrical rulers. Depending of the search scheme that is
used, there are different ways to avoid generating symmetrical rulers. We describe some
of them below assuming we consider a depth first search scheme in which we fix a new
mark at each step, going from left to right on the ruler. Consider a 2-Golomb ruler with
M marks.

Test 1 Impose that d12 > dM−1,M .

Test 2 Impose that dM−1,M > d12.

Les Cahiers du GERAD G–2003–79 5

Assuming we consider a search scheme in which we first determine a value for d12 and
in the last iteration the value of dM−1,M , these last two tests have the drawback that we
must wait until the last iteration before starting to eliminate the generation of symmetrical
rulers.

Test 3 Impose that the central difference of two consecutive marks if M is even, or the
second central difference of two consecutive differences if M is odd, be smaller than its
previous consecutive difference between two consecutive marks: d�M/2+1/2�,�M/2+1/2�−1 >
d�M/2+1�+1,�M/2+1�.

Test 4 This test is similar to the previous one, except that the direction of the inequality
is reversed: d�M/2+1�+1,�M/2+1� > d�M/2+1/2�,�M/2+1/2�−1.

Test 5 Impose that the first half of the ruler be not smaller than the second half: d�M/2+1/2�,1
> dM,�M/2+1�.

Test 6 Impose that the first half of the ruler be not larger than the second half: d�M/2+1/2�,1
< dM,�M/2+1�.

We compare the six symmetry tests on the search of an optimal 2-Golomb ruler with 6
marks and the results are presented in Table 2. For each solution with a given symmetry
test, we have indicated the overall number of nodes and leafs in the search tree in a simple
depth first search scheme, as well as computing times (Pentium II, 550 MHz). We observe
that tests 2, 5 and 6 are the most interesting ones as they reduce the size of the search
tree by more than 50 % with respect to the other symmetry tests. In the sequel, we will
use the symmetry test 6.

no test test 1 test 2 test 3 test 4 test 5 test 6

nodes 524 937 373 548 222 363 327 321 293 713 219 745 193 315
leafs 214 420 140 844 84 678 115 612 98 808 86 459 84 321
cpu (sec.) 112 80 47 71 60 48 41

Table 2: Comparison of symmetry tests

3 A First Algorithm

3.1 Data Structures

We started from the same data structures than those used in the garsp algorithm. They
are described in the paper of Dollas et al. [4] for an early version, called shift, of the
garsp algorithm. The shift algorithm makes use of three bitmap structures: list for the
new differences generated after the addition of a new mark, dist for storing all measured
differences, and comp for computing the first available position for the next mark. We
generalize those structures for the informations related to the differences of differences.

Les Cahiers du GERAD G–2003–79 6

The resulting o2golru algorithm for 2-Golomb rulers is described in Section 3.3. It
corresponds to an iterative depth first search algorithm in which at each iteration, a new
mark denoted am is defined, assuming we fix the marks, going from left to right on the
ruler. In order to simplify the presentation, we first describe the data structures using a
set formalism, and then explain how to convert them in a bitmap formalism for an efficient
implementation of the o2golru algorithm. We also discuss the updatings of the data
structures at iteration m, when mark m is inserted in position am on the ruler.

Given sets S, S1 and S2, we will use the following notation:

S1 ⊕ S2 = {s1 + s2, s1 ∈ S1, s2 ∈ S2},
S1 � S2 = {s1 − s2, s1 ∈ S1, s2 ∈ S2},

|S| = {|s|, s ∈ S}.

3.1.1 The list structures. At each iteration, we store the set of new differences gen-
erated by the addition of mark m at position am in the ruler in the structure listm. The
updating of the structure is as follows:

listm ← (listm−1 ⊕ {δm−1,m}) ∪ {δm−1,m}. (3)

Considering the example with 5 marks described in Figure 1, we have list3 = {1, 12},
list4 = {42, 43, 54} and list5 = {3, 45, 46, 57}.
3.1.2 The dist structures. The list of differences is also stored in a list structure,
denoted by distm. Each element in distm represents a distance between two marks,
measured by the current ruler. Updating of distm goes as follows:

distm ← distm−1 ∪ listm.

Going on with the same example, we have dist3 = {1, 11, 12}, dist4 = {1, 11, 12, 42, 43, 54}
and dist5 = {1, 3, 11, 12, 42, 43, 45, 46, 54, 57}.
3.1.3 The dlist structures. For the differences of differences, we introduce a first
structure dlistm to store the new differences of differences that are generated after the
addition of mark am. In order to simplify the notation, let us denote δm−1,m by δ through-
out this section.

Proposition 3 Updating of the dlistm structure.

dlistm ←
(
dlistm−1 ⊕ {δ}

)
∪

(
{δ} � distm−1

)
∪ {δ, am−1}.

Proof. Let us study the structure of the ∆∆m-triangle and let us partition it as illustrated
in Figure 3.

Les Cahiers du GERAD G–2003–79 7

mmmmmmmmmmmmmm ,1,3,2,11,11,41,31,22434132312 δδδδδδδδδδδδδδ KKK −−−−−−−−−− =

L
m 1−∆∆

C
m 1−∆∆

R
m 1−∆∆ R

m∆∆

δ

{
}mi

ii

,...,2,1

:,1

=
− −δδ

C
m 1}{ −∆∆⊕δ

R
m 1}{ −∆∆⊕δ

R
m 1}{ −Θ∆∆δ

mmmmmmmmmmmmmm ,1,3,2,11,11,41,31,22434132312 δδδδδδδδδδδδδδ KKK −−−−−−−−−− =

L
m 1−∆∆

C
m 1−∆∆

R
m 1−∆∆ R

m∆∆

δ

{
}mi

ii

,...,2,1

:,1

=
− −δδ

C
m 1}{ −∆∆⊕δ

R
m 1}{ −∆∆⊕δ

R
m 1}{ −Θ∆∆δ

Figure 3: Partition of the ∆∆m-triangle

Observe first that dlistm is indeed made of the elements of ∆∆C
m ∪ ∆∆R

m = ∆∆C
m ∪

distm−1. However, distm−1 ⊆ ∆∆L
m−1 ∪ {δ1,m−1} (due to Proposition 2). Note that

δ1,m−1 = am−1.
Let δim − δk� = (am − ai)− (a� − ak) be an element of ∆∆C

m, i.e., such that i < m and
k < � < m. We can rewrite it:

δim − δk� = (am − ai)− (a� − ak) = (am − am−1) + (am−1 − ai)− (a� − ak).

We can partition ∆∆C
m into five sets:

∆∆C1
m = {δim − δk� ∈ ∆∆C

m : i = m− 1},
∆∆C2

m = {δim − δk� ∈ ∆∆C
m : i < m− 1; � = m− 1; k = i},

∆∆C3
m = {δim − δk� ∈ ∆∆C

m : i < m− 1; � = m− 1; i < k},
∆∆C4

m = {δim − δk� ∈ ∆∆C
m : i < m− 1; � = m− 1; i > k},

∆∆C5
m = {δim − δk� ∈ ∆∆C

m : i < m− 1; � < m− 1}.
Studying carefully the elements of those sets, we can see that:
∆∆C1

m = {δ}� distm−1,
∆∆C2

m = {δ},
∆∆C3

m = {δ}� ∆∆R
m−1 = {δ}� distm−2 ⊆ {δ}� distm−1,

∆∆C4
m = {δ} ⊕∆∆R

m−1 = {δ} ⊕ distm−2,
∆∆C5

m = {δ} ⊕∆∆C
m−1.

Les Cahiers du GERAD G–2003–79 8

δ+43

δ+53δ+32

δ+42δ+42δ+31

δ+12δ+31δ+41δ-11

δ+11δ +1δ+30δ -143

δδδδ -125332

54δ -11δ -1δ -42424231

1243δ -12δ -431231411

111 42 δ -5411130-11-10

δ+54δ+43δ+42δ54434212111

δ+43

δ+53δ+32

δ+42δ+42δ+31

δ+12δ+31δ+41δ-11

δ+11δ +1δ+30δ -143

δδδδ -125332

54δ -11δ -1δ -42424231

1243δ -12δ -431231411

111 42 δ -5411130-11-10

δ+54δ+43δ+42δ54434212111

Figure 4: Illustration of the ∆∆m-triangle partition of a 2-Golomb ruler of 5 marks

Therefore ∆∆C4
m ∪∆∆C5

m = {δ}⊕
(
distm−2 ∪∆∆C

m−1

)
= {δ}⊕dlistm−1. This concludes

the proof. �

Let us now introduce the dnextm structure that will be used later in some proof:

dnextm =
(
dlistm ∪

({0} 	 distm

) ∪ {0}), (4)

leading to:
dlistm =

(
dnextm−1 ⊕ {δ}

)
∪ {am−1}. (5)

3.1.4 The ddist structures. We also define the list structure ddistm to store all
differences of differences already present in the ruler, and its updatings is as follows:

ddistm ← ddistm−1 ∪ dlistm.

Before discussing the last structures, let us re-express the structure of the ∆∆-triangle
in terms of the structures we have introduced so far. Using the definitions of the structures
distm, listm, ddistm and dlistm, it is easy to see that the elements of the sub-triangles
∆∆L

m, ∆∆C
m and ∆∆R

m correspond to the sets ddistm−1, listm � distm−1 and distm−1

respectively, as illustrated on Figure 5 below.

3.1.5 The dcomp structures. At the mth iteration, the dcompm structure contains
the positions which are forbidden for the next mark to be defined, so that the first available
position am+1 for the (m + 1)th mark corresponds to a feasible 2-Golomb ruler. dcomp
contains the forbidden positions due to repetitions of δ-differences, and takes care of un-
avoidable repetitions of differences of differences. The updating of dcomp is quite complex
and can be decomposed in 3 steps that are described in the next theorem.

Theorem 1 Updating of the dcompm structure can be obtained by performing the follow-
ing three steps:

Les Cahiers du GERAD G–2003–79 9

LIST
m

DIST
m-1

LIST
m

DIST
m-1

DDIST
m-1

DLIST
mL

m∆∆ C
mm

C
m

R
m

∆∆∪=

∆∆∪∆∆=

−1DIST

DDIST
m-1

DLIST
mL

m∆∆ C
mm

C
m

R
m

∆∆∪=

∆∆∪∆∆=

−1DIST

Figure 5: Another view of the partition of the ∆∆m-triangle

Step 1 : dcompm ← distm ⊕
(
ddistm ∪ −ddistm

∪{−δ1,m, 0, δ1,m}
)

Step 2 : dcompm ← dcompm � (listm ∪ {0})
Step 3 : dcompm ← dcompm ∪ 1

2

(
dnextm ⊕ dnextm

)
. 1

Proof. Observe first that assuming ∆∆m to be known, all values of ∆∆m+1 are either
constant values that are independent of am+1, i.e., the elements of ∆∆R

m+1 and ∆∆L
m+1,

or values of the form δm−1,m ± a where a is independent of am+1, i.e., the elements of
∆∆C

m+1. Therefore the updating of dcompm must lead to a ∆∆m+1-triangle with the
minimum number of unavoidable repetitions among the values of ∆∆C

m+1.
We now justify each of the steps of the updating.

Step 1. Let us first verify the condition of Proposition 1: we must guarantee that, when
determining a value for am+1, we will have ∆∆C

m+1∩(∆∆R
m+1∪∆∆L

m+1) = ∅ or equivalently

that
(
listm+1 	 distm

)
∩

(
ddistm ∪ distm

)
= ∅. Let δδ be an element of ∆∆C

m+1: it
can be written

δδ = |δi,m+1 − δk�|, k < � < m + 1; i = 1, 2, . . . , m

where |δk�| ∈ distm. We must therefore forbid

|δi,m+1 − δk�| ∈ ddistm ∪ distm,

or equivalently

δi,m+1 − δk� �∈ ddistm ∪ −ddistm ∪ distm ∪ −distm,

1We assume here that 1
2
(S1 ⊕ S2) = {s = (s1 + s2)/2, s is a nonnegative integer, s1 ∈ S1, s2 ∈ S2}.

Les Cahiers du GERAD G–2003–79 10

or again
δi,m+1 �∈ distm ⊕

(
ddistm ∪ −ddistm ∪ {δ1,m,−δ1,m}

)

as distm ⊆ ddistm ∪ {δ1,m}. Moreover, δi,m+1 cannot take its value in distm, hence the
result:

δi,m+1 �∈ distm ⊕
(
ddistm ∪ −ddistm ∪ {δ1,m, 0,−δ1,m}

)
.

In other words, dcompm now contains all values that are forbidden for listm+1 in order
that ∆∆C

m+1 ∩ (∆∆R
m+1 ∪∆∆L

m+1) = ∅.
Step 2. Considering the updating formula (3) of listm+1, one observes that once δ is fixed,
all values of listm+1 are also fixed. Therefore, one must be cautious about the fact that
even if a value δ + a with a ∈ listm is a feasible value (i.e., does not belong to dcompm),
it does not necessarily entail that this is the case for all values δ +a′, a′ �= a, a′ ∈ listm. In
order to guarantee that this is indeed the case, we must perform the following operation:

dcomp← dcomp �
(
listm ∪ {0}

)
.

Step 3. Let us first examine how to avoid repetitions between absolute values of ∆∆C+
m ,

i.e. the elements of ∆∆C
m of the form δ + δ′, δ′ > 0 (i.e. ∆∆C4

m ∪∆∆C5
m), and the values of

∆∆C−
m , i.e. the elements of ∆∆C

m of the form δ + δ′′, δ′′ < 0 (i.e. ∆∆C1
m ∪∆∆C3

m). Observe
first that we can have two absolute values of ∆∆C−

m that are equal: take δ, δ′′1 , δ′′2 such
that δ + δ′′1 = −(δ + δ′′2) (e.g., δ′′1 = −1, δ′′2 = −3 and δ = 2: we have 2 - 1 = - (2 - 3)). We
can also have an absolute value of ∆∆C+

m equal to an absolute value of ∆∆C−
m : take δ, δ′

and δ′′ such that δ + δ′′ = −(δ + δ′), i.e., 2δ = −(δ′′ + δ′).
These repetitions are avoided by removing (i.e. adding to dcomp) the nonnegative

integer values of
1
2

(
dnextm ⊕ dnextm

)
,

where dnextm =
(
dlistm ∪

({0} 	 distm

) ∪ {0}), see (4). Observing that ∆∆C
m =

dlistm \ am−1 (see, e.g., the proof of Proposition 3) and the expression (5) of dlistm, it
is easy to verify that ∆∆C

m = dnextm + {δ} which completes the proof. �

3.2 Lower Bounds

Lower bounds are extremely useful in order to fathom nodes in the search tree of an implicit
enumeration scheme, i.e., when the lower bound of the current subproblem is larger than
or equal to the incumbent solution (i.e, the best known solution). However, accurate lower
bounds are difficult to compute, and as in the construction of Golomb rulers, too costly to
compute in order to efficiently fathom nodes (see, e.g., Hoa [6]). We have considered the
following 5 lower bound options. Let abest

M be an upper bound on the optimum length.

LB0. No lower bounds.

Les Cahiers du GERAD G–2003–79 11

LB1. Use the previous optimum values for 2-Golomb rulers: we must have am ≤ abest
M −a∗�

where a∗� is the (proved) optimum 2-Golomb value with � marks, � = M − m. As
optimal 2-Golomb rulers are only known for � ≤ 9, we can use this test only for
m ≥M − 9.

LB2. Build a database which considers three marks, their set of differences and δ-differences.
Consider that you want to add a new mark and determines the first available position
for this new mark, the second and third next following ones. Coming back to the
search of an optimum M 2-Golomb ruler, if am is the current mark, use the values of
this database in order to compute a lower bound for am+1, am+2, am+3 and possibly
curtail the search. A lot of computational effort (several days of computing) was
required to compute this database.

LB3. Considering the huge computational effort that would be required to enrich the
database used in LB2, we considered the weaker, but available, lower bounds of the
database built and used in the garsp algorithm [5] for the design of optimum Golomb
rulers. The database consists in the optimum values of Golomb rulers, the length M
of the ruler being given, as well as a set of forbidden distance values, for M ≤ 11.

LB4. No use of precomputed database, but an on-line computation of the minimum length
of the right sub-ruler [am+1, am+2, . . . , aM], say ãM−m, assuming the differences and
δ-differences already used in the left part of the ruler are forbidden. We must have
am ≤ abest

M − ãM−m.

3.3 Algorithm

We describe in this section the algorithm used to search for optimum 2-Golomb rulers. It
is a depth first search procedure which attempts to find mark positions, going from the
left to the right of the ruler. If at some step, the current length of the ruler is larger than
the lower bound, a backtrack is performed.
Algorithm o2golru

Initialization
a1 ← 0; a2 ← 1; m← 3;
Set the structures listm, distm−1, dlistm, ddistm−1 and dcompm;
Select the lower bound computation scheme: let LBm be the current lower bound;
Select the symmetry test ;
Compute a first upper bound on the optimum length abest

M (or set abest
M to +∞);

Current iteration
While m > 0 do

am ← first position available for an additional mark,
deduced from dcompm−1;

If symmetry test is true then perform a backtracking ;
If am ≥ abest

M − LBm then perform a backtracking ;
If m = M − 1 then

if we have a 2-Golomb ruler then

Les Cahiers du GERAD G–2003–79 12

update, if necessary, the incumbent 2-Golomb ruler ;
perform a backtracking

Update the sets listm, distm, dlistm, ddistm

and dcompm ;
m← m + 1;
Compute the lower bound LBm ;

In order to improve the speed of the o2golru algorithm, the various sets listm, distm,
dlistm, ddistm and dcompm have been implemented using bitmap structures. Then the
updating operations can be performed much faster and we illustrate it with the listm

structure. It is then easy to generalize it to the other structures converting the ⊕ to a shift
on the right, the � to a shift on the left, and the ∪ and ∩ set operations with the ∨ and
∧ logical operations.

Let us consider the updating of the list structure with a bitmap fashion: the ith bit is
equal to 1 if i measures a new difference. The updating of listm can then be restated as
follows in terms of bitmaps:

listm ← δ ∨ (listm−1 >> δ),

assuming δ is also represented using a bitmap structure with the δth bit equal to 1, and all
the other bits equal to 0.

4 Results

The algorithm o2golru has been implemented in C++ using the bitmap operations as
described in the previous section. In addition, several bitmap operations were specifically
designed for speeding up the updating of the dcomp structure, and their details can be
found in Solari [8]. We first report in Table 3 the best order 2 Golomb rulers that we were
able to find, running the program on a Pentium II, 550MHz. For M ≤ 9, the rulers are
optimum as the algorithm o2golru stops after a reasonable amount of time. For M = 9
proving the optimality required using 95 workstations (45 1GHz, 50 500 MHz, i.e., roughly
3.63 years on a single machine) and decomposing the search so as to simulate a parallel
implementation. For 10 ≤M ≤ 12, we were able to improve significantly the best previous
results, due to Baechler [1] (Table 4.13 p. 97 in his M.Sc. thesis) and Baechler, Haccoun
and Gagnon [2] for M = 10 and 11, and to Cardinal et al. [3] for M = 9 and 12. At
least for M = 6 and 8, there are two optimum order 2 Golomb rulers which are described
in Table 3. However, we have omitted the symmetrical rulers that can be deduced from
each optimum ruler, e.g., for M = 4 the symmetrical ruler of [0, 1, 9, 12] is [0, 3, 11, 12].
Although for M ≥ 10, the listed rulers are probably not optimum, we have compared in
Figure 6 the length growth of the Golomb and 2-Golomb rulers. For Golomb rulers, it is
well known that the length growth behaves similarly to M2 (curve labeled M ∗M on the
graph of Figure 6). While for M ≤ 9, length growth is reasonable and similar to M3, it is

Les Cahiers du GERAD G–2003–79 13

Previous Algorithm Optimum and best known rulers
marks results o2golru obtained with o2golru

3 4� [1] 4� 0, 1, 4
4 12� [1] 12� 0, 1, 9, 12
5 33� [1] 33� 0, 1, 4, 24, 33
6 79� [1] 79� 0, 2, 53, 58, 73, 79

0, 2, 53, 59, 74, 79
7 174� [1] 174� 0, 4, 42, 55, 156, 171, 174
8 375 [1] 345� 0, 3, 30, 39, 238, 264, 334, 345

0, 3, 30, 39, 248, 264, 344, 345
9 913 [1], 863 [2] 666� 0, 1, 37, 76, 91, 464, 492, 661, 666

10 1 698 [1] 1 329 0, 1, 4, 13, 40, 96, 368, 920, 1115, 1329
11 5 173 [1] 2 315 0, 1, 4, 13, 40, 96, 368, 1372, 1906, 2120, 2315
12 4 951 [2] 4 254 0, 7, 18, 87, 88, 130, 282, 902, 1422, 3231, 3754, 4254
13 - 6 997 0, 1, 4, 13, 40, 96, 213, 471, 1229, 3029, 4891, 6388, 6997
14 - 11 372 0, 1, 4, 13, 40, 96, 213, 471, 1004, 2276, 5138, 8399, 9960, 11372
15 - 18 975 0, 3, 81, 82, 90, 112, 287, 613, 1284, 2167, 3992, 8442, 14052,

17523, 18975
16 - 27 057 0, 3, 4, 13, 37, 109, 258, 558, 923, 1900, 3918, 6307, 13001,

17506, 24840, 27057
17 - 42 133 0, 2, 5, 14, 41, 103, 246, 536, 1140, 2388, 3833, 5552, 9641,

17986, 30510, 37338, 42133
18 - 61 964 0, 2, 5, 14, 41, 103, 246, 536, 1140, 2388, 3833, 5552, 9641,

15815, 34224, 44404, 55676, 61964
19 - 88 652 0, 4, 5, 16, 41, 100, 245, 552, 1181, 1975, 3570, 6123, 10397,

14818, 21978, 47833, 58968, 71518, 88652
20 - 124 588 0, 4, 5, 16, 41, 100, 245, 552, 1181, 1975, 3570, 6123, 10397,

14818, 21978, 34528, 61233, 79091, 107169, 124588

Table 3: Comparison of Baechler’s and o2golru’s 2-Golomb Rulers

much faster for larger value of M . Note however that the best optimum lengths may be
much smaller than the best known today.

We have also performed some tests to evaluate the usefulness of the lower bounds. It is
well known for the search of Golomb rulers that easy to compute lower bounds are helping
exact algorithms. Moreover, even if we forget the computational effort, sharp lower bounds
are difficult to compute. This is even more so for 2-Golomb rulers. We compare the 5 lower
bounds options described in Section 3.2 on the search of 3 rulers: the optimum ruler for
M = 7, the best ruler assuming some preselected values for the first three marks for M = 8,
and for the first 7 marks for M = 11. For each ruler, we provide the number of nodes
at given levels of the search tree as well as the overall number of leafs. We use the lower
bound LB1 as a reference for computing the percentages. As expected, the LB2 bound
is the most promising for small rulers with an efficiency that decreases drastically when
the number of marks is increasing. The LB3 bounds, even if very efficient for Golomb
rulers, are not very useful because they are too weak. Finally, the lower bound LB4 is
probably the most interesting one, even if not the most efficient one here for a relatively
small number of marks. It provides a lower bound computing scheme that can be easily
used for any mark without a significant change in the computational effort, and still a
significant impact on the efficiency in the pruning of the search tree.

Les Cahiers du GERAD G–2003–79 14

0

1000

2000

3000

4000

5000

6000

3 4 5 6 7 8 9 10 11 12

M*M*M*M/4
M*M
2-Golomb
Golomb

Figure 6: Length Growth of the Golomb and 2-Golomb rulers

Les Cahiers du GERAD G–2003–79 15

2-Golomb ruler with M = 7 marks (exhaustive search)

LB0 LB1 LB2 LB3 LB4

nodes (level 1) 174 (183 %) 95 95 (100 %) 95 (100 %) 95 (100 %)
nodes (level 2) 14 854 (172 %) 8 630 8 630 (100 %) 8 630 (100 %) 8 630 (100 %)
nodes (level 3) 94 131 (107 %) 87 986 87 986 (100 %) 87 986 (100 %) 87 986 (100 %)
nodes (level 4) 4 662 715 (106 %) 4 409 368 217 768 (5 %) 4 163 250 (94 %) 2 136 616 (48 %)
nodes (level 5) 16 605 539 (106 %) 15 689 175 404 180 (3 %) 12 962 277 (83 %) 5 781 263 (37 %)
leafs 12 022 274 (106 %) 11 359 257 246 399 (2 %) 8 878 477 (78 %) 3 724 097 (33 %)
overall # of nodes 33 399 687 (106 %) 31 554 511 965 058 (3 %) 26 100 715 (83 %) 11 738 687 (37 %)

cpu (sec.) 270 (107 %) 253 10 (4 %) 224 (89 %) 143 (56 %)

2-Golomb ruler with M = 8 marks (partial search: 0, 4, 24, . . .)

LB0 LB1 LB2 LB3 LB4

nodes (level 2) 1 (100 %) 1 1 (100 %) 1 (100 %) 1 (100 %)
nodes (level 3) 153 (100 %) 153 153 (100 %) 153 (100 %) 153 (100 %)
nodes (level 4) 18 160 (100 %) 18 160 18 160 (100 %) 17 947 (99 %) 18 160 (100 %)
nodes (level 5) 1 392 248 (103 %) 1 345 695 1 004 458 (75 %) 1 281 220 (95 %) 663 795 (49 %)
nodes (level 6) 4 849 696 (103 %) 4 702 898 3 181 092 (68 %) 4 183 570 (89 %) 2 198 371 (47 %)
leafs 3 475 456 (103 %) 3 375 211 2 195 544 (65 %) 2 920 145 (87 %) 1 552 584 (46 %)
overall # of nodes 9 735 714 (103 %) 9 442 118 6 399 408 (68 %) 8 403 036 (89 %) 4 433 064 (47 %)

cpu (sec.) 135 (103 %) 130 87 (67 %) 122 (94 %) 83 (63 %)

2-Golomb ruler with M = 11 marks (partial search: 0, 4, 24, 101, 300, 518, 855, . . .)

LB0 LB1 LB2 LB3 LB4

nodes (level 6) 1 (100 %) 1 1 (100 %) 1 (100 %) 1 (100 %)
nodes (level 7) 1 112 (101 %) 1 100 1 100 (100 %) 1 093 (99 %) 1 100 (100 %)
nodes (level 8) 145 721 (101 %) 144 299 144 299 (100 %) 141 730 (98 %) 96 365 (67 %)
nodes (level 9) 397 938 (101 %) 395 124 395 116 (100 %) 385 747 (98 %) 240 957 (61 %)
leafs 253 326 (101 %) 251 924 251 920 (100 %) 245 109 (97 %) 145 691 (58 %)
overall # of nodes 798 096 (101 %) 792 448 792 436 (100 %) 773 680 (98 %) 484 114 (61 %)

cpu (sec.) 64 (101 %) 64 64 (100 %) 64 (99 %) 46 (73 %)

Table 4: Lower Bound Impact on the Efficiency of the o2golru Algorithm

5 Conclusion

We have generalized the bitmap structures and updating relations used in the best exact
algorithms for finding optimum Golomb rulers, leading to new optimum or approximated
values for 2-Golomb rulers. Although we have been able to improve the previous results
on optimum 2-Golomb rulers, we believe that more efficient algorithms can be built with
a better understanding of the structure and relationships between the differences and the

Les Cahiers du GERAD G–2003–79 16

δ-differences. More work needs also to be done on finding sharper lower bounds that are
not too expensive to compute although it is still a critical issue for Golomb rulers, see
Meyer and Jaumard [7].

We would like to thank D. Haccoun for introducing us to the subject of self doubly
orthogonal codes and to the challenging problem of finding optimum 2-Golomb rulers.

References

[1] B. Baechler, Analyse et détermination de codes doublement orthogonaux pour décodage
itératif. M.Sc. thesis, Ecole Polytechnique de Montréal, Canada, 2000.

[2] B. Baechler, D. Haccoun, and F. Gagnon, “On the Search for Self-Doubly Orthogonal
Codes”, in IEEE Int. Symp. Inform. Theory - ISIT 2000 - Conference, Sorrento, Italy,
June 25-30, 2000, 292.

[3] Cardinal, C., D. Haccoun, F. Gagnon, and N. Batani, ”Turbo Decoding Using Con-
volutional Self Doubly Orthogonal Codes”, in ICC ’99 - 1999 IEEE International
Conference on Communications, pp. 113-117, 1999.

[4] A. Dollas, W.T. Rankin, and D. McCracken, “A New Algorithm for Golomb Ruler
Derivation and Proof of the 19 Mark Ruler”, IEEE Transactions on Information
Theory, Vol. 44, No. 1, pp. 379-382, Jan. 1998.

[5] In Search of the Optimal 20, 21 & 22 Mark Golomb Rulers,
http://members.aol.com/golomb20/.

[6] S.C. Hoa, Construction de règles de Golomb optimales. M.Sc. thesis, Ecole Polytech-
nique de Montréal, Canada, 1999.

[7] C. Meyer and B. Jaumard, ”Equivalence of some LP-based lower bounds for the
Golomb ruler problem”, submitted for publication.

[8] Y. Solari, Les règles de Golomb de degré 2. Undergraduate Research Project, Ecole
Polytechnique de Montréal, Canada, 2003.

