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Abstract

This work is devoted to the study of linear continuous-time systems with Markovian
jumping parameters and constrained control. The constraints used in this paper are
of nonsymmetrical inequality type. The approach of positively invariant sets is used
to obtain a sufficient condition of exponential stability for this class of systems with
constraints.

Résumé

Cet article porte sur l’étude de la commande des systèmes à sauts Markoviens
avec contraintes sur la commande. Ces contraintes sont assymétriques de type ine-
galité. Le concept d’invariance positif est utilisé pour établir des conditions suffisantes
pour garantir la stabilité exponentielle de la classe des systèmes étudiés. Un exemple
numérique est donné pour montrer la validité des résultats proposés.
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1 Introduction

Linear systems with Markovian jumping parameters offers the advantage to model a large
varieties of physical phenomena. This class of systems has been used successfully to model
manufacturing systems, power systems, economic systems, etc. We refer the reader, for
example to [5]-[15] for discrete-time and continuous-time systems. It is well known that
all these physical systems admit inputs limitation which are modeled by constraints of
inequality type. The regulator problem for linear systems with constrained control was
widely studied during these two decades. The tool of positive invariance was successfully
applied to almost all the deterministic systems with constrained control, see for example
[1], [3] and the references therein. However, to the best of our knowledge, the problem
of stochastic stability of linear systems with both Markovian jumping parameters and
constrained control has only been investigated for discrete-time systems [4]. In the previous
work [4], the notion of stochastic positive invariance is introduced and applied on the
common set between all the modes. However, this procedure in not followed in this paper
since the deterministic positive invariance is still applied for this common set. This solution
is based on the simple fact that, if the common set is positively invariant with respect to
each mode, then all the trajectories of the system with Markovian jumping parameters,
emanating from this set, can not leave it at any random jump. This technique enables us
to deal with non symmetrical constraints.

The aim of this paper is to study the regulator problem for continuous-time systems with
Markovian jumping parameters and constrained control by using the positive invariance
approach. In this work, non symmetrical constraints are considered. A sufficient condition
for exponential stability of the system is obtained.

This paper is organized as follows: The studied problem is presented in Section 2.
Section 3 deals with definitions and preliminary results as the necessary and sufficient
condition of positive invariance and the sufficient condition of exponential stability for the
free system. In Section 4, these results are used to design a law control ensuring to the
control to remain admissible. The exponential stability is also guaranteed. An algorithm
together with an example illustrating this design is also presented.

2 Problem Formulation

We consider the continuous-time linear system with Markovian jumping parameters defined
by:

(Σ) :
{
ẋ(t) = A(r(t))x(t) +B(r(t))u(t)
x(0) = x0, r(0) = r0

(1)

Where x ∈ Rn is the state vector, u ∈ Rm is the control vector. The system state is a
function of the discrete parameter r(t) which is a continuous-time homogeneous Markov
process with finite discrete state space S = {1, 2, . . . , s} .
The previous equation can be regarded as the result of the following s equations:

ẋ(t) = Aαx(t) +Bαu(t) , 1 ≤ α ≤ s (2)
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switching from one to the others according to the evolution of the Markov process.
The transition probability of r(t) is defined by:

P [r(t+ h) = β|r(t) = α] =
{
λαβh+ o(h) if, α �= β
1 + λααh+ o(h) if, α = β

(3)∑
β

λαβ = 0;λαβ ≥ 0 if, α �= β

The λαβ ’s are the transition probability rates from the αth mode to the βth mode. The
set of constraints for the control u(t) is given for each mode α by:

Ω(α) =
{
u ∈ Rm/− q2(α) ≤ u ≤ q1(α); q1(α), q2(α) ∈ Rm+

}
(4)

In this paper, we consider the problem of finding a controller which respects the constraints
and exponentially stabilizes the system Σ by using a control law of the form:

u(t) = F (r(t))x(t) (5)

The closed-loop system is given by,

ẋ(t) = (A(r(t)) +B(r(t))F (r(t))x(t) = Ac(r(t))x(t) (6)

3 Preliminary Results

In this section, a new exponential stability condition of the system (6) is given in the
unconstrained case. We first begin by recalling the definition of exponential stability as
known in the literature.

Definition 1 [14] The system (6) is said:

1. stochastically stable if there exists a scalar η such that: E
[∫∞

0 ‖x(t)‖2dt
] ≤ η(r0, x0).

2. exponentially stable if there exists two scalars η > 0, ρ > 0 such that: E [‖x(t)‖] ≤
ηe−ρt.

3. Mean square stable if limt→∞E[‖x(t)‖2] = 0.

Theorem 1 [10] The unconstrained system (6) is stochastically stable if there exist sym-
metric and positive definite matrices P (α), α ∈ S (P (α) 
 0), such that the following
holds:

AT
c (α)P (α) + P (α)Ac(α) +

∑
β∈S

λαβP (β) ≺ 0 for all α ∈ S (7)

Note that this result was obtained by using the quadratic Lyapunov function and is a
necessary and sufficient condition of mean square stability [9]. A second result can also be
obtained by using a non quadratic Lyapunov function.
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Theorem 2 The unconstrained system (6) is exponentially stable if for all α ∈ S there
exist positive vectors w(α) ∈ Rn+;α = 1, . . . , s such that:

Âc(α)w(α) +


 s∑

β=1

λαβ max
1≤i≤n

(
wi(α)
wi(β)

)
w(α) < 0;∀α ∈ S (8)

with,

Âc(α)(i, j) =
{ |Ac(i, j)(α)| if, i �= j
Ac(i, i)(α) if, i = j

(9)

Proof: Consider the following Lyapunov function candidate:

V (x(t), r(t)) = maxi
|xi(t)|
wi(r(t))

(10)

The infinitesimal operator is computed by:

AV (x(t), α) = lim
h→0

1
h
{E [V (x(t+ h), r(t+ h))|r(t) = α] − V (x(t), α)}

= lim
h→0

1
h

{
E

[
maxi

|xi(t+ h)|
wi(r(t+ h))

|r(t) = α
]
− V (x(t), α)

}

We use the fact that,

xi(t+ h) = xi(t) + h [Ac(r(t))x(t)]i + oi(h)
= [L(r(t), h)x(t)]i + oi(h)

where L(r(t), h) = In + hAc(r(t)), In is the n× n identity matrix and oi(h) a scalar which
satisfies limh→0

oi(h)
h = 0. It follows that one can write,

AV (x(t), α) ≤ lim
h→0

1
h

{
E

[
maxi

| [L(α, h)x(t)]i |
wi(r(t+ h))

|r(t) = α
]
− V (x(t), α)

}

Taking (3) into account, one obtains,

AV (x(t), α) ≤ lim
h→0

1
h



∑
β

hλαβmaxi
| [L(α, h)x(t)]i |

wi(β)

+maxi
| [L(α, h)x(t)]i |

wi(α)
− V (x(t), α)

}

Let lij(α, h), i = 1, . . . , n, j = 1, . . . , n be the components of matrix L(α, h), that is,

lij(α, h) =
{

1 + hAc(i, j)(α) if, i = j
hAc(i, j)(α) if, i �= j (11)
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It follows that,

AV (x(t), α) ≤
∑
β∈S

λαβmaxi
|xi(t)|
wi(β)

+limh→0
1
h

{
maxi

∑
j |lij(α, h)||xj(t)|

wi(α)
− V (x(t), α)

}

≤
∑
β∈S

λαβmaxi
wi(α)
wi(β)

V (x(t), α) + limh→0
1
h
υ(h)V (x(t), α)

With υ(h) = maxi

∑
j |lij(α, h)|wj(α)

wi(α)
− 1

Using (11),

∑
j

|lij(α, h)|wj(α)
wi(α)

=
∑
j �=i

h
|Ac(i, j)(α)|
wi(α)

wj(α) + |1 + hAc(i, i)(α)|

=
∑
j �=i

h
|Ac(i, j)(α)|
wi(α)

wj(α) + 1 + hAc(i, i)(α), for a small h

According to (9), this latter enables one to have,

AV (x(t), α) ≤


∑
β∈S

λαβmaxi

(
wi(α)
wi(β)

)
+maxi

(
Âc(α)w(α)

)
i

wi(α)


V (x(t), α) (12)

Pose,

ρ(α) = −


∑
β∈S

λαβmaxi

(
wi(α)
wi(β)

)
+maxi

(
Âc(α)w(α)

)
i

wi(α)


 (13)

Note that if condition (8) holds, ρ(α) > 0. This leads to,

AV (x(t), α) < −ρ(α)V (x(t), α) (14)

That is,
E [AV (x(t), α)] < −ρE [V (x(t), α)]

with
ρ = min

α∈S
ρ(α)

Applying the Dynkin’s formula,

V (x(t), r(t)) = V (x0, r0) +
∫ t

0
AV (x(t), r(s))ds
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one obtains,

E [V (x(t), r(t)] ≤ E [V (x0, r0] +
∫ t

0
E [AV (x(s), r(s))] ds

< E [V (x0, r0]− ρ
∫ t

0
E [V (x(s), r(s))] ds

By virtue of Gronwall lemma, we have,

E [V (x(t), r(t)] < e−ρtE [V (x0, r0)] (15)

Finally, (15) implies that E [‖x(t)‖] < ηe−ρt with:
‖x(t)‖ = maxi |xi(t)| and η = maxα∈S miniwi(α)E [V (x0, r0)] ∇∇∇
Remark 1 One can note the similarity between the results of Theorem 1 and Theo-
rem 2. In case of n = 1, condition (8) becomes ac(α) +

∑
β λαβ

w(α)
w(β) < 0, where the term∑

β λαβ
w(α)
w(β) is not necessarily positive and condition (7), ac(α) + 1

2

∑
β λαβ

p(β)
p(α) < 0. That

is, condition (8) is more restrictive than (7), however, it needs the computation of only s n
parameters instead of s n2 parameters for (8). Besides, if s = 1, condition (8) becomes
Âcw < 0 which is a sufficient condition of asymptotic stability [2].
In the next part, we recall a result obtained by using the concept of positive invariance for
the constrained regulator problem. For the details see [2].
Consider the following linear continuous-time stationary system:

ż(t) = Hz(t) (16)

Where the state z ∈ Rm is subject to the constraints of the form,

D =
{
z ∈ Rm| − θ2 ≤ z ≤ θ1 ; θ1, θ2 ∈ Rm

+

}
(17)

Definition 2 A domain D ⊂ Rm is said to be positively invariant w.r.t the system (16)
if, for any initial state z0 ∈ D, the trajectory z(z0, t) ∈ D, ∀t ≥ 0.

Theorem 3 [2] The domain D is positively invariant w.r.t system (16) if and only if the
following condition holds:

H̃θ ≤ 0 (18)

where matrix H̃ and vector θ are given by,

H̃ =
[
H1 H2

H2 H1

]
, θ =

[
θ1
θ2

]
(19)

H1 =
{
H1(i, i) = H(i, i) , if i = j
H1(i, j) = sup [H(i, j), 0] , if i �= j ,

H2 =
{
H2(i, i) = 0 , if i = j
H2(i, j) = sup [−H(i, j), 0] if i �= j
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4 Main Results

In this section, the obtained results in the previous section allow us to deal with the problem
of continuous-time systems with Markovian jumping parameters and constrained control
as presented in the first section.

Recall that the control law is given by (5) and each domain Ω(α) generates by this
feedback law a polyhedral domain in the state space K(α) defined by:

K(α) =
{
x(t) ∈ Rn/− q2(α) ≤ F (α)x ≤ q1(α); q1(α), q2(α) ∈ Rm+

}
(20)

Let Kc be the common set of all the modes,

Kc =
⋂
α∈S

K(α) (21)

The closed-loop system is given by (6). Let us introduce the following change of variable,

z(t) = F (α)x(t) , α ∈ S (22)

In this case, for each α ∈ S the domain K(α) is transformed to the following domain,

D(α) =
{
z ∈ Rm| − q2(α) ≤ z ≤ q1(α) , q1(α), q2(α) ∈ Rm

+

}
Let,

Dc =
⋂
α∈S

D(α)

= {z ∈ Rm| − θ2 ≤ z ≤ θ1}
where,

θj = min
α∈S

qj(α) ; j = 1, 2 ; θ =
[
θ1
θ2

]
(23)

According to (22), we obtain,

ż(t) = F (α) [A(α) +B(α)F (α)]x(t) (24)

Then, if there exists matrix H(α) ∈ Rm×m, for each α ∈ S such that:

F (α) [A(α) +B(α)F (α)] = H(α)F (α) (25)

the dynamical system (6), for each mode r(t) = α , (α ∈ S), is transformed by the use of
(22) to the following dynamical system:

ż(t) = H(α)z(t) (26)
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Note that the variable z(t) is identical to the control u(t) while the set D(α) is the same
as the set of constraints Ω(α). At this step, if domain Dc is positively invariant w.r.t
system (26) for each mode α ∈ S, then the control (5) will be always admissible, i.e.,
u(t) ∈ Ω,∀t ≥ 0 and therefore, the linear behaviour of the system in the closed-loop (6)
remains valid.

We now state the main stability result of this paper.

Theorem 4 If, for each α ∈ S, there exist matrices H(α) ∈ R
m×m and positive definite

matrices P (α) ∈ R
n×n, such that:

(i)

F (α) [A(α) +B(α)F (α)] = H(α)F (α), (27)

(ii)

H̃(α)θ ≤ 0, (28)

(iii)

AT
c (α)P (α) + P (α)Ac(α) +

∑
β∈S

λαβP (β) ≺ 0 (29)

where θ is given by (23) and H̃ by (19).
Then, system (1) with (5) is stochastically stable while the control is admissible ∀x0 ∈ Kc.

Proof : Equation (27) allows to transform system (6) for each mode r(t) = α, α ∈ S to
system (26). According to Theorem 2, condition (28) guarantees the positive invariance of
domain Dc w.r.t system (26). That is, the positive invariance of domain Kc w.r.t system
(6) is also guaranteed for each mode r(t) = α, α ∈ S. Further, by virtue of Theorem 1,
condition (29) ensures the stochastic stability of the system in the closed-loop (6) which is
always valid since the control by state feedback is always admissible. ∇∇∇
Corollary 1 If , for each α ∈ S, there exist matrices H(α) ∈ R

m×m and vectors w(α) ∈
R

n+, such that conditions (27), (28) and (8) hold, then, system (1) with (5) is exponentially
stable while the control is admissible ∀x0 ∈ Kc.

Proof : Obvious.
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Comment 1

• It is worth noting that two possibilities can be followed to use the results of Theorem 4
and Corollary 1. The first consists in computing feedback controls dependent of
the jumping process by using the LMI (29), computing matrices H(α) according
to (27) and testing (28) for each mode. The second consists in giving s matrices
H(α) according to (27), computing the feedback controls by resolving equations
(28) which lead to gain feedback initially independent of the jumping process. The
obtained matrices in closed-loop are then used to compute s definite positive matrices
P (α) for (29) (i.e., s n2 parameters) or only s positive vectors w(α) for (8) (i.e., s n
parameters). The resolution of the LMI (29) is available in MATLAB.

• Note that no assumption on the stabilizability of each mode is needed even in presence
of saturation. This means that if the stochastic stability is ensured for the system
with Markovian jumping parameters, one or more mode can always be unstable
with admissible controls ensured by (28). For the unstable mode, the resolution of
equation (27) leads to a spectrum in closed-loop composed with m stable eigenvalues
of matrix H and n−m non necessary all stable eigenvalues of matrix A (see [1]).

The steps of constructing such controllers is summarized in the following algorithm.

Algorithm 1

Step 1: Compute matrices H1(α) and H2(α) satisfying (28) by resolving the following
linear programming for each α ∈ S:

(LP1)




max ε/[
H1 H2

H2 H1

][
θ1

θ2

]
≤ −ε

[
ϕ1

ϕ2

]

ε > 0
H1(i, i) < 0, H2(i, i) = 0;H1(i, j) > 0, H2(i, j) > 0, i �= j

(30)

where ϕ1 and ϕ2 are design positive vectors. If matrices H(α) = H1(α)−H2(α) are
obtained according to the required assumptions of the resolution of equation (27)
(i.e., σ(H)(α)

⋂
σ(A(α)) = ∅) continue, else change ϕ1 and ϕ2.

Step 2: Compute the gain matrices F (α) solutions of equations (27) by using the method
given in [1] and matrices Ac(α) of the system in closed-loop. Go to Step 3 or Step 4.

Step 3: Compute matrices P (α) solutions of the LMI’s (29). If the LMI’s are not feasible
go to Step 1 to modify the vectors ϕ(α).

Step 4: Compute vectors w(α) solution of the following linear programming for each α ∈
S:
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(LP2)




max η/

Âc(α)w(α) +
(∑s

β=1 λαβΓ(α, β)
)
w(α) < −η ψ(α)

w(α) ≤ Γ(α, β)w(β);∀β ∈ S
η > 0

(31)

where vectors ψ(α) and matrix Γ are design positive parameters with Γ(i, i) = 1; Γ(i, j)
Γ(j, i) > 1; i = 1, . . . s; j = 1, . . . s. If the problem is feasible stop, if not go to Step 1 to
obtain a new matrix H.

Example 1 Consider the following linear continuous-time system with Markovian jump-
ing parameters with 2 modes:

• mode 1: A(1) =
[

2 1.5
0 −2.5

]
, B(1) =

[
1
−1

]
; q1(1) = 5, q2(1) = 10

• mode 2: A(2) =
[

3 0
0.1 −2.1

]
, B(2) =

[
0.5
1

]
; q1(2) = 10, q2(2) = 20

The Markovian process is described by its matrix transition given by:

Π =
[ −2 2

3 −3

]

For this example, we have n −m = 1. The resolution of the linear programming (LP1)

leads to the following scalars H(α) , α = 1, 2 with ϕ(1) =
[

200
2.4

]
and ϕ(2) =

[
155
22

]
:

H(1) = −0.495 , H(2) = −1.97

α = 1, 2.
The resolution of the algebraic equations XA + XBX = HX gives the following gain
matrices F (α) and Ac(α):

F (1) =
[ −3.7425 −1.2475

]
, F (2) =

[ −9.94 0
]

Ac(1) =

[
−1.7425 0.2525
3.7425 −1.2525

]
, Ac(2) =

[
−1.97 0
−9.84 −2.1

]

The resolution of the LMI’s (29) gives the following matrices:

P (1) =
[

1.6502 0.3849
0.3849 0.6423

]
, P (2) =

[
2.2398 −0.455
−0.455 0.4630

]
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Further, the exponential stability condition (8) of Corollary 1 is also satisfied with

w(1) =
[

0.585 3
]T
, w(2) =

[
0.571 2.67

]T

That is,

maxi

(
[Âc(1)w(1)]i
wi(1)

)
+

∑
β∈S

λ1βmaxi

(
wi(1)
wi(β)

)
= −0.297

maxi

(
[Âc(2)w(2)]i
wi(2)

)
+

∑
β∈S

λ2βmaxi

(
wi(2)
wi(β)

)
= −0.171

The results of simulation are given as follows: Figure 1 presents the common set of positive
invariance and stochastic stability Kc with a trajectory of the system, Figure 2 concerns
the corresponding jumping Markovian process while Figure 3 deals with the admissible
control.

−6 −4 −2 0 2 4 6
−20

−15

−10

−5

0

5

10

15

20

Figure 1: This figure presents the set Kc of positive invariance and exponential stability of
the system with Markovian jumping parameters and constrained control.
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Figure 2: This figure presents the evolution of the jumping Markovian process of the
system.
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Figure 3: This figure presents the evolution of the control of the system with Markovian
jumping parameters and constrained control.
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5 Conclusion

In this paper, a sufficient condition of exponential stability is obtained by using the non
quadratic Lyapunov function as is usually the case in the problems with constraints of
inequality type. The result obtained in [2] is used to guarantee the positive invariance of
the common domain Kc w.r.t all the mode of the system. However, the quadratic condition
of stochastic stability can also be used leading to a useful algorithm based on the resolution
of the LMI’s (29) available in Matlab. The complete formulation of the main result of this
paper under LMI’s is now under consideration. Finally, an illustrative example is also
presented.
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