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Abstract

This paper deals with the uncertain class of continuous-time linear systems with
Markovian jumping parameters. A design method for a non fragile robust controller
for this class of systems is proposed when the uncertainties in the system matrices are
of norm bounded types. LMI based sufficient condition is developed. The methodol-
ogy used is mainly based on Lyapunov approach. A numerical example is presented to
show the usefulness of the proposed results.

Key Words: Jump linear system, Linear matrix inequality, Stochastic stability, state
feedback control, Norm bounded uncertainty.

Résumé

Ce papier traite de la classe des systémes incertains continus a sauts markoviens.
Une méthode de design d’un contréleur nonfragile et robust pour la classe de systemes
considérée est développée quand les incertitudes sont du type borné norme. Les
résultats développés sont en forme de LMI. La méthodologie repose sur la méthode
de Lyapunov. Un exemple numérique est présenté pour montrer l'importance des
résulats.
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1 Introduction

The stabilization problem is a basic control problem that has attracted a lot of researchers
and many papers on this subject have been reported in the literature. Its formulation
when using state feedback controller can be stated as follow: Given a dynamical linear
system how we can design a state feedback controller that stabilizes the closed-loop of the
considered system. When the system has uncertainties in its matrices the problem becomes
a robust stabilization one.

In practice there exist some systems that can’t be modelled by the classical linear model
that is widely used in the literature like for instance systems with abrupt changes in their
structures that may be caused by many factors like failures, repairs, sudden environmental
disturbance, changing subsystem interconnections, abrupt variations of the operating point
of a nonlinear system, etc. This class of systems can be modelled by the class of linear
system with Markovian jumping parameters which was introduced for the first time by
Krasovskii and Lidskii (Ref. [3]). The power of this class of systems to model different
practical systems, has been the catalyst of the development of this class of systems. For a
recent review on this class of systems and its applications we refer the readers to Boukas
and Liu (Ref. [1]) and the references therein on what it has been done on this class of
systems. Most of the problems like stability, stabilization, Hs, control, filtering and theirs
robustness have been tackled and some interesting results already exist in the literature.
For example we can refer the readers to Mao (Ref. [4]), Shi and Boukas (Ref. [5]), Shi et
al. (Ref. [6]), Wang et al. (Ref. [7]) and to the references therein.

Most of the contributions to the class of systems with Markovian jumping parameters
dealt with the design of controllers that cope with the system uncertainties but none of
them has addressed the robustness with regard to the controllers uncertainties that may
results from different causes like the errors in the electronic components for instance when
the controllers are implemented using electronic components. In their study Keel and
Bhattacharyya (Ref. [2]) have shown that the controller may be very sensitive or fragile
to the errors in the controller parameters even if the design take care of the system uncer-
tainties. To overcome this, the parameters variations should be included in the controller
design phase besides the system uncertainties. The goal becomes then how to design a
controller that is non fragile in the sense that the closed loop system tolerates a certain
changes in the controller parameters and at the same time the system uncertainties that
may affect the different matrices.

Our goal in this paper consists of designing a non fragile controller that can cope
with norm bounded uncertainties that may affect the class of continuous-time Markovian
jumping parameters we are considering in this paper and at the same time tolerate some
changes in the controller parameters. To the best of our knowledge this problem has never
tackled before for this class of systems. Our choice will be limited to conditions for robust
stochastic stabilization in the form of LMI that may be solved easily using the existing
convex optimization algorithms. The methodology using in this paper is mainly based on
Lyapunov method.
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The rest of the paper is organized as follows. In section 2, the stabilization problem is
stated. Section 3 gives the main results of the paper. They comprise results on stochastic
stability and the design method for a non fragile controller. In section 4, a numerical
example is presented to show the usefulness of the developed results.

The notations used in this paper is standard unless it is mentioned otherwise. For
symmetric matrices X and Y, X > Y (resp. X <Y') means that X —Y is positive-definite
(resp. negative-definite). I denotes the identity matrix with the appropriate dimension
that may be understood from the context. diag[.] denotes a block diagonal matrix.

2 Problem statement

Consider a continuous-time linear Markovian jumping parameters system defined in a
fundamental probability space (€2, F, P) with the following dynamics:

{ i(t) = A(re, t)z(t) + B(rou(t) (1)

where z(t) € R™ is the state vector at time, u(t) € R™ is the control at time ¢, A(r,t) is
the state matrix that is assumed to contain uncertainties and its expression is given by:

A(re,t) = A(re) + Da(ry) Fa(re, t) Ea(re)

with A(ry), Da(ry), Ea(ry) are known matrices, and F(ry,t) is the uncertainty of the
state matrix; and B(r) is the control matrix that is supposed to be known; {r;,t > 0}
is continuous-time homogeneous Markov process with right continuous trajectories taking
values in a finite set S = {1,2, ..., N} with the following stationary transition probabilities:

)\Z’jAt + O(At) 7 75 j

2
1+ XiiAt + o(At)  otherwise @)

Plrisas = jlri =1 = {

where At > 0, lima_q %Att = 0 and A;; > 0 is the transition probability from the mode i
to the mode j at time ¢ and \y; = — ijzlj#i Aij-

The uncertainty in the state matrix is assumed to satisfy the following for every r; € S:
FA(re,t)Fa(ret) <1 (3)

Let us now define some concepts that will be used in the rest of the paper.

For system (1), when F4(r¢,t) = 0, i.e we drop the system’s uncertainties, we have the
following definitions.

Definition 2.1 System (1), with Fa(r¢,t) =0 for allt > 0, is said to be
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(i) stochastically stable (SS) if there exists a finite positive constant T'(xo, 7o) such that
the following holds for any initial conditions (xg,10):

- [/ooo lz(#)[1*dt|zo, 70 | < T'(ro,wo); (4)

(ii) mean square stable (MSS) if

Jim Efjz(8)]* =0 (5)

holds for any initial condition (g, ro);

(iii) mean exponentially stable (MES) if there exist positive constants o and 3 such that
the following holds for any initial conditions (xg,70):

E [lz(t)l*[zo, 0] < alaolle™". (6)

Remark 2.1 From the definitions, we can see that the mean exponentially stable (MES)
implies the mean square stable (MSS) and the stochastically stable (SS).

When the system’s uncertainties are not equal to zero, the concept of stochastic stability
becomes robust stochastic stability and is defined for system (1), as follows.

Definition 2.2 System (1) is said to be

(i) robustly stochastically stable (RSS) if there exists a finite positive constant T (xg,10)
such that the condition (4) holds for any initial conditions (xg,r9) and for all admis-
sible uncertainties;

(i) robust mean exponentially stable (RMES) if there exist positive constants o and 3
such that the condition (6) holds for any initial conditions (xq,ro) and for all admis-
sible uncertainties.

Remark 2.2 From the definitions, we can see that the robust mean exponentially stable
(RMES) implies the stochastically stable (RSS).

Definition 2.3 System (1) with Fa(r¢, t) = 0 for all modes and for t > 0, is said to be
stabilizable in the SS (MES, MSQS) sense if there exists a controller such that the closed-
loop system is SS (MES, MSQS) for every initial conditions (zg, o).

When the uncertainties are not equal to zero, the previous definition is replaced by the
following one:

Definition 2.4 System (1) is said to be robustly stabilizable in the stochastic sense if there
exists a controller such that the closed-loop system is stochastically stable for every initial
conditions (xg,ro) and for all admissible uncertainties.

The problem we are facing in this paper consists of designing a state feedback controller
that robustly stabilizes the closed loop of the system.
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In general the state feedback control is given by:
u(t) = K(ry)z(t), for every 1, € S (7)

But in practice the implementation is quite different from this expression and there is
always uncertainties in the gain controller which means that the gain is given by:

K(T’t,t) = K(T‘t) +AK(T‘t,t> (8)
with AK (7, t) is given by:
AK(re,t) = p(re) F (re, t) K (1) (9)

where p(ry) is an uncertain real parameter indicating the measure of non fragility against
controller gain variations and Fg (r¢,t) is the uncertainty that will be supposed to satisfy
the following for every r; € S:

F(re,t)Fe(re,t) < T (10)

Our goal in this paper is to synthesize the gain for the state feedback controller with
the following form for every r, € S:

K(r) = v(r) BT (r)P(ry) (11)

where ~y(r;) is a real number and P(r;) is symmetric and positive-definite matrix for every
ry € S.

Plugging the controller in the dynamics we get the following closed loop dynamics:
i?t = [A(Tt,t) + B(’I"t)K(T’t,t)] Tt
= [AG) + D) Fa(re, ) Ea(re) + B(r) [1(r0) BT (r0) P(re)

() Fic (10, 1) (re) BT (r) P(r0)] | (12)

In the rest of this we will propose an LMI design approach to compute the controller
gain, P(r,) and ~(r¢) for each r; € S.

The following lemmas will be used in the rest of the paper. For their proofs, we refer
the reader to Boukas and Liu (Ref. [1]).

Lemma 2.1 Let D, F and E be real constant matrices of compatible dimensions with
FTF <1, then, the following:

1
DFE+E'F'D" <eDD" + ZETE
g

holds for any € > 0.
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Lemma 2.2 (Schur Complement) Let the symmetric matriz M be partitioned as

X v
w-(3 2)

with X, Z being symmetric matrices. We have

(i ) M is nonnegative-definite if and only if either

Z >0
Y =1.,7 (13)
X - L ZL] >0
or
X>0
Y = X1, (14)

Z—L3XLy>0

hold, where Ly, Ly are some (non unique) matrices of compatible dimensions.
(ii) M is positive-definite if and only if either

Z>0
{X —~YZYT >0 (15)

or

X>0
Ty-1 (16)
Z-Y ' X'Y >0

Matrices X — Y Z7YY'" is called the Schur complement X (Z) in M.

3 Main results

In this section we will develop the main results of this paper that are related to the robust
stability and the robust stabilization problems for the class of systems we are consider-
ing. All the results are LMI based which make them easily solvable using existing convex
optimization algorithms.

Let us now study the stability problem. For this purpose let the control u; = 0 for
t > 0. The following theorem give the result on robust stochastic stability.

Theorem 3.1 If there exist symmetric and positive-definite matrix P = (P(1),...,
P(N)) and a positive real number € 4 such that the following holds for every r, € S and for
all admissible uncertainties:

Ju(re) P(ry)Da(ry)

Dlr)P(r)  —eal | =0 (17)
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where Jy(r¢) = AT (r)) P(ry) + P (1) A(r) +Z§V:1 AriP(5) +5;1EX(T,5)EA(T,5), then system
(1) is robustly stochastically stable.

Proof: To prove this theorem, let us consider a Lyapunov function candidate with the
following expression:

V(a(t),re) = a ' (t)P(re)a(t) (18)

where P(r;) is symmetric and positive-definite matrix for every r; € S.

Let L be the infinitesimal generator of the Markov process (x(t),r;). Then, the expres-
sion of the infinitesimal generator is given by:

LV (a(t), 1) = Jim E[V(x(t+ h)art+h)lw(12 = w1y =] — V()

N
= & (OPrzt) + " (OPr)at) + > Mgz () P()z(t)
j=1
= :L‘T(t)AT(rt, t)P(ry)x(t) + xT(t)P(rt)A(rt, t)x(t)

N
+ Z )\rtij (t)P(j)l‘(t)
j=1

Using now the structure of the uncertainties we get:

T8 [A(re) + Da(re) Fa(re, ) Ea(ro)] " P(roa(t)

LV (xz(t),ry) =x
+ " (t)P(re) [A(re) + Da(ro) Fa(re, ) Ea(re)] =(t)

N
+ Z )\th:ET(t)P(j)JZ(t)

Jj=1

=aT(0) [AT(r)P(r) + Pr) Alro)| 2(t)
+ 22" (t)P(re) D a(r) Fa(re, t) Ea(re)a(t)

N
+2' ()Y APz (t) (19)
j=1

Notice that using Lemma 2.1, we have:

2xT(t)P(rt)DA(7“t)FA(rt, EA(ry)x(t) < EZIxT (t)P(rt)DA(rt)DX(rt)P(rt):U(t)
+eax (HEL(re) Ea(re)z(t)
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Using this relation, Eq. (19) becomes:

N
LV (x(t),r) < a'(t) [AT(r)P(r) + P(ro)A(re) + > Ay P() | 2(2)
j=1
+e w T ()P (r) D a(re)D A (re) P(re)x(t)
ez () EL(r)Ealry)z(t)
xT(t)Au(rt)x(t)

IN

N
Au(r) = AT(r)P(re) + P(r)A(r) + > AriP(j)
j=1

+ey T ($)P(re) Dare) Dy (re) P(re) + eaE ) (re) Ea(r).
Using (17) and Schur complement we conclude that A(r;) < 0 and therefore we get:
LV (z(t),r) < — IZIéiSHJ?T(t))\mm (—Ay (7)) z(t) (20)
with:

Combining this again with Dynkin’s formula yields

E[V(2(t),r)] — E[V(2(0), ro)] = E [ [ v o). rsian, roﬂ

0
< g (A E | [T (x5l 0,70

implying, in turn,

i Oonin(~AuE | [ 2T (0)a(5)dsl ()]

< E[V(2(0),r0)] — E[V(x(t),r)]

(
< E[V(x(0),70)]-

This yields that

'y E [V (z(0),70)]
E [/0 T (s)x(s)ds\(xo,ro)] < minres Do (— A (07

holds for any ¢ > 0. This proves Theorem 3.1. O

Remark 3.1 The condition we give in this theorem is a sufficient one which means that
if we are not able to find a set P = (P(1),..., P(N)) of symmetric and positive-definite
matrices that satisfies the condition (17), this doesn’t imply that the dynamical system is
not robustly stochastically stable.
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Let us now return to the initial problem and see how we can design a robust controller
that can handle the uncertainties in the system matrices and the controller gains. The
following theorem gives a result in the LMI framework that can be used to design a such
controller.

Theorem 3.2 If there exist a set of symmetric and positive-definite matriz X = (X (1),
.. X(N)) and positive scalars € 4(1¢), p(re), v(re) and a scalar ~y(ry) satisfying the follow-
ing LMI for every ry € S and for all admissible uncertainties:

J(rt) X(r))E)(re) 2(ro)B(re)  Sp(X)

EA(’I"t)X(Tt) —€AI 0 0
WB )0 et 0|0 2y
Sn(X) 0 0 (X)

J(ry) = X(rt)AT(rt) + A(re) X (re) +eaDa(re)Da(re) + 27(rt)B(rt)BT(rt) + A, X (1)

+v(re)B(re) BT (ry)
. EK(Tt)
:U’(Tt) - P(Tt)
v(ry) = ex(ry)p(re)

then closed-loop system is robustly stochastically stable with non fragility p(ry) under the
controller (7) with the gain K(r;) = v(r) BT (r) X ~1(ry).

Proof: Let P(r;) be a symmetric and positive-definite matrix and consider the following
candidate Lyapunov function be given as follows:

V(xy,re) = :ctTP(rt)wt (22)

The infinitesimal generator of the process {(z¢,7¢),t > 0} is given by:

LV (z¢,r¢) = lim E[[V(@t1n, reqen) = V(e re) e, ]
h—0 h

N
= i) P(ry)zy + x) P(ry)de + Z Arjzl P(5)z
j=1
= [[A(re, t) + B(ro) K (re, )] 2] " P(re)we + ] P(re) [A(r, 1) + B(r) K (re, )] 2

N
+ Mgzl PGz
j=1
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= m:AT(rt)P(rt):L"t + :E:P(rt)A(rt)xt + 2x:P(rt)DA(rt)FA(rt, ) EA(r)xy

N
2y(ri)x) P(ro)B(r) BT (ro) P(ro)x, + Y Az, P(j)

=1
+20(r)y(re)xy P(re)B(re) Fi (re,6) B (1) P(re) e (23)

Using now Lemma 2.1, we get:

2xtTP(rt)DA(7“t)FA(rt, ) EA(ry)m < 5,4(rt)xtTP(rt)DA(rt)DX(rt)P(rt):U(t)
+ 514135T (t)(rt)EAT(Tt)EA (re)xs

2p(ri)y(re)z) P(re)B(re) Fi (re, t) BT (r;) P (Tt)f'?t
< e (ro)p(ro)y? (r)z Pro) B(ro) BT (r) P(ry)ay
+ex (re)p(re)z] P(re) B(re) Fg (re, t) Fc(re, t) B (r) P(re)ay
< e (ro)plro)y? (ri)z Pro) B(ro) BT (r) P(ry)ay
Ty p

+ex(re)p(re)zy P(re) B(ro) BT (re) P(re)a (24)

Based on this, the previous expression of LV (z,r;) becomes:

LV (z¢,re) < xz—AT(rt)P(rt)xt + :L':P(rt)A(rt)zt + 6,4(rt):n:P(rt)DA(rt)DI(rt)P(rt)a?(t)

N
+eat (r)z) Bx(re) Ba(r)ze + ) Arjaf P(j)ze
7j=1
e (re)p(re)y* (re)x] P(r)B(re) BT (re) P(re)a
+er (r)p(ro)a! P(ry)B ( 1)BT () P(re)zy
+2y(re)x] P(re)B(re) BT (re) P(re)a
xtTF(rt) (25)

IN

with

T(re) = A (ro)P(re) + P(ri)A(re) + ea(re) P(r) Da(re) D (re) P(ry)
N
+ex (r)EA(r)Ea(r) + Y Aryi P(5)
j=1
e (r) p(re)y* (re) P(ro) B(r)) BT (re) P(ry) + e (re) p(re) P(re) B(re) BT (re) P(r)
+29(re) P(re) B(re) B () P(ry) (26)
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The expression I'(r;) is nonlinear in the design parameters (r;) and P(r;) for every
r¢ € S to cast it into in an LMI, let us put X (r;) = P~(r;) for each r; € S. Let us now
pre- and post-multiplying (26) by X (r;) we get:

X(r)Ar)X(r) = X(r)AT(re) + A(ro) X (re) + 6A(7“t)DA(Tt)D,Z(Tt)
+e, (r) X (ro) E4(ro) Ea(ri) X Z)\mX re) X 1 (5)X (re)
e (re)p(re)y* (r) B(re) BT (ry) + 5K(7“t)P(7‘t)B(7“t)BT(Tt)
+2fy(rt)B(rt)BT(rt) (27)
Letting S;,(X) and &, (X) be defined as follows:

{Sn () = [VAa X0,V Arer 21X ) Arren X0 Aw X)) )
X, (X) =diag[X(1),..., X(re = 1), X(r¢e +1),..., X(N)]

the term X (ry) [Zjvzl )\rth_l(j)} X (ry) can be rewritten as follows:

N
Z rej X ' ] X(re) = Apyry X (re) + Sr, (X)szl(X)Sth(X)

Using now (21) and Schur complement we get:

(J()Tt)( | X(Tt)f?l)(rt) Y(re)B(ry)  Sr(X)

EA ’I“tXT‘t —EA Tt] 0 0

()BT (1) 0 B N (29)
Sy, (X) 0 0 —X,(X)

where
J(re) = X (re) AT (14) + A(r) X (ry) + ea(re)Da(r) DA (ry)
+29(re) B(re) BT (1) + Ayr, X (1) + €xc(re)p(re) B(r) BT (ry) (30)

which is symmetric and negative-definite by hypothesis and therefore we conclude that
['(r¢) < 0 which implies:

LV (xy, ) < — riréiélmT(t)/\mm (=T(z)) x(t) (31)

Combining this again with Dynkin’s formula yields
t
E[V(z¢, )] —E[V(xo,7m0)] =E [/ LV(xs,rs)dsto,ro)]
0

< —min{nn(-TOE [ tzT<s>a:<s>ds\<wo,ro>] ,

€S
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implying, in turn,

ieiél{)\min(—F(i))}E [/0 z " (s)z(s)ds|(xo, o)
< E [V(.T(O), TO)] —E [V(‘T(t)v Tt)]
< E[V(2(0),70)]-

This yields that

E[V(x(0),70)]
mlnzes{)\mzn(_r(l))}

holds for any ¢ > 0. This proves that the closed-loop is stable under the chosen controller.
O

E [/Ot J:T(s)x(s)ds|(1:0,ro)] <

When the controller gains don’t have uncertainties the previous result becomes easier
and it is summarized in the following theorem:

Theorem 3.3 If there exist a set of symmetric and positive-definite matriz X = (X (1),
. X(N)) and positive scalar €4(ry), and y(ry) satisfying the following LMI for every
re € S and all admissible uncertainties:

J(rt) X(ro)E)(re)  Sp(X)
EA(Tt)X(Tt) —EAI 0 <0 (32)
S(X) 0 — &, (X)

where
J(r)) = X(ro)AT(re) + A(re) X (re) + eaDa(re)D A (re) + 2y(re) B(re) BT (1) + Aryr, X (1)

then closed loop system is robustly stochastically stable under the controller (7) with the
gain K (r¢) = y(r)) BT (r1) X 71 (ry).

Proof: The details of the proof is similar to the one of the previous theorem and follows
the same steps. |

4 Numerical example

In this section we will show the usefulness of the proposed results in this paper. For this
purpose let us consider a system with two modes and two components in the state vector.
Let the data in each mode be given by:
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e mode 1:
(1.0 —05
AL =gy 1.0]
[ 1.0 0.0
B =1 00 1.0}
[ 0.1
Ex(1) = [02 01]
e mode 2:
[ —02 0.5
A@) = | 0.0 —0.25]
[1.0 0.0
B2 =100 1.0}
[0.13
Ea(2) = [01 0.2 ]

Let the transition probability matrix between these two modes be given by:

—2.0 20
A‘[ 3.0 —3.0]

Letting €4(1) = €4(2) = 0.5, ex(1) = ex(2) = 0.1, and p(1) = 0.5, p(2) = 0.6 and
solving the LMI (21), we get:

0.4589  —0.0270
X = [—0.0270 0.3248 }
0.4589  —0.0270
X@) = [—0.0270 0.3248 }
~(1) = —0.1891
7(2) = —0.1310

which gives the following controller gains:
—3.6899  0.4446
0.4446 —4.1029

—0.2868 —0.0238
K@) = [—0.0238 —0.4052}'
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5

Conclusion

This paper deals with the class of uncertain continuous-time Markovian jump linear sys-
tems. The uncertainties we considered in this paper were of norm bounded type. A design
LMI method was developed to synthesize a state feedback controller that robustly stochas-
tically stabilizes the class under study. The condition we established is easily solvable using
existing convex optimization algorithms.
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