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auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds québécois de la
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Abstract

We present stochastic approximation algorithms for computing the locally optimal
policy of a constrained average cost finite state Markov Decision process. Because the
optimal control strategy is known to be a randomized policy, we consider here a pa-
rameterization of the action probabilities to establish the optimization problem. The
stochastic approximation algorithms require computation of the gradient of the cost
function with respect to the parameter that characterizes the randomized policy. This
is computed by novel simulation based gradient estimation schemes involving weak
derivatives. Similar to neuro-dynamic programming algorithms (e.g. Q-learning or
Temporal Difference methods), the algorithms proposed in this paper are simulation
based and do not require explicit knowledge of the underlying parameters such as
transition probabilities. However, unlike neuro-dynamic programming methods, the
algorithms proposed here can handle constraints and time varying parameters. Nu-
merical examples are given to illustrate the performance of the algorithms.

Résumé

Nous considérons le problème du contrôle optimale des châınes de Markov com-
mandées (MDP) avec des contraintes. Sous la randomisation des actions, le problème
est parametrisé et peut se ré-écrire en terme d’un problème d’optimisation non-linéaire
avec des contraintes non -linéaires, pour lequel on applique l’approximation stochas-
tique. Celle-ci a besoin de calculer certains gradients par rapport aux paramètres de
contrôle. Nous proposons une nouvelle méthode pour l’estimationde tels gradients avec
des dérivées faibles. Notre méthode est robuste (comme les algorithmes de Q-learning
et des differences temporales) et ne suppose pas que les probabilités de transition soient
connues. Par ailleurs, notre méthode peut être appliquée lors qu’il y a des contraintes,
contrairement aux autres méthodes mentionées. Nous présentons aussi des exemples
numériques pour illustrer la performance de nos algorithmes.

Acknowledgments: This work was done while the first author was on leave at the
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from NSERC, Canada and FCAR, Québec.
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1 Introduction

This paper presents stochastic approximation based algorithms for computing the optimal
policy of a constrained average cost finite-state Markov Decision Process (MDP). Because
the optimal control strategy of such problems is known to be a stationary randomized
policy (refer to Section 1.2), in this work we focus on randomized policies to pose an op-
timization problem for the solution of the MDP. The problem can be stated in general
in terms of any convenient parameterization of the action probabilities, so that the opti-
mization variable is a vector-valued parameter. The stochastic approximation algorithms
require computation of the gradient of the cost function with respect to the parameter
that characterizes the class of randomized policies. This is computed by novel simulation
based gradient estimation schemes involving weak derivatives. Several methods exist to
compute derivative estimators for stochastic processes. Under Lipschitz continuity of the
sample performance, it is usually the case that expectations and derivatives can be in-
terchanged (using the dominated convergence theorem) so that the sample derivative is
unbiased. This approach is the basis for the “pathwise” estimation techniques such as
Infinitesimal Perturbation Analysis (IPA) [11]. In the case of Markov chains, infinitesimal
changes in the transition probabilities give rise to jumps in the next state of the process
and often implies that discontinuities occur. In this case the pathwise analysis has been
extended [9] using the concept of the “realization perturbation factors”, which are equiva-
lent to the weak derivative formulation via the Poisson equation in [23]. In this paper we
use a robust version of the weak derivative estimators that does not require knowledge of
the underlying distribution. Similar to neuro-dynamic programming algorithms [7] (e.g.,
Q-learning and Temporal Difference methods), the algorithms proposed in this paper are
simulation based and do not require explicit knowledge of the underlying parameters of
the MDP such as transition probabilities (or equivalently invariant distributions). How-
ever, unlike Q-learning or Temporal Difference methods, the algorithms proposed here
straightforwardly can handle constraints.

1.1 The canonical control problem

To avoid excessive technicalities, our setting is an average cost, unichain, finite state Markov
decision process. Consider a unichain Markov Decision Process (MDP) {Xn} with finite
state space S, as will be defined shortly. Throughout, n = 0, 1, . . . denotes discrete time.
When the system is in state i ∈ S, a finite number of possible actions in the set A(i) can
be taken, where A = ∪i∈SA(i) is assumed to be finite. The evolution of the system is
Markovian, and the kernel A(u) depends on the action u ∈ A(i), that is:

P[Xn+1 = j|Xn = i, un = u] = Aij(u), u ∈ A(i). (1)

Denote by Fn the σ-algebra generated by (X1, . . . , Xn, u1, . . . , un−1). The filtration of
the process is the increasing sequence of σ-algebras {Fn, n = 1, 2, . . .}. The most general
model for control strategies is the case where un is a random function whose distribution
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depends on the observed trajectory of the process, that is, where un is measurable with
respect to Fn (or “adapted” to the filtration). These are called the admissible policies:

U = {u = {un} : un is measurable w.r.t. Fn, ∀n ∈ N},
which basically means that un is a (possibly random) function of (X1, . . . , Xn, u1, . . . , un−1).
By unichain [25, pp.348] we mean that every policy where un is a deterministic function
of Xn consists of a single recurrent class plus possibly an empty set of transient states.

The cost incurred at stage n is given by a known bounded function c(Xn, un) ≥ 0 where
c : S × A → R. For any admissible policy u ∈ U define the average cost

Jx0(u) = lim
N→∞

sup
1
N

Eu

[
N∑

n=1

c(Xn, un) | X0 = x0

]
. (2)

The aim is to compute the optimal policy u∗ ∈ U that satisfies

Jx0(u
∗) = inf

u∈U
Jx0(u) ∀x0 ∈ S (3)

i.e., u∗ has the minimum cost for all initial states x0 ∈ S.
Denote by U0 the class of randomized stationary Markovian policies, comprising all

elements u that are stochastic processes (adapted to {Fn}) of the form:
U0 = {u = (un, n ∈ N) : ∀n, un ∼ µ(Xn), µ : x→ M(A(x)), ∀x ∈ S}

where for any set G, M(G) denotes the set of probability measures over G. In other words,
a randomized stationary policy is completely determined by a (conditional) distribution
µ(x) on A(x), x ∈ S. By the unichain assumption, the limit in (2) exists for any x0 ∈ S
and u ∈ U0, and the limit is independent of x0.

Unconstrained MDP. It is well known [3] that the optimal stationary policy for (3) is a
non-randomized Markovian policy, i.e., u∗n = u(Xn) ∈ A(Xn) with u being a deterministic
mapping (equivalently M is a degenerate probability measure). Thus the solution of the
MDP (3) is obtained by determining the function u(i) ∈ A(i), i ∈ S which selects the
action to be taken at each state. Such policies are called “pure policies”.

Constrained MDP. Motivated by several problems in telecommunication network opti-
mization, we consider the MDP (3) subject to L average constraints of the form

lim
N→∞

sup
1
N

Eu

[
N∑

n=1

βl(Xn, un)

]
≤ γl, l = 1, . . . , L (4)

where βl : S × A → R are known bounded functions and γl are known constants. It is
well known [3] that if L > 0 then the optimal policy u∗ ∈ U . Indeed, the optimal policy is
randomized for at most L of the states.
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Remark: Since we are considering unichain MDPs, the above average constraints are
equivalent to the sample path constraints [27]

Pu

[
lim sup

N→∞
1
N

N∑
n=1

βl(Xn, un) ≤ γl
]
= 1

Such sample path constraints are often used in admission control of telecommunication
networks to depict quality of service (QoS) constraints, see [26, 28].

We consider a “simulation” based system. By simulation based we mean that although
the transition probabilities A(u), u ∈ A(i), i ∈ S of the underlying system are unknown,
the system can be observed under any choice of control actions u = {un}. In other words,
the on-line learning methods that we study must be adapted to the filtration {Fn;n ≥
0}. In this paper we derive and implement a new simulation based method using ideas
in stochastic discrete event systems for devising descent algorithms of the average cost
function (2). The resulting algorithms are provably convergent to a Kuhn Tucker point,
see Section 1.4 for a detailed list of contributions.

1.2 Parameterized Randomized Policies

Randomized policies yield a convenient parameterization of the above model [25]. Define
the action probabilities θ parameterized by ψ as:

P[un = a|Xn = i] = θia(ψ), a ∈ A(i), i ∈ S (5)

where
∑

a∈A(i)

θia(ψ) = 1 for every state i ∈ S.

Here ψ ∈ Ψ is a finite dimensional vector which parameterizes the action probabilities θ.
Ψ is some suitably defined compact subset of the Euclidean space. The unconstrained
problem with pure optimal policy mentioned above is a degenerate case where for each
i ∈ S θia = 1 for some a ∈ A(i).

In this paper we focus on two possible parameterizations ψ:

1. Canonical Coordinates ψ = θ. The most obvious parameterization of the action
probabilities θ is to choose ψ = θ. Thus ψ = {ψi} = {θi}, i ∈ S is the set of action
probability vectors (ψia; a ∈ A(i)) satisfying (5). Let θ ∈ Θ where Θ denotes the compact
set

Θ =

θi ∈ [0, 1]A(i) :
∑

a∈A(i)

θia = 1; i ∈ S
 . (6)

A disadvantage of the canonical parameterization is that the gradient algorithms we will
use to compute estimates of θ need to cope with both equality and inequality constraints
in (6).
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2. Spherical Coordinates ψ = α. Suppose without loss of generality that A(i) =
{0, . . . , d(i)}. A novel solution was introduced in [16] for Hidden Markov Model parameter
estimation through the use of spherical coordinates. Adapted to our MDP problem, it
reads as follows: Fix the control agent i ∈ S. To each value θia, a ∈ A(i) associate the
values λia =

√
θia. Then (5) yields

∑
a∈A(i) λ

2
ia = 1 and λia can be interpreted as the

coordinates of a vector that lies on the surface of the unit sphere in Rd(i)+1, where d(i)+1
is the size of A(i). In spherical coordinates, the angles are αip, p = 1, . . . d(i), and the
radius is always of size unity. If, for instance, d(i) = 2 (i.e., there are 3 actions), then

λi0 = cos(αi1), λi1 = sin(αi1) cos(αi2), and λi2 = sin(αi1) sin(αi2), (7)

(because the radius is one). For the general case where d(i) ≥ 2 in A(i) = {0, . . . , d(i)},
the spherical coordinates parameterization α reads as follows: λia =

√
θia and

λia =


cos(αi,1) if a = 0
cos(αi,(a+1))

∏a
k=1 sin(αi,k) 1 ≤ a ≤ d(i)− 1

sin(αi,d(i)))
∏d(i)−1

k=1 sin(αi,k) a = d(i)

(8)

Thus αip ∈ α where α denotes the compact set

α = {αip mod 2π ∈ [0, 2π]; i ∈ S, p ∈ P(i)} (9)

It is clear that under this α parameterization, the control variables αip, p ∈ P(i) =
{1, . . . d(i)} do not need to satisfy any physical constraints, since sin(αi,p) = sin(αi,p mod
2π), etc.

1.3 Parameterized Constrained MDP

For convenience, we now formulate the above MDP problem as a stochastic optimization
problem, where the instantaneous random cost is independent of ψ but the expectation
is with respect to a measure parameterized by ψ. Such a “parameterized integrator”
formulation is common in gradient estimation, see [23]. Consider the augmented (obviously

homogeneous) Markov chain Zn
�
= (Xn, un) with state space in Z = S ×A and transition

probabilities parameterized by ψ given by

Pi,a,j,a′(ψ)
�
= P(Xn+1 = j, un+1 = a′ | Xn = i, un = a) = θj,a′(ψ)Aij(a),

i, j ∈ S, a ∈ A(i), a′ ∈ A(j) (10)

From the unichain assumption it follows that for any ψ ∈ Ψ the chain {Zn} is ergodic, and
it possesses a unique invariant probability measure πi,a(ψ); i ∈ S, a ∈ A(i).

Let Eπ(ψ) denote expectation w.r.t measure π(ψ) parameterized by ψ. From (2) we
have

Jx0(u) = Eπ(ψ)[c(Z)]
�
=
∑
i∈S

∑
a∈A(i)

πi,a(ψ)c(i, a)
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Similarly, the L constraints (4) can be expressed as

Bl(ψ)
�
= Eπ(ψ)[βl(Z)]− γl =

∑
i∈S

∑
a∈A(i)

πi,a(ψ)βl(i, a)− γl ≤ 0 l = 1, . . . , L (11)

Thus the optimization problem (3) with constraints (4) can be written as

min
ψ∈Ψ

C(ψ) where C(ψ)
�
= Eπ(ψ)[c(Z)], (12)

subject to: Bl(ψ) ≤ 0, l = 1, . . . , L, and (13)

ψ ∈ Ψ (14)

In the sequel we refer to the constraints ψ ∈ Ψ in (14) as parameter constraints. The
constraints Bl(ψ) (13) will be called MDP constraints. It is clear that the parameter
constraints depend on the parameterization ψ used whereas the MDP constraints are part
of the MDP problem specification. The problem (12), (14) without the MDP constraints
(13) will be called an unconstrained MDP. As should be evident from this formulation, the
optimal control problem depends uniquely on the invariant distribution π(ψ) of the chain,
rather than the (unknown) transition probabilities Aij(u) themselves.

We make the following assumptions in the rest of the paper:

Assumption 1 For ψ ∈ Ψ, C(ψ), B(ψ) ∈ C2 (twice continuously differentiable).

Indeed for ψ = α or θ, C(·) and B(·) are analytic functions (and hence infinitely
differentiable) in our signal model.

Assumption 2 The minima ψ∗ of (12), (13), (14) are regular, i.e., ∇ψBl(ψ∗), l =
1, . . . , L are linearly independent. Then ψ∗ belongs to the set of Kuhn Tucker points

KT =
{
ψ∗ ∈ Ψ : ∃µl ≥ 0, l = 1, . . . , L such that

∇ψC +∇ψBµ = 0, B′µ = 0
}

(15)

where µ = (µ1 . . . , µL)′. Moreover ψ∗ satisfies the second order sufficiency condition
∇ψ

2C(ψ∗)+∇ψ
2B(ψ∗)µ > 0 (positive definite) on the subspace {y ∈ RL : ∇ψBl(ψ∗)y = 0}

for all l : Bl(ψ∗) = 0, µl > 0.

1.4 Summary of Main results

Our approach is to use a gradient based stochastic approximation algorithm to optimize
C(ψ) in (12) with respect to the parameterized action probabilities θ(ψ) defined in (5).
The stochastic approximation algorithm is of the form

ψ(n+ 1) = Π
[
ψ(n)− ε(n) ∇̂ψC(ψ(n))

]
. (16)
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(suitably modified with Lagrange multipliers to handle the constraints, see (19), (20)). Here
∇̂ψC denotes an estimate of the gradient ∇ψC, Π[·] denotes an appropriate projection
to deal with the constraints (13), and (14) and ε(n) > 0 denotes the step size. If the
parameters of the MDP are time-invariant, then there exists a unique optimum ψ∗ for the
constrained MDP (12), (13), (14), see (18) below.

1. Parameter Constraints: For the parameter constraints (14), Section 2.1 and Sec-
tion 2.2 present algorithms in terms of the canonical coordinates θ (involving generalized
gradients) and spherical coordinates α. We show that the parameterization used in [4]
is equivalent to the canonical coordinates. The advantage of using spherical coordinates
in the parameter estimation of Hidden Markov Models has been extensively documented,
see [16] and references therein. By studying the ordinary differential equation (ODE)
associated with the stochastic gradient algorithm (16), Section 2.3 shows that the MDP
algorithms using spherical coordinates have much better convergence properties than those
using the generalized gradient.

2. MDP Constraints: For the MDP constraints (13), because B(ψ) is is not a priori
known (since the invariant measure π(ψ) is not known), it is not possible to use the usual
gradient projection methods in [18] for example. The first order primal dual method
using Lagrangians does not work either due to lack of local convexity. In Section 3, ODE
versions of the primal dual algorithms with a penalty function and augmented Lagrangian
(multiplier) algorithms are presented for solving the constrained MDP together with a
convergence analysis. We show in numerical examples that these algorithms have better
performance than gradient-based hard projection algorithms and are computationally more
efficient.

3. Measured Valued Derivatives: One important issue in implementing the stochas-
tic gradient algorithm (16) is to construct consistent estimates ∇̂ψC(ψ) of the gradient
∇ψC(ψ) for any ψ ∈ Ψ. We propose gradient estimators based on measured valued differ-
entiation (weak derivatives) and prove the consistency of these estimators. Such algorithms
have recently been proposed in the DES literature - see [23], [9]. There are three widely
used methodologies for simulation based gradient estimation – score function method, sam-
ple path derivatives and weak derivatives. The Score Function method usually suffers from
large variance. In addition, as we will explain later on, the method may yield unbounded
variance estimation in some important cases. Section 4 considers the measured valued
formulation of [12] that uses finite horizon estimation. In the limit for infinite horizon
it recovers the formulas of weak derivatives and sample path estimation via perturbation
realization factors.

4. Parameter Free Gradient Estimation: The main idea behind the simulation
based learning algorithm in this paper is to compute estimates of the gradient ∇̂ψC(ψ)
without explicit knowledge of the parameters of the MDP. The parameter free gradient
estimation algorithms we present in Section 5 use the concept of a “phantom” system.
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A phantom system starting at time k is a sequence of states and actions that result by
choosing a different action to the nominal system (MDP) at time k, and subsequently
propagates with the same transition probability laws. Because of Markov chain coupling,
eventually after a finite number of time points the phantom system achieves the same state
as the nominal system. After this time point their evolution is identical in distribution
and the phantom is said to be dead. The difference between the costs of the nominal
trajectory and the phantom trajectory (which is non zero until the phantom dies) can then
be used to determine information about the gradient of the cost function with respect to
the action probabilities. Conventionally in [10, 9], off-line simulations are used to generate
the evolution of a phantom – we will call such phantoms the Doeblin phantoms. However,
we are interested in solving a MDP with unknown and possibly time varying parameters.
In Section 5 we present a novel method based on “cut and paste” techniques which look
at the past observation history to create “frozen phantoms”. By filtering these frozen
phantoms we derive a parameter free consistent algorithm for estimating gradients of the
cost without explicit knowledge of the parameters of the MDP and without requiring off-line
simulations of the system. Section 5 also analyses the statistical properties (variance versus
bias trade-off) of the frozen phantoms. Finally, in numerical examples the performance of
the resulting phantom gradient estimation algorithm is compared with the score function
method of [4].

5. Adaptive Control of Constrained MDP with time varying parameters: Putting
the parameter free gradient estimation algorithm into a stochastic approximation algo-
rithm (16) results in a new simulation based algorithm for solving the constrained MDP.
As explained below (Section 1.5), just like neuro-dynamic programming methods, explicit
knowledge of the parameters of the constrained MDP are not required. Choosing a de-
creasing step size for (16) of the form ε(n) = n−γ , where 0.5 < γ ≤ 1, results in estimates
ψ(n) → ψ∗ almost surely (under suitable regularity and consistency assumptions on the
gradient estimator). However, in this paper we are concerned with the case where the
MDP parameters (e.g., transition probabilities A) can slowly change with time. In such
cases, it is appropriate to chose ε(n) as a constant (non-decreasing) step size to track the
time varying parameter ψ. In Section 6, details of constant step size stochastic approxi-
mation algorithms based on the ODEs of Section 3 for solving the constrained MDP are
presented. Weak convergence of the estimates ψ(n) to ψ∗ is established for the constant
step size algorithm (16). Section 7 demonstrates the performance of the algorithms on a
constrained MDP with time varying transition probabilities.

1.5 Other approaches

The above problem (12) is a constrained stochastic adaptive control problem involving a
finite state Markov decision process – adaptive because the underlying parameter A(u) is
unknown [17]. There are two methodologies that are widely used for solving such prob-
lems: direct methods, where the unknown parameter is estimated simultaneously while
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updating the control policy, and implicit methods – such as simulation based methods,
where A(u) are not estimated in order to compute the control policy.

Neuro-dynamic programming methods [7] have widely been used to solve MDPs. They
broadly include two classes of algorithms: (i) Q-Learning and (ii) Temporal difference
methods. Both these methods use Robbins Munro stochastic approximation algorithms to
solve for the optimal policy. However, a key problem with these neuro-dynamic program-
ming methods is that they cannot deal with constraints of the form (4). There seems to
be no obvious way of modifying these algorithms to deal with randomized policies.

Another approach that also uses stochastic approximation is that presented in the book
[24]. The book [24] considers a different parameterization to us – instead of the parameter
θ, they consider the parameter to be the invariant measure πi,a of Zn described above. It
is well known [17] that (12) formulated in terms of the invariant measure π is the following
linear program:

min
π

∑
i∈S

∑
a∈A(i)

πiac(i, a) (17)

subject to
∑
i∈S

∑
a∈A(i)

πiaβl(i, a) < γl∑
a∈A(j)

πja =
∑
i∈S

∑
a∈A(i)

πiaAij(a)∑
i∈S,a∈A(j)

πia = 1, 0 ≤ πia ≤ 1, i ∈ S, a ∈ A(j).

With θ∗ and π∗ denoting the optimal solutions of (12) and (17), respectively, it is straight-
forward to show that

θ∗ia =
π∗ia∑

u∈A(i) π
∗
iu

(18)

The main idea in [24] is to use stochastic approximations for each component of πia
to optimize the above cost function (17). Because the above cost function is linear in
πia the gradient is merely the observed cost c(i, a). On the other hand the constraints
in (17) are difficult to handle via stochastic approximation. The authors deal with the
parameter constraints using a normalization procedure common in the Learning Automata
Theory. In [31] it was shown that this normalization approach can be adapted to represent
the projection method that we will introduce in Section 2.1. The MDP constraints are
dealt with via Lagrange multipliers, a penalty function approach and a gradient projection
method. The last two algorithms are direct methods and therefore require estimation
of the transition probabilities Aij(u). Although the Lagrange method does not require
explicit estimation of Aij(u), a closer analysis reveals that maximum likelihood estimation
is implicitly carried out in the estimation of the coefficients (gradients) of the Lagrangian
function.
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The closest approach to that considered in this paper is the one presented in [4]. The
MDP in [4] is identical to that considered here, but without the MDP constraints (13).
[4] give an example of a parameterized class of policies which is identical to the canonical
coordinates θ. We will show in numerical examples (Section 2.3) that the parameteriza-
tion involving spherical coordinates has superior convergence properties. In addition, the
approach for derivative estimation in [4] is via the Score Function method, which usually
suffers from unbounded variance for infinite horizon costs. To alleviate this problem the
authors use a forgetting factor that introduces a bias in the derivative estimation. Our
derivative estimators are more efficient and consistent, with provably bounded variance.
Typically, the score function method has a variance that is several orders of magnitude
larger than the measured valued derivative estimator.

The above methods all use a “simulation optimization” approach, where almost sure
convergence to the true optimal value can be shown under an appropriate choice of the
parameters of the algorithms. In particular all stochastic approximations involved in the
above mentioned methodologies use decreasing step size. One of the motivations of the
present work is to implement a stochastic approximation procedure with constant step size
in order for the controlled Markov chain to be able to deal with tracking slowly varying
external conditions which result in slowly varying A(u).

Remark: Our setting assumes perfect observation of the process {Xn} and we call this
a MDP. The paper [4] considers a partially observed MDP (POMDP), but assume that
the observations Yn of the process Xn belong to a finite set. In that work they consider
suboptimal strategies of the form θia = P{un = a | Yn = i}. Such a policy is clearly not
optimal for a POMDP since the optimal policy is a measurable function of the history
(Y1, . . . , Yk, u1, . . . , uk−1) which is summarized by a continuous-valued information state
[15]. Such suboptimal POMDP models are a special case of the problem considered here
and our method can be applied in a straightforward manner.

1.6 User’s Guide

A summary of the key equations for implementing the learning based algorithm proposed
in this paper in spherical coordinates for constrained MDP (12), (13), (14) is as follows:

Input Parameters: Cost matrix (c(i, a)), constraint matrix (β(i, a)), batch size N (we
chose N = 1000 in our numerical examples).

Step 0. Initialize: Set n = 0 and initialize α(n) ∈ α and vector λ(n) ∈ RL
+

Step 1. MDP Simulation: At time n, simulate MDP over batch k ∈ [nN, (n+ 1)N − 1]
using randomized policy θ(α(n)).

Step 2. “Parameter free” Gradient Estimation: Compute ∇̂αC(α(n)), ∇̂αB(α(n)) over
the batch k ∈ [nN, (n+1)N − 1] using the filtered frozen phantom algorithm given in (60)
of Section 5.3.
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Step 3. Update Policy θ(α): Use a penalty function primal dual based stochastic ap-
proximation algorithm to update α as

α(n+ 1) =
[
α(n)− ε

(
∇̂αC(α(n)) + ∇̂αB(α(n))

(
λ(n) + ρB̂(α(n))

))]
mod 2π (19)

λ(n+ 1) = max
[
0, λ(n) + εB̂(α(n))

]
(20)

where throughout this paper, for any vector mod2π is defined element-wise. The “penal-
ization” ρ is a suitably large positive constant. Another alternative to (20) is to update λ
via a multiplier (augmented Lagrangian) algorithm (see Section 3.2). A third alternative
is to fix λ. For sufficiently large ρ, α(n) will converge to α(∞) which is in a pre-specified
ball around a local minimum α∗.

Step 4. Set n = n+ 1 and go to Step 1.

The gradient estimators ∇̂αC(α(n)) in Step 2 are given in (53). These estimators are
strongly consistent in N . Various variants of the gradient estimates will be considered
for ∇̂αB(α(n)). As explained in Section 6, if (53) is also used for the gradient of the
constraints, the algorithm is asymptotically sub-optimal, and the bias depends on the
length N of the update intervals: if updating is performed relatively infrequently then this
bias may not be too large. In Section 5.3 we propose alternative implementations, aiming
to build an estimator which is strongly consistent in n, regardless of the size of N . The
first is to use a running (or moving) average for the sample average Ĉn in (53), the second
is to use a sliding window of size W > N to estimate this average, and finally, one can
also use past observations to estimate the bias as the process evolves and add a correction
term to the update (19).

The algorithm using canonical coordinates can be derived similarly using (52). For
Step 3, a penalty function primal dual method or augmented Lagrangian method similar
to above can be used, details are omitted.

Remark: If the true parameters of the MDP jump change at infrequent intervals, then
iterate averaging [21] (as long as the minimal window of averaging is smaller than the jump
change time) and adaptive step size algorithms similar to [20] can be implemented in the
above stochastic approximation algorithms to improve efficiency and tracking capabilities.
We will explore these variations of the basic algorithm elsewhere.

2 Deterministic Algorithms for Unconstrained MDPs

As mentioned above, to find the optimal value θ∗ defined in (18), our plan is to use a
stochastic approximation algorithm of the form (16) with appropriate mechanisms to satisfy
the constraints. In this section, we consider the unconstrained MDP (12), (14) (i.e.,
the MDP constraints (13) are omitted). The canonical and spherical parameterizations
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defined in Section 1.2 will be used for dealing with the parameter constraints (14). The
methodology can easily be extended to other parameterizations of the action probabilities.

A key result in stochastic approximation theory (averaging theory), see for example
[21], states that under suitable regularity and stability conditions, the behavior of the
stochastic approximation algorithm is captured by a deterministic dynamical system (dif-
ferential/difference equation or inclusion) as the step size ε goes to zero. Thus to design the
stochastic approximation algorithms and give insight into their performance, we will first
focus on designing deterministic dynamical systems (ODEs) for solving the unconstrained
MDP (12)-(14). By deterministic we mean that the objective function and all higher or-
der derivatives can be exactly computed due to complete knowledge of the parameters of
the MDP. We will construct suitable ordinary differential equations (ODEs) whose stable
points will be Kuhn-Tucker points of the optimization problem. We will show how to build
the updates in a descent direction, hence the limit points of the ODE will be local minima.

Once the deterministic algorithm has been designed, the corresponding stochastic ap-
proximation algorithm follows naturally by replacing the gradient in the deterministic algo-
rithm with the gradient estimate (which is computed from the sample path of the Markov
chain). In the un-constrained MDP case, convergence of the stochastic approximation al-
gorithms to the deterministic algorithms is well studied in the stochastic approximation
literature, see Section 6.

2.1 Canonical Coordinates ψ = θ and Generalized Gradients

Let t ∈ R+ denote continuous time. Consider the design of an ODE in the canonical
coordinates θ such that the ODE’s trajectory θ(t) ∈ Θ for all time t. In order to ensure that
θ(t) ∈ Θ, [30] proposes a projection along the Lagrangian associated with the optimization
problem (12),(14). As explained in [30], a scheme that projects the gradient to the feasible
surface can be built from the Lagrangian. The generalized gradient operator is defined as:

Giu =
∂

∂θiu
−
∑

a∈A(i)

θia
∂

∂θia
, (21)

and the result (Lemma 1 in [30]) is stated as follows.

Lemma 1 For any i ∈ S, let the multidimensional function {θu(t), u ∈ A(i)} be the
solution of the ODE:

dθu(t)
dt

= −θu(t)Giu[C(θ(t))] (22)

with initial condition satisfying θu(0) > 0,
∑

u∈A(i) θu(0) = 1. Then for all t > 0, θ(t) ∈ Θ
is a feasible probability vector in the interior of the set Θ and the stable points are all Kuhn-
Tucker points (also called stationary points) of the problem (12),(14). Furthermore, they
cannot be local maxima, because the drift of the ODE is a descent direction for (12),(14).
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Proof: The complete proof appears in [30]. To gain insight into the result, we now show
that the RHS of the ODE is a feasible descent direction. The feasibility is straightforwardly
shown as follows: From (22) and (21), the aggregate drift is∑

u∈A(i)

dθu
dt

=−
∑

u∈A(i)

θu(t)
∂

∂θiu
[C(θ(t))]

+

 ∑
u∈A(i)

θu(t)

 ∑
a∈A(i)

θa(t)
∂

∂θia
[C(θ(t))].

Thus if at any time t θ ∈ Θ then the aggregate drift is zero. By assumption the initial
condition of the ODE is in the feasible set, therefore the value

∑
u θu(t) = 1 remains

constant. To show that the RHS is a feasible descent direction it suffices now to show that
it is a descent direction. Call M(t) = C[θ(t)] the actual cost of the trajectory, then using
the chain rule of differentiation and (21)

dM(t)
dt

=
∑

u∈A(i)

∂

∂θiu
C[θ(t)]

d

dt
θiu(t)

=−
∑

u∈A(i)

θu(t)
(
∂

∂θiu
C[θ(t)]

)2

+
∑

u∈A(i)

∂

∂θiu
C[θ(t)] θu(t)

∑
a∈A(i)

θa(t)
∂

∂θia
[C(θ(t))].

Fix any t and to simplify notation, call θu(t) = pu,
∂C[θ(t)]
∂θiu

= Cu. From the proof of
feasibility, it follows that

∑
u pu = 1, which is a probability on the set A(i) so that the drift

ofM(t) is the negative of the variance of the quantities Cu with respect to the probabilities
pu, namely: −∑u puC

2
u + (
∑

u puCu)2. This implies that dM(t)/dt ≤ 0, in other words
the drift is a descent direction for the cost. ✷

Remark: If other linear equality constraints define the state space for the control, weights
can be introduced in the definition of the generalized gradient to make

∑
u∈A(i) Giu = 0 for

all i. The result, namely convergence to local optima, will hold true.

In Section 4 consistent estimators for the generalized gradient are presented. This gives
rise to the stochastic approximation scheme:

θiu(n+ 1) = θiu(n)− εθiu(n) Ĝiu[C(θ(n))] (23)
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where ε denotes the fixed step size and Ĝiu[C(θ(n))] is a consistent estimator of Giu[C(θ(n))].
We propose to use decentralized operation of the stochastic approximation procedures as
follows: a “control agent” is associated to each state i ∈ S. Every time the system
visits state i, the estimation of Gi · is updated, and after a predetermined number of such
observations, the controller at i updates the vector θi following (23).

Remark: It is interesting to notice that above generalized gradient approach is equivalent
to the parameterization of the action probabilities proposed in [4]. In [4], a control variable
ψi,a ∈ R is introduced with

θia(ψ) =
eψia∑

u∈A(i) e
ψiu
.

Then all possible action probabilities are represented by this transformation, so that
θ(ψ∗) = θ∗ is the true optimum, and the optimization over ψ is unconstrained. The
exponential parameterization satisfies

∂θiu
∂ψia

=

{
θiu(1− θiu) u = a
−θiuθia u �= a.

Using the chain rule of differentiation, for any function C(θ):

∂

∂ψia
C[θ(ψ)] =

∑
u∈A(i)

∂

∂θia
C(θ)
(
∂θiu
∂ψia

)

= θia

 ∂

∂θia
C(θ)−

∑
u∈A(i)

θiu
∂

∂θia
C(θ)

 .
2.2 Spherical coordinates ψ = α

The gradient projection method in Section 2.1 ensures that updates remain at all times
in the feasible set satisfying the constraints (5), but they can exhibit slow convergence,
particularly when the optimal probability vector θ∗ is degenerate. As can be seen from
(23), when a component has value zero it remains there. Because the drift of the update is
proportional to the size of the updated component, as a component approaches zero, the
magnitude of future updates decreases (to prevent crossing outside the feasible set). This
mechanism may slow down convergence of the gradient algorithm using canonical coordi-
nates ψ = θ, particularly close to the optimal solution if this has components representing
pure strategies, as is often the case.

Consider now the parameterization ψ = α. Note that the function C(α), with θia =
λ2
ia(α) will be periodic in α, because of the symmetry between quadrants in spherical

coordinates.
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Lemma 2 For each i ∈ S consider the d(i) dimensional ODE:

d

dt
αi(t) = −∇αiC[α(t)], (24)

with initial condition (αip) ∈ α, p ∈ P(i) = {1, . . . , d(i)}. Define θia(t) = λ2
ia[α(t)]. Then

all limit points of θ(t) are Kuhn-Tucker points of the optimization problem (12),(14).

Proof: The proof of the lemma is based on local optimality of limt→∞ α(t) = α∗, and
application of the Implicit Function Theorem. ✷

The stochastic approximation algorithm

α(n+ 1) =
[
α(n)− ε∇̂αC[α(n)]

]
mod 2π, (25)

where ∇̂αC[α(n)] is a consistent estimator of ∇αC[α(n)] will yield asymptotically the
locally optimal control (under some regularity assumptions that we will verify in Section 6).
The projection mod2π ensures α(n) ∈ α and does not affect the dynamics of α since
C(α), B(α) are periodic in α.

2.3 Numerical example comparing parameterizations

Here we present a numerical example that compares convergence of the generalized gra-
dient algorithm versus spherical coordinates algorithm for an un-constrained MDP. The
parameters chosen were: S = {0, 1}, there are three actions, A(i) = {0, 1, 2}, i ∈ S (i.e.,
d(0) = d(1) = 2),

A(0) =
(
0.9 0.1
0.2 0.8

)
, A(1) =

(
0.3 0.7
0.6 0.4

)
, A(2) =

(
0.5 0.5
0.1 0.9

)
.

The cost matrix (c(i, a)) and parameter at θ(t) = (θia(t)) initialized as t = 0 were chosen
as

(c(i, a)) = −
[
50.0 200.0 10.0
3.0 500.0 0.0

]
, θ(0) =

[
0.1 0.1 0.8
0.3 0.5 0.2

]
.

Given this exact knowledge of the MDP parameters, the gradients ∇ψC(ψ), can be exactly
computed. In Figure 1, we compare the evolution of the cost C(ψ(t)) versus time for
ψ(t) = θ(t) and ψ(t) = α(t). A first order discretization of the ODEs (22) and (24) with
discretization step size 10−3 was used.

This and other numerical studies not presented here suggest that the algorithms using
the spherical coordinates α converge significantly faster than those using the canonical
coordinates θ. For this reason, in the rest of the paper, we mainly present algorithms with
spherical coordinates.
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Figure 1: Comparison of algorithms using spherical and spherical coordinates

3 Deterministic Algorithms for Constrained MDP

In this section we consider the MDP problem (12) with MDP constraints (13) and parame-
ter constraints (14). As in Section 2, we present deterministic dynamical systems (ODEs).
The corresponding stochastic approximation algorithms for the constrained MDP are given
by replacing ∇αC, ∇αB, B in the deterministic algorithms presented below with the es-
timated gradients ∇̂αC, ∇̂αB, B̂. These estimates are computed using the parameter
free gradient estimation algorithms given in Section 5. The proofs of convergence of the
resulting stochastic approximation algorithms are given in Section 6.2.

Because the spherical coordinate parameterization α gives better convergence, we focus
here only on the optimization w.r.t. α. In Section 3.1 we present a penalty function based
primal dual algorithm. In Section 3.2 we present an augmented Lagrangian algorithm Both
methods perform extremely well in numerical examples. For completeness we also present
in Section 3.3 a primal algorithm based on gradient projection. This primal algorithm
requires higher computational complexity.

3.1 First-Order Primal Dual Algorithm

A widely used deterministic optimization method (with extension to stochastic approxi-
mation in [18, pg.180]) for handling constraints is based on the Lagrange multipliers and
uses a first-order primal dual algorithm [6, pg 446]. First convert the inequality MDP
constraints (13) to equality constraints by introducing the variables z = (z1, . . . , zL) so

that Bl(α) + z2l = 0, l = 1, . . . , L. Define ψ
�
= (α, z), Bl(ψ)

�
= Bl(α) + z2l . Define the

Lagrangian
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L(ψ, λ) �
= C(α) +

L∑
l=1

λlBl(ψ) (26)

In order to converge, a primal dual algorithm operating on the Lagrangian requires the
Lagrangian to be locally convex at the the optimum, i.e., Hessian to be positive definite at
the optimum (which is much more restrictive that the second order sufficiency condition
of Assumption 2 in Section 1.3). Numerical examples show that this positive definite
condition on the Hessian, which Luenberger [22, pp.397] terms “local convexity” seldom
holds in the MDP case.

We can “convexify” the problem by adding a penalty term to the objective function
(12). The resulting problem is:

min
ψ∈Ψ

C(α) +
ρ

2

L∑
l=1

(Bl(ψ))
2

subject to (13), (14). Here ρ denotes a large positive constant.
As shown in [22, pg.429], the optimum of the above problem is identical to that of (12),

(13), (14). Define the augmented Lagrangian,

Lρ(ψ, λ)
�
= C(α) +

L∑
l=1

λlBl(ψ) +
ρ

2

L∑
l=1

(Bl(ψ))
2 (27)

Note that although the original Lagrangian may not be convex near the solution (and
hence the primal dual algorithm does not work), for sufficiently large ρ, the last term in Lρ

“convexifies” the Lagrangian. Indeed, for sufficiently large ρ, [6] shows that the augmented
Lagrangian is locally convex.

After some further calculations detailed in [6, pg.396], the primal dual algorithm oper-
ating on Lρ(ψ(n), λ(n)) reads:

αε(n+ 1) =
[
αε(n)− ε

(
∇αC(αε(n)) +∇αB(αε(n)) (λε(n) + ρB(αε(n)))

)]
mod 2π

(28)

λε(n+ 1) = max [0, λε(n) + εB(αε(n))] (29)

where ε > 0 denotes the step size.

Lemma 3 Under Assumptions 1 and 2 for sufficiently large ρ > 0, there exists ε̄ > 0, such
that for all ε ∈ (0, ε̄], the sequence {αε(n), λε(n)} generated by the primal dual algorithm
(28) is attracted to a local KT pair (α∗, λ∗).



Les Cahiers du GERAD G–2003–51 17

Proof: Since Lρ is convex for sufficiently large ρ > 0 [22], the proof straightforwardly
follows from Proposition 4.4.2 in [6]. ✷

Let T ∈ R+ denote a fixed constant and t ∈ [0, T ] denote the continuous time. Define
the piecewise constant interpolated continuous-time process

αε(t) = αε(n) t ∈ [nε, (n+ 1)ε) (30)

λε(t) = λε(n) t ∈ [nε, (n+ 1)ε) (31)

The above lemma implies {λε(n)} lies in a compact set Λ for all n. Note αε(n) ∈ α by
definition where α is compact. Then the following result directly follows from the above
lemma and [18] where the convergence of the stochastic version is proved.

Theorem 1 Under Assumptions 1 and 2, the interpolated process {αε(t), λε(t)} defined in
(30), (31) converges uniformly as ε→ 0 to the process {α(t), λ(t)}, i.e.,

lim
ε↓0

lim sup
0<t≤T

|αε(t)− α(t)| = 0, lim
ε↓0

lim sup
0<t≤T

|λε(t)− λ(t)| = 0, (32)

where {α(t), λ(t)} satisfy the ODEs

d

dt
α(t) = −∇αC(α(t))−∇αB(α(t))(λ(t) + ρB(α(t))

d

dt
λl(t) =

{
Bl(α(t)) if λl(t) ≥ 0
0 if λt(t) = 0 and d

dtλl(t) < 0
, l = 1, . . . , L. (33)

The attraction point of this ODE is the local KT pair (α∗, λ∗).

3.2 Augmented Lagrangian (Multiplier) Algorithms

We outline three augmented Lagrangian (multiplier) algorithms.
1. Inexact Primal Minimization Multiplier Algorithm: The augmented Lagrangian
approach (also know as a multiplier method) consists of the following coupled ODE and
difference equation:

dα(n+1)(t)
dt

= −∇αC(α(n+1)(t))−∇αB(α(n+1)(t))
(
λ(n) + ρB(α(n+1)(t)

)
(34)

λl(n+ 1) = max
[
0, λl(n) + ρBl(α(n+1)(∞))

]
, l = 1, . . . , L (35)

where α(n+1)(∞) denotes the fixed point of the ODE (34). Iteration (35) is a first order
update for the multiplier, while (34) represents an ODE which is attracted to the minimum
of the augmented Lagrangian Lρ. The max in (35) arises in dealing with the inequality
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constraints, see [6, pp.396]. [6, Proposition 4.2.3] shows that if (α(0)(0), λ0(0)) lies in the
domain of attraction of a local KT pair (α∗, λ∗), then (34), (35) converges to this KT pair.

A practical alternative to the above exact primal minimization is first order in-exact
minimization of the primal. The iterative version of the algorithm reads [6, pg.406]: At
time n + 1 set α(0)(n + 1) = α(n). Then run j = 0, . . . , J − 1 iterations of the following
gradient minimization of the primal

α(j+1)(n+ 1) =
[
α(j)(n+ 1)− ε

(
∇αC(α(j)(n)) +∇αB(α(j)(n))

(
λ(n) + ρB(α(j)(n))

))]
mod 2π,

(36)

α(n+ 1) = α(J)(n+ 1) followed by a first order multiplier step

λl(n+ 1) = max [0, λl(n) + ρBl(α(n+ 1))] , l = 1, . . . , L (37)

Iteration (36) represents a first order fixed step size inexact minimization of the augmented
Lagrangian Lρ (inexact because (36) is terminated after a finite number of steps J). It is
shown in [5] that as long as the inexact minimization of the primal is done such that the
error tolerances are decreasing with n but summable, then the algorithm converges to a
Kuhn Tucker point. More recently, [14] show that even if the error tolerances are fixed (i.e.,
non-decreasing), convergence can be shown for n → ∞. In numerical examples presented
in Section 7.1, we found that often choosing J ≤ 10 results in convergence to a KT pair.

2. Multiplier Algorithm of [18]: A second possibility is to use the multiplier algorithm
presented and analysed in [18]. For the case of equality constraints, i.e., Bl(α) = 0 (with
obvious generalization to the inequality case using surplus variables), the algorithm at each
time updates α(n) for J = 1 iteration followed by updating λ according to

λ(n+ 1) = −(∇αB
′(α(n))∇αB(α(n)))−1∇αB

′(α(n))∇αC(α(n))

It is shown in [18] that the resulting ODE is attracted to the Kuhn Tucker points. However,
to devise a stochastic approximation algorithm, it is not possible to directly substitute the
estimates ∇̂αB(α(n)) for ∇αB(α(n)), because in general ∇̂αB

′
(α(n))∇̂αB(α(n)) is not

an unbiased estimator for ∇αB
′(α(n))∇αB(α(n)). To estimate the inverse of the matrix

consistently is even a harder problem. Due to this technical difficulty we have preferred
not to implement this algorithm.

3. Fixed Multiplier: A trivial case of the multiplier algorithm is to fix λ(n) = λ̄ for all
time n and only update α according to (36) with I = 1 iteration at each time instant. This
is clearly equivalent to the primal update (28) with fixed λ(n) = λ̄. From Theorem 1, the
interpolated trajectory of this algorithm converges uniformly as ε→ 0 to the trajectory of
the ODE

d

dt
α(t) = −∇αC(α(t))−∇αB(α(t))(λ̄+ ρB(α(t)) (38)
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The following result in [6] shows that the attraction point of this ODE is close to α∗ for
sufficiently large ρ, resulting in a near optimal solution. First convert the L inequality
constraints to equality constraints Bl(ψ) = 0, < l = 1, . . . , L as defined in Section 3.1. Let
ψ∗, λ∗ denote the corresponding KT pair where ψ∗ = (α∗, z∗).

Result 1 [6, Proposition 4.2.3]. Let ρ̄ > 0 be scalar such that ∇ψ
2Lρ(ψ∗, λ∗) > 0. Then

there exist positive scalars δ and K such that for (λ̄, ρ) ∈ D ∈ RL+1 defined by

D = {(λ, ρ) : ‖λ− λ∗‖ < δρ, ρ ≥ ρ̄}
the attraction point of the ODE αλ,ρ is unique. Moreover

‖αλ,ρ − α∗‖ ≤ K ‖λ̄− λ∗‖
ρ

A fixed multiplier algorithm is seemingly much simpler to implement than the inexact
minimization one. However, in practice a bad choice of the pair (λ̄, ρ) may yield a noticeable
bias. In Section 7.1, numerical examples compare the inexact primal minimization with
the fixed multiplier algorithm.

3.3 Projected Gradient Primal Algorithm

In this subsection, we present for completeness, a “primal algorithm” [22] for solving the
constrained MDP problem. This primal algorithms requires larger computational cost
than the algorithms given above. Also, our numerical studies show that the augmented
Lagrangian and primal dual algorithms presented above have better numerical properties
and superior convergence rates compared to the primal method presented here.

The primal algorithm we present here is a version of the gradient projection method
(see [8]) that updates along the gradient direction and then projects the resulting vector
onto the constraints surface (if the resulting vector is infeasible).

α̃(n+ 1) = α(n)− ε∇αC[α(n)] (39)
α(n+ 1) = ΠX [α̃(n+ 1)],

where ΠX(·) is the projection of the vector onto the space:

X = {α ∈ Rd−1 : Bl(α) ≤ 0, l = 1, . . . , L}.
Evaluation of the projection operation is usually the main computational hindrance of

the algorithm. Because we are interested in applying a stochastic version of the method, we
propose here an approximation that is provably convergent under some stability conditions.
Our method is based on the observation that if x = ΠX(c), then x is the vector in X
that minimizes the distance ‖x − c‖2, or equivalently, x is the solution to the quadratic
optimization problem:

min
x∈X

(
1
2
x′x− c′x

)
.
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As illustrated in Example 3.4.3 of [8], when the constraint set is linear the dual of this
problem leads to a much simpler optimization problem where the new constraints are only
positivity constraints. Because the points α(n), α̃(n + 1) are close when ε is small, using
the fact that the constraints are analytical functions of α (polynomial and trigonometric
functions are analytic) a Taylor approximation of B(x) can be used to obtain the following
(approximative) optimization problem with linear constraints:

minimize
(
1
2
x′x− c′x

)
,

subject to: B(α(n)) +∇αB(α(n))′(x− α(n)) ≤ 0.

Let µ = (µj , j = 1, . . . , L) be the dual variable. Then the dual to this problem is:

min
µ≥0

(
1
2
µ′∇αB(α(n))′∇αB(α(n))µ− [B(α(n)) +∇αB(α(n))′(α̃(n+ 1)− α(n)]′µ

)
, (40)

and the optimal solutions of the dual and primal problems satisfy x∗ = α̃(n + 1) −
∇αB(α(n))′µ∗ ≈ ΠX(α̃(n + 1)). Although a linearization has been used to find the pro-
jection, as ε → 0, one would hope that this procedure converges to the optimal feasible
point.

The subsidiary optimization problem (40) must be solved at each iteration of the proce-
dure (39). Because this is a quadratic minimization problem with non-negative constraints,
a gradient search can also be used for the dual problem, which would entail using J itera-
tions for each n:

µj+1(n+ 1) = max
(
0, µj(n)− ε̄×[∇αB(α(n))′∇αB(α(n))µj(n)−B(α(n)) +∇αB(α(n))′(α̃(n+ 1)− α(n))])

(41)

Here ε̄ > 0 denotes a small step size. Our method considers µ0(n+1) = µ1(n), to start the
new subsidiary problem. Because the updates in (39) take small steps and all functions
F,Bj are continuously differentiable, one expects that the ensuing procedure will also
converge as ε→ 0, n→ ∞ with εn = t, to the solution of a projected ODE.

4 Measure-Valued Gradient Estimation

In this section we focus on the derivation of the general formulas for gradient estimation
for Markov chains. We also discuss implementation aspects of the ensuing formulas. In
Section 5 we will use these formulas to devise parameter free (learning) gradient estimators
for ∇̂αC and ∇̂αB.
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4.1 Measure-Valued Gradient Estimators and Implementation

Estimators of the generalized gradient (21) for a queueing system were established in
[29]. We derive now the general form of the estimation w.r.t. any parameterization for
the Markov Decision Process using the measured valued differentiation method of [12].
Recall that the transition probability of the chain {Zn} given by (10) is parametrized by
ψ. Denote by ∇ψ the gradient w.r.t. the multidimensional parameter ψ. In [12] it is shown
that the weak derivative of the n-th step transition can be calculated using the chain rule
for differentiation, just as in ordinary calculus; that is, for any test function F : Zn → R,

∇ψEψ[F (Z̄)] = ∇ψ

∑
ī∈Sn

∑
ū∈An

F (̄i, ū)
n∏

k=1

Pik−1,uk−1,ik,uk
(ψ)


=

n∑
k=1

∑
ī∈Sn

∑
ū∈An

F (̄i, ū)
k−1∏
l=1

Pil−1,ul−1,il,ul
(ψ)∇ψPik−1,uk−1,ik,uk

(ψ)
n∏

l=k+1

Pil−1,ul−1,il,ul
(ψ)

 ,
(42)

where Z̄ = (Z1, . . . , Zn), ī = (i1, . . . , in), ik ∈ S, ū = (u1, . . . , un), uk ∈ A, and each
component of ∇ψP (ψ) is the weak derivative of the kernel P (ψ) w.r.t. each component of
ψ, as we explain shortly. While it is a matrix, it does not define a transition probability
(the rows do not add up to one, they add up to zero) so it is not possible to interpret the
expression above directly in terms of “transitions” to states ik+1, uk+1 starting at ik, uk.
Using the concept of weak derivatives (see [23]), the transition kernels ∇ψPik−1,uk−1,ik,uk

(ψ)
can be interpreted as the weighted difference between two transition probabilities for the
random variable ik, uk, as we now show.

The problem is to find a closed formula for the derivative of the one-step expectation
Eψ[f(Zk+1)|Zk = ik] for any real valued test function f : Z → R. Using (10), we have

∇ψEψ[f(Zk+1) | Zk = (ik, uk)] = ∇ψE

(∑
i∈S

f(i, uk+1)Aik,i(uk) | Zk = (ik, uk)

)
(43)

where a conditioning argument akin to the method in [12] has been used to isolate the
dependency on θ(ψ): given the state and action pair Zk the only dependency on ψ is in
the distribution of uk+1. It then suffices to evaluate ∇ψEf(i, u) for each fixed value of i,
with P[u = a] = θia(ψ).

In the case of spherical coordinates, the action uk+1 (given ik+1 = i) has a distribution:

uk+1 =

{
0 w.p. cos2(αi1)
Y1 w.p. sin2(αi1)

(44)
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Y1 =

{
1 w.p. cos2(αi2)
Y2 w.p. sin2(αi2)

...

Yd(i)−1 =

{
d(i)− 1 w.p. cos2(αi,d(i))
d(i) w.p. sin2(αi,d(i))

For convenience we will call Yd(i) = d(i). Clearly Yp, p = 1, . . . , d(i) can only have one of
the values p, . . . , d(i). Because αip does not affect the distribution of uk+1 if ik+1 �= i, the
gradient is non null only when ik+1 = i, in which case we have:

∂

∂αip
Ef(i, u) =

∂

∂αip

(
f(i, p− 1) cos2(αip) + f(i, Yp) sin2(αip)

) p−1∏
k=1

sin2(αik)

= −2 sin(αip) cos(αip)
p−1∏
k=1

sin2(αik)E[f(i, p− 1)− f(i, Yp)],

because the terms f(i, k), k < p−1 have weights which are independent of αip. The random
variable Yp has a distribution on {p, . . . , d(i)} corresponding to

P(Yp = a) =
θia(ψ)

p−1∏
k=1

sin2(αik)

, a ≥ p (45)

Notice that for p = d(i) the random variable Yd(i) = d(i) is degenerate.

Theorem 2 Fix state i. Let {Zn = (Xn, un)} be a MDP governed by (5) and (10). For
any p = 1, . . . , d(i) − 1, and for each k let {Zn(k) = (Xn(k), un(k));n ≥ 0} be a Markov
decision process that follows the same transition rules (5) and (10), but with initial state
Z−

0 (k) = (i, Yp) where Yp is randomly generated according to (45). Then:

∂

∂αip

[
1
N

N∑
n=1

c(Zn)

]
= −2 tan(αip)

N

N∑
k=1

δip(k)E

τ(k)∨N−k∑
n=0

[c(Zn+k)− c(Zn(k))]

 , (46)

where δip(k) = 1{Xk=i,uk=p−1} and τ(k) is the time until coupling:

τ(k) = min{n > 0 : Zn(k) = Zn+k}.
Let now {Zn(k) = (Xn(k), un(k))} have initial state X0(k) = i and

u0(k) =

{
d(i)− 1 uk = d(i)
d(i) uk = d(i)− 1

.
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∂

∂αi,d(i)

[
1
N

N∑
n=1

c(Zn)

]
=

2 cos(αi,d(i)) sin(αi2)
N

N∑
k=1

[δi,d(i)(k)− δi,d(i)−1(k) ×

E

τ(k)∨N−k∑
n=0

[c(Zn+k)− c(Zn(k))]

 ,
where τ(k) is the time until coupling ν(k) = min{n > 0 : Zn(k) = Zn+k}.
Proof: Consider p < d(i) and call F (Z̄) the sample average cost (1/N)

∑
n c(Zn). It

follows from the chain rule and the development of the one-step transition derivative kernel
that:

∂

∂αip

(
Eψ[F (Z̄)]

)
= −2 sin(αip) cos(αip)

p−1∏
k=1

sin2(αik)
N∑
k=1

1{Xk=i} E[F (Z̄+(k))−F (Z̄−(k))],

where for each k, {Z±
n (k), n ≤ k} is a Markov process with transition matrix P (θ). Next,

the “plus” and “minus” processes have actions u+
k = p− 1 and u−k = Yp (with distribution

as in (45)). Then the evolution of the processes follows: P[Z±
k+1(k) = (j, a′)|Z±

k (k) =
(i, Y ±)] = Aij(Y ±)θja, and {Zn(k), n > k} again is a Markov process with transition
matrix P (θ). For each k, an instance of the paths up to step k is the nominal process itself,
therefore choosing Z±

n (k) = Zn, n ≤ k will yield the same expectation for the gradient, and
the first terms in the difference of sample averages cancel out.

Equivalently, the plus and minus processes can be stated as MDP’s where the decision
at step k is “forced” to have the values p− 1, Yp respectively, that is, for each k the MDP
Z±
n (k) = (X±

n (k), u
±
n (k) evolves according to (5) and (10). Using this particular repre-

sentation, the trajectories “split” the decisions: the nominal decision is the one observed:
uk ∼ θi(ψ), the decision in the “plus” system is uk(k)+ = p − 1 and the decision in the
“minus” system is distributed according to θ̃(a)i . From there on, all processes follow the
same dynamics for the MDP, namely equations (5) and (1).

Sample now the nominal process to obtain an instance of the “plus” process, that is,
whenever uk = p− 1 we consider the nominal process as the “plus” process. Because this
observation has a sampling rate of θi,p−1(ψ) = cos2(αip)

∏p−1
k=1 sin

2(αik), then

∂

∂αip

(
Eψ[F (Z̄)]

)
=− 2 sin(αip) cos(αip)

N

N∑
k=1

1{Zk=(i,a)}×

E

{
N∑

n=k

[c(X+
n (k), u

+
n (k))− c(X−

n (k), u
−
n (k))]

}
.
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The proof is complete now, identifying Xn(k) = X−
k+n(k), un(k) = u−(k)n+k;n ≥ 0,

and using the fact that for each k, after the coupling time τ(k) both MDP’s have the same
distribution.

✷

Remark: Evaluating the phantom processes k only for those steps where uk = p − 1 in
the nominal path not only saves computational time, but as will be discussed Section 5.1,
is the basis for model-free estimation. For those steps, the initial state of the plus system
will have the same decision as the observed one, that is, u+

k (k) = uk = p− 1 and only one
other random variable u−k (k) = Yp has to be simulated.

Using a similar methodology the MVD estimator for the canonical coordinates can be
calculated, as summarized in the following result.

Theorem 3 Let {Zn = (Xn, un)} be a MDP governed by (5) and (1), and for each k ∈
{1, . . . , N}, define the “phantom” MDP {Zn(k) = (Xn(k), un(k));n ≥ 0} as a Markov
decision process that follows the same transition rules (5) and (1), but with initial state
Z0(k) = (i, u0(k)) where u0(k) is randomly generated according to u0(k) ∼ θ̃(a)i , and

θ̃
(a)
i,u =

θiu
(1− θia) , u ∈ A(i) \ {a}. (47)

Let δia(k) = 1{Xn=i,un=a}. Then

Gia

(
Eψ

[
1
N

N∑
n=1

c(Zn)

])
=

(1− θia)
Nθia

N∑
k=1

δia(k) ×

E

τ(k)∨(N−k)∑
n=0

[c(Zn+k)− c(Zn(k))]

 , (48)

where τ(k) is the time until coupling:

τ(k) = min{n > 0 : Zn(k) = Zn+k}.

Remark: Instead of working with the augmented process {Zn}, an equivalent approach
is to consider the Markov chain Xn(ψ) with transition kernel Pij(ψ) ≡ P[Xn+1(ψ) =
j|Xn(ψ) = i] =

∑
a∈A(i) θia(ψ)Aij(a). Denote its invariant measure as π̃ψ. The cost func-

tion is then C(ψ) = Eπ̃ψ
[c̃(·, ψ)] =∑a∈A(i) θia(ψ)c(i, a) where c̃(i, ψ) =

∑
a∈A(i) θia(ψ) c(i, a).

The gradient estimation algorithm obtained is identical to that presented above.

4.2 Rapproachment with other Gradient Estimation Methods

The aim of this subsection is to briefly compare the gradient estimation formula in Theo-
rem 3 with two other widely used gradient estimators in the literature, namely, realization
perturbation factors and the score function estimator.
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Realization Perturbation Factors: The implementation in Theorem 3 of the gener-
alized gradient was called “the swapping phantoms” in [29], because the phantom decisions
(those of the minus process) are swapped. In that paper the setting is a queueing system
with general state space and the terms in the sum were called the “difference process”.
In the context of a finite state Markov chain, these were called “realization perturbation”
factors in [9], when N → ∞. To recover the result therein, use the following argument.
In the long run, the fraction of steps where δia(k) = 1 is θia πi(θ), that is, the stationary
probability of the chain Zn = (Xn, un), which can be used to show that

Gia (Eψ[c(Z)]) =π̃i(θ)(1− θia)×

E

{
ν̃∑

n=0

[Eψ[c(Zn) | Z0 = (i, a)]− Eψ[c(Zn) | Z0 = (i, ũ)]

}
,

where ũ ∼ θ̃(a)i , and ν̃ is the coupling time of the two Markov chains. Using a conditioning
argument on the values of u, the above expression is equivalent to:

Gia

(
Eπ(ψ)[c(Z)]

)
=
∑

u∈A(i)

θia π̃i(θ)×

Eψ


τ̃(u)∑
n=0

[E[c(Zn) | Z0 = (i, a)]− E[c(Zn) | Z0 = (i, u)]

 ,
where (abusing notation) τ̃(u) is now the corresponding coupling time of the processes
started at (i, a) and (i, u). This is the familiar formula for the weight of the perturbation
realization factors in terms of stationary probabilities, in [9] and [10], see also [23, Lemma
3.75, pp.203]

Score Function Estimator of Bartlett & Baxter [4]: The Score Function estimator
can also be derived using the measure-valued approach. Let a random variable Z have value
i with probability pθ(i). Then

∂

∂θia
F (Z) =

∂

∂θia

∑
i

F (i) pθ(i) =
∑
i

(
∂

∂θia
ln[pθ(i)]

)
F (i)pθ(i) = Eψ[F (Z)S(θia, Z)],

where S(Z, θia) is known as the Score Function. In particular when estimating (43), con-
ditioning on Zn the method would yield

S(Zk+1, θia, Zk) =
1
θia
Aik,i(uk)1{Zk+1=(i,a)}

which requires knowledge of the transition probabilities. These can (of course) be esti-
mated as the Markov chain evolves. However more seriously, the estimator is not uniformly
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bounded in θ: when one or more components of the control parameter tend to zero (which
they do when a policy is pure instead of randomized) the estimator blows up. To overcome
this problem a Score Function estimator is used in [4] with the exponential parameteri-
zation, which gives a direct estimation of the scaled generalized gradient θiaGia. When
inserted in the formula for the chain rule, the Score Function estimator for the Markov
Chain is of the form

∑
n S(θia, Zn) and it is a well known problem that the variance in-

creases with time. Numerous variance reduction techniques have been proposed in the
literature [23] including regenerative estimation, finite horizon approximations and more
recently [4] propose to use a forgetting factor for the derivative estimator. Their method
suffers therefore of a variance/bias trade-off, while our estimation method is consistent and
has uniformly bounded variance (in N), as will be shown shortly.

5 Learning based Constrained MDP solution

In this section we show how to modify the gradient estimation algorithms of Theorems 2
and 3 to make them parameter free. That is, the algorithms presented below are simulation
based and do not require explicit knowledge of the transition probabilities of the constrained
MDP. As mentioned in the Section 1 this makes the stochastic approximation algorithm
(16) a viable alternative to neuro-dynamic programming methods (which typically cannot
handle constrained MDPs) and do not have fixed step size to track time varying parameters.

5.1 Gradient Estimators: The Doeblin and the Frozen Phantoms

Several implementations of the estimator (48) or (46) can be used. Because of Markov
chain coupling, once a phantom system is in the same state as the nominal system, their
evolution is identical in distribution. The differences between the phantom chains and the
nominal will become identically zero after coupling and we say then that the perturbation
from that phantom system “dies”.

In the literature (see [10, 9] and references therein) it is usually understood that a
simulation can be performed off-line. Efficiency of these estimators is mostly affected by
computational time, which depends on how many parallel phantom systems exists at a
given iteration, as well as the CPU time required to generate each of the new states in
these phantom systems. Because the processes start at different state values (i, a) and
(i, ũ), it is not straightforward to find a particular coupling that will minimize the time
for coupling τ(k), as explained in [10]. We experimented using independent and antithetic
decisions with no remarkable difference in performance. We call these phantoms as the
Doeblin phantoms, since the states of the phantom MDP’s are generated independently of
the current state. Figure 2 depicts the idea of coupling in this setting.

In our programs, a random number of parallel phantoms are living at any given iteration,
but the number of states was fixed, so we generate the next stateXn+1(k) from each possible
state i ∈ S and keep an array: all those phantom systems for which Xn(k) = i have already
coupled into one system.
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X  = i, u  = a k k

X  (k) = i, u  (k) = u k  k
Coupling with phantom: merge

ν (k)

Figure 2: Doeblin phantoms evolve in parallel until coupling with nominal

While the computational problems of the Doeblin phantoms are important, the most
important problem with this method is that it is based on off-line simulations of the
phantom chains. Recall that we are interested in a closed formula that can be evaluated as
a function of the observation of the nominal process {Xn(θ), un(θ)} and without explicit
knowledge of Aij(·). Formally, the Doeblin phantom processes {Z−(k) = (X−(k), u−(k))}
are not adapted to the natural filtration of the process {Zn} and parallel simulations are
required to reproduce a version of each phantom using (5) and (1). When Aij(u) is not
known, it is of course still possible to try to estimate the transition matrix concurrently
with the gradients. Instead, we propose a new method that overcomes this difficulty and
gives the basis for indirect control of the MDP.

Cut and paste techniques [13] are clever ways to use the observations instead of simu-
lating off-line: if a phantom system starts at state i and a given decision ũ ∈ A(i) \ {a},
the history of the process may be used as a stochastic version of this system: for example
one can wait until the nominal process has state-decision pair (i, ũ). From then on the cost
of the phantom system can be observed from the nominal path.

Our methodology is as follows: First, a cut-and-paste argument is used. The phantom
system is ‘frozen’ at the initial state for ν iterations, until the nominal system hits this
phantom state (which happens in finite time a.s.). Once the systems couple they follow
identical paths until the nominal system has completed N stages, at which point the
phantom system must complete the ν remaining steps. The novel idea that we introduce is
to filter these dynamics instead of simulating the remaining ν steps of the phantom systems.
Filtering the phantoms implies averaging out the dynamics of the phantom system so no
further detailed simulation is required. In addition to making our estimation model-free,
it turns out to be more efficient than the usual off-line simulations because no extra CPU
time is required.

This filtering of frozen phantoms is the motivation for our main result below.
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Theorem 4 Let {Zn} be a MDP governed by (5) and (10), with initial condition Z0 =
(i, a). Call δia(n) = 1{Zn=(i,a)}. Let {ũ(k)} be a sequence of iid random variables with

distribution θ(a)i in (47) or Yk in (44), independent of Fn. Furthermore, define:

ν(k) = min{n ≥ 1 : Zk+n = (i, ũ(k))}, and ĈN =
1
N

N∑
n=1

c(Zn). (49)

Let

L
�
= lim

N→∞
1
N

N∑
k=1

δia(k) × E

(
N∑

n=k

[c(Zn)− c(Zn(k))]

)
, (50)

where the expectation is w.r.t. ũ(k), and Zn(k) = (Xn(k), un(k)) is started at the point
(i, ũ(k)). Then a consistent estimator of E[L], which occurs in (48) and (46) is

1
N

N∑
k=1

δia(k)

[c(i, a)− c(i, ũ(k)] + k+ν(k)∑
n=k+1

c̃(Zn)− ν(k) ĈN

 (51)

Remark: The following are consistent estimators for the generalized gradient (48) and
gradient in spherical coordinates (46), respectively:

ĜN (i, a) =
(1− θia)
Nθia

N∑
k=1

δia(k)

[c(i, a)− c(i, ũ(k)] + k+ν(k)∑
n=k+1

c̃(Zn)− ν(k) ĈN

 (52)

ĜN (i, p) =
2 tan(αip)

N

N∑
k=1

δi,p−1(k)

[c(i, p− 1)− c(i, ũ(k)] +
k+ν(k)∑
n=k+1

c̃(Zn)− ν(k) ĈN


(53)

for p < d(i). The derivative w.r.t. αi,d(i) is obtained in an analogous manner and will be
omitted.

Proof: Consider the homogeneous Markov chain {Zn}. Because the chain is aperiodic
and irreducible in a finite state space, it is geometrically ergodic with a unique stationary
distribution. Hence there is a constant 0 < ρ < 1 so that for any function d : S → R, there
is a positive constant Kd <∞ such that

|E[d(Zn) |X0]− E[d(Z∞)| ≤ Kdρ
n a.s.,

where Z∞ has the stationary distribution of the chain. This in turn implies that for each
k, the sum of the difference processes is absolutely summable:

∞∑
n=1

|E[d(Zn) | Z0 = (i, a)]− E[d(Zn) | Z0 = (i, ũ)]| ≤ 2Kd

∑
n≥0

ρn <∞.
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This together with the dominated convergence theorem can be used to interchange limits
and expectations in (50) and establish that:

E[L] = lim
N→∞

1
N

N∑
k=1

E

(
δia(k)

N∑
n=k

(c(Zn)− E[c(Zn(k)])

)
where Zn(k) = (Xn(k), un(k)) is started at the point (i, ũ(k)) which follows (5) and (1).
Construct a version of this process via the nominal process {Zn}:

Zn(k) =


(Xn, un) n < k

(i, ũ) n = k ( if Xn = i)
(Xn+ν(k), un+ν(k)) n > k

The idea of the hitting time until the nominal reaches a phantom system is illustrated in
Figure 3.

X  = i, u  = a k k

X  (k) = i, u  (k) = u k  k

ν (k)

(...)

(...)

Ν
Ν − ν (k)

Last iterations ~ invariant distribution
of nominal when N is large.

Figure 3: Frozen phantoms wait until nominal hits the initial state.

Using this version of the process, for each k, the difference of the finite horizon sum in
the inner brackets is:

c(i, a)− c(i, ũ(k)) +
N∑

n=k+1

c(Zn)−
N+ν(k)∑

n=k+1+ν(k)

c(Zn)

= c(i, a)− c(i, ũ(k)) +
(k+ν(k))∨N∑

n=k+1

c(Zn)− 1{k+ν(k)<N}
N+ν(k)∑
n=N+1

c(Zn).

We now show that

lim
N→∞

1
N

N∑
k=1

δia(k)E

1{k+ν(k)>N}
N+ν(k)∑
N+1

|c(Zn)|
 = 0. (54)
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First, notice that |c(Zn)| < K1 is uniformly bounded because the state space is finite.
Define τ(u) = inf{k ≥ 1, Zk = (i, u)} as the first return time to state (i, u). Clearly for
each value of u ∈ A(i), the hitting time until the first return to (i, u) (starting from (i, a))
is bounded a.s. by τ(u). Because ν(k) is a first hitting time for some ũ(k) ∈ A(i), then
ν(k) ≤ τ a.s., where τ = max(τ(u) : u ∈ A(i)). This implies that for any N , the sum in
(54) is bounded by:

K1 E

(
τ

N

N∑
k=1

δia(k)1{τ>N−k}

)
.

The Markov chain {Zn} is positive recurrent, implying that τ is a.s. finite and Eτ =
θiu πi(θ) <∞ for some u ∈ A(i). Therefore for any ε > 0 there exists bε <∞ (independent
of N) such that E[τ1{τ>b}] < ε. Take N > bε and calculate:

K1 E

(
τ

N

N∑
k=1

δia(k)1{τ>N−k}

)

≤ K1 E

 τ
N

N−bε∑
k=1

1{τ>N−k} +
N∑

k=N−bε+1

1{τ>N−k}


≤ K1 E

(
τ

N

N−bε∑
k=1

1{τ>bε} +
bε∑
k=0

1{τ>k}

)

≤ ε+ bεEτ

N
,

which shows (54). With (54), it follows that:

E[L] = lim
N→∞

1
N

E

 N∑
k=1

δia(k)

c(i, a)− c(i, ũ(k)) + k+ν(k)∑
n=k+1

c(Zn)−
N+ν(k)∑
n=N+1

c(Zn)

 .
By the Markov property, the last sum above can also be expressed by

∑∞
m=0

c(Z(N)
n )1{m<ν(k)}, where Z

(N)
0 ∼ PN has the distribution of the N -step transition of the

nominal chain. This distribution converges to the invariant distribution as N grows. Be-
cause {Zk} is time homogeneous, the distribution of ν(k) (see (49)) is independent of k.
Therefore,

lim
N→∞

Eψ

∞∑
m=0

c(Z(N)
n )1{m<ν(k)} = E

∞∑
m=0

C(θ)1{m<ν(k)} = C(θ)E[ν(k)],

which completes the proof, because ν(k) are uniformly bounded in N and ĈN → C(θ) a.s.
so the expectation of the product will converge to C(θ)E[ν(k)]. ✷
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Notice that the estimator ĜN is not measurable w.r.t. FN (θ), because for those values
of k ≈ N for which k + ν(k) > N it requires observations “into the future” or off-line
simulations. Nonetheless, from the proof of (54) it follows that the truncated estimator:

1
N

N∑
k=1

δia(k)

[c(i, a)− c(i, ũ(k)] + (k+ν(k))∨N∑
n=k+1

c̃(Xn, θ)− ν(k) ĈN


is also a consistent estimator of LN . In order to apply stochastic approximation, however
we will not truncate the estimation.

5.2 Numerical Comparison of Gradient Estimators

System Parameters

We simulated the system

A(0) =
(
0.9 0.1
0.2 0.8

)
, A(1) =

(
0.3 0.7
0.6 0.4

)
, A(2) =

(
0.5 0.5
0.1 0.9

)
.

The action probability matrix (θ(i, a)) and cost matrix (c(i, a)) were chosen as:

(θ(i, a)) =
[
0.2 0.6 0.2
0.4 0.4 0.2

]
, (c(i, a)) = −

[
50.0 200.0 10.0
3.0 500.0 0.0

]
Gradient Estimates in Canonical Coordinates

Using canonical coordinates, the theoretical values of the generalized gradient for this
problem are:

G[C(θ)] =
( −9.010 18.680 −9.670
−45.947 68.323 −22.377

)
. (55)

When computing the generalized gradient estimators it is often necessary to normalize
the result: even if

∑
a Gia[F (θ)] = 0 for all F , numerical errors often make the estimation

biased. Because it is important to maintain feasibility, we normalized the results of the
estimation using:

yia = Ŷia − |Ŷia|
∑

a∈A(i) Ŷia∑
a∈A(i) |Ŷia|

where Ŷ are the observations and y the corresponding normalization. The normalized
estimation using (48) with Doeblin phantoms, is called ĜDoeblin

N , and that of (52) is called
ĜFrozen

N . Confidence intervals were estimated at level 0.05 using the normal approximation
with 100 batches. For batch sizes N = 100 and 1000, respectively the gradient estimates
are (to be compared with the theoretical values in (55)):
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ĜDoeblin
100 =

( −7.548± 0.580 16.594± 0.602 −9.046± 0.548
−45.209± 1.620 67.315± 1.519 −22.106± 1.678

)

ĜDoeblin
1000 =

( −7.997± 0.198 17.351± 0.195 −9.354± 0.186
−46.738± 0.456 69.668± 0.462 −22.929± 0.534

)

ĜFrozen
100 =

( −7.851± 0.618 17.275± 0.664 −9.425± 0.594
−44.586± 1.661 66.751± 1.657 −22.164± 1.732

)

ĜFrozen
1000 =

( −8.361± 0.215 17.928± 0.240 −9.566± 0.211
−46.164± 0.468 68.969± 0.472 −22.805± 0.539

)
The variance of the unnormalized estimators is shown in Table 1, together with the cor-

responding CPU time. Clearly to achieve the same precision the Doeblin phantoms require
doubling the simulation time. The obvious advantage of our estimator is that calculations
do not require knowledge of the transition probabilities but only the observation of the
process. In addition, as clearly shown in Table 1, the extra computation required for our
estimation is negligible. we performed a series of results using different parameters and all
behaved in the same manner.

N = 1000 Var[ĜDoeblin
N ] Var[ĜFrozen

N ]
i = 0 1.022 0.995 0.908 1.180 1.506 1.159
i = 1 5.420 5.562 7.444 5.700 5.800 7.565
CPU 4 secs. 2 secs.

Table 1: Variance of Doeblin phantom vs Frozen phantom, canonical coordinates

As mentioned in Section 1.5 the closest approach to the algorithms in this paper is
that in [4] which uses a score function method to estimate the gradients. We simulated
this score function method of [4] for gradient estimation with the following parameters:
forgetting factor 1 (otherwise the estimates are biased), batch sizes of N = 1000 and 10000.
In both cases a total number of 10, 000 batches were simulated which required CPU times
of 1348 seconds and 13492 seconds, respectively. The variance of the estimates are given
Table 2.

ĜScore
10000 =

( −3.49± 5.83 16.91± 7.17 −13.42± 5.83
−41.20± 14.96 53.24± 15.0 −12.12± 12.24

)

ĜScore
1000 =

( −6.73± 1.84 19.67± 2.26 −12.93± 1.85
−31.49± 4.77 46.05± 4.75 −14.55± 3.88

)
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N = 1000 Var[ĜScore
N ]

i = 0 89083 135860 89500
i = 1 584012 593443 393015
CPU 1374 secs.

N = 10000 Var[ĜScore
N ]

i = 0 876523 1310900 880255
i = 1 5841196 5906325 3882805
CPU 13492 secs.

Table 2: Variance of Score Function estimator

Gradient Estimates in Spherical Coordinates

For the same data, the parameterization in spherical coordinates yields the following theo-
retical values for the gradient, using again N = 100, 1000 for the batch size, and 10 batches
for the estimation of variances.

∇αCN (α) =
(
45.05 −55.07
187.58 −159.91

)
The gradient estimates are

∇̂CDoeblin

100 =
(
41.720± 4.695 −55.096± 1.464
197.166± 8.062 −164.701± 4.610

)
∇̂CDoeblin

1000 =
(
41.703± 1.278 −53.667± 0.455
191.249± 2.858 −167.048± 1.228

)
∇̂CFrozen

100 =
(
43.333± 4.791 −54.191± 2.096
196.956± 8.951 −161.200± 4.918

)
∇̂CFrozen

1000 =
(
44.322± 1.323 −53.656± 0.712
189.549± 2.829 −164.329± 1.231

)
The variance matrix is in Table 3. Although estimation of the gradients required the

same amount of CPU time as the generalized gradient, when implementing an on-line
control some extra computational time must be added in calculating the trigonometric
expressions necessary to change coordinates every time that an update of the control
variables is performed.

N = 1000 Var[∇̂CDoeblin

N ] Var[∇̂CFrozen

N ]
i = 0 42.558 5.404 45.604 13.206
i = 1 212.74 39.26 208.43 39.431
CPU 4 secs. 2 secs.

Table 3: Variance of Doeblin phantom vs Frozen phantom, spherical coordinates

It is clear from our experiments that the frozen phantom implementation not only is
robust (thus more appropriate when the underlying parameters are unknown) but also
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more efficient: the CPU time is about half of that using Doeblin phantoms, yet their
variances are comparable.

5.3 Statistical Properties of frozen phantom estimators

We will assume that the model satisfies the Assumptions 1 and 2. as well as:

Assumption 3 The random time for coupling has uniformly integrable variance:

sup
α

Eψ

(|νi,a(k)|2) <∞,

where the hitting time is defined by:

νi,a(k) = 1 +min{n > 0: Xk+n = i, uk+1 = a |Xk = i, uk = a}.

For any function of the state f(Z), we will use a capital letter to denote the invariant
average, namely:

F (α) =
∑

(i,a)∈Z
πi,a(α)f(i, a).

An estimation interval is an interval of N steps of the underlying MDP {Zk} dur-
ing which the observations are averaged to form the various estimation terms. The n-th
“batch” for the estimation comprises all steps k such that

k ∈ In ≡ {nN + 1, . . . (n+ 1)N} (56)

The sample average of batch n will be denoted:

F̂n =
1
N

(n+1)N∑
k=nN+1

f(Zk), (57)

the total running average ˆ̂
Fn and exponentially discounted running average ˆ̂

F δ
n up to batch

n will be denoted by

ˆ̂
Fn =

1
n

n−1∑
m=0

F̂m = ˆ̂
Fn−1 +

1
n

(
F̂n−1 − ˆ̂

Fn−1

)
, (58)

ˆ̂
F δ
n = ˆ̂

F δ
n−1 + δ

(
F̂n−1 − ˆ̂

F δ
n−1

)
, δ ∈ (0, 1) (59)

Define the index of the first “living phantom” at time n by:

φ(n) = min{k ≤ n : ν(k) + k ≤ n}
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From the results in Section 5 the frozen phantom estimators of the various components
(i, p) of the gradient are all of the generic form:

F̂ ′
i,p(n) =

Kip(α)
N

(n+1)N∑
k=φ(nN+1)

δip(k)

f(i, a)− f(i, ũk) +
(k+ν(k))∨(n+1)N∑
j=(k+1)∧(nN+1)

f(Zj)− ν(k)Γ̂n1{ν(k)+k∈In}


(60)

where a = p − 1 and we have omitted the subscript i, ũk from ν(k). The constant
Kip(α) is related to the derivative of θ(α) and the indicator δip is related to the sampling
frequencies for phantom production. The term Γ̂n refers to an estimator of F (α) that must
consider observations of f(Xn, un) in In (56) and may also consider past observations. The
truncation of the sum is illustrated in Figure 4.

ν( k)

nN (n+1)Nk

Figure 4: Estimation by batches

Lemma 4 If Γ̂n is replaced by the actual average F (α) in (60) then Eπ(ψ)[F̂ (0)] = ∇αF (α).

Proof: Notice that under the stationary measure consecutive estimators have the same
distribution (although they are not independent), because the invariant distribution of
the number of living phantoms at the start of the interval is independent of n. From the
ergodicity of the underlying MDP, Eπ(ψ)[F̂ (0)(n)] = limn→∞(1/n)

∑(n−1)
m=0 F̂

(0)(m). Because
the estimation by batches considers breaking up the partial sums of the estimation, then
the difference:

1
n

(n−1)∑
m=0

F̂ ′
i,p(m)− Kip(α)

nN

nN∑
k=1

δip(k)

f(i, a)− f(i, ũk) + k+ν(k)∑
j=(k+1)

f(Zj)− ν(k)F (α)


tends to zero in absolute value, a.s., which follows from Assumption 3. From the results in
Section 5.1 the RHS converges a.s. to ∇αF (α) as n→ ∞, for any fixed value of the batch
size N , which establishes the claim. ✷

The above claim is the key to the characterization of the asymptotic bias of the stochas-
tic approximation and it can be used as well to implement diverse variants of the estimation
aimed at reducing the corresponding bias. Which variant to use depends mostly on the
application.
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Corollary 1 Assume that Eπ(ψ)Γ̂n = F (α) is an unbiased estimator under the invariant
measure of the process. Then the bias of the estimation per batch is given by:

Eπ(ψ)[F̂ ′(n)]−∇αF (α) =
Kip(α)
N

∑
k : k+ν(k)∈In

δip(k)Covπ(ψ)(ν(k), Γ̂n). (61)

Implementation Issues:

• If N is sufficiently large, then the sample average estimator F̂n (57) has a small
variance (of order 1/N) and using this for Γ̂n in (60) may result in a negligible bias.

• If frequent updates are required for the algorithm, one may want to favor small batch
sizes, in which case the bias may be reduced using a series of alternative solutions:

– Shift the estimator, setting Γ̂n = F̂n−s as the sample average obtained s batches
before. Because of the Markovian structure of the process the correlation will
decrease as s increases. However this may yield slow adaptation behavior in
practice.

– Use Γ̂n = ˆ̂
Fn (58) as the total running average. Although this would yield an

asymptotically (n → ∞) unbiased estimator, the use of running averages may
not be very convenient when tracking.

– Adapt the running average to either a truncated window average of the form
Γ̂n = 1

s

∑n
m=n−s F̂m, or use the exponentially discounted average Γ̂n = ˆ̂

F δ
n (58).

6 Stochastic Approximation Algorithms and Convergence

In this section we present weak convergence proofs for the learning algorithms that use
the parameter free gradient estimators (frozen phantoms) of Section 5.1. These learning
algorithms are stochastic versions of the deterministic algorithms presented in Section 2
(unconstrained case) and Section 3 (constrained case). The algorithms assume that the
transition probabilities are unknown, and only observations of the states of the dynamic
process are available. Under these conditions the cost and constraint functions are not
analytically available, and neither are their gradients. Using the simulation-based formula
(60) for the estimation of the gradients with the local sample averages for the estimation of
the cost and constraint functions may lead to a bias, thus making the algorithm suboptimal.

The focus of this section is to point out the actual bias as well as indications to reduce
or eliminate this bias based on the results of Section 5.3, mainly from Corollary 1.
Notation: In the sequel we will use the following expectation operators: Eπ(ψ) denotes
expectation w.r.t measure π(ψ) parameterized by ψ; Eψ denotes expectation w.r.t the
underlying probability measure of {Z1, . . . , ZN}, where N ≥ 1 is a fixed positive integer
(see also Remark following Theorem 3). In Section 4 we will use E to denote expectation
w.r.t. to the distribution of certain simulated random variables called phantoms.
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6.1 Convergence Proof for Unconstrained MDP

Weak convergence of the stochastic approximation algorithms (23), (25) to the determin-
istic ODEs (22), (24), respectively, can be established by well known results in stochastic
approximations, see [21]. To simplify the exposition assume that estimation of the various
gradients is performed over observation intervals of N ≥ 1 transitions, during which ψ is
kept constant. At the end of these estimation intervals the control values ψ are updated.

For a weak convergence proof of the generalized gradient stochastic approximation
algorithm (23) simply substitute ψ(n) = θ(n), ψ(t) = θ(t), Y (n) = θ(n)Ĝiu[C(θ(n))],
g(ψ) by RHS of the ODE (22) in the following theorem. For a weak convergence proof
of the spherical coordinate stochastic approximation algorithm substitute ψ(n) = α(n),
ψ(t) = ϕ(t), Y (n) = ∇̂αC[α(n)], g(ψ) by the RHS of the ODE (24).

Theorem 5 Consider the recursion:

ψ(n+ 1) = ψ(n) + ε Y (n), (62)

where

• Y (n) is FnN -measurable and uniformly integrable,
• there exists a continuous and locally bounded function g(ψ) such that:

lim
m→∞

1
m

Eψ

m∑
n=1

Y (n) = g(ψ), and

• The ODE
dψ(t)
dt

= g(ψ(t)) (63)

has a unique solution for every initial condition and the set of stable points is non
null.

Then as the constant step size εi → 0, the interpolated process ψε(·) converges weakly (in
distribution) to the solution of the ODE (63), where:

ψε(t) = ψ(n), for all t ∈ [nε, (n+ 1)ε).

Numerous variants of Theorem 5 exist, taking account of weaker conditions, decentral-
ized operation of the control agents (components of θ or α), etc. For our purposes Theorem
5 will suffice to characterize the asymptotic (local) optimality of our learning algorithms.

6.2 Convergence Proof for Constrained MDP

Here we present the weak convergence proofs of the stochastic versions of the three deter-
ministic algorithms presented in Section 3.1, Section 3.2 and Section 3.3 for constrained
MDPs.
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For notational convenience we only consider equality constraints here (as mentioned in
Section 3.2 the inequality constraints can be handled with minor modifications) so that
the constrained MDP problem (12), (13), (14) reads

min
αi∈Rd(i),i∈S

C(α)

s.t. Bl(α) = 0, l = 1, . . . , L

A control “agent” is associated with each of the possible visited states i ∈ S. The
control parameter for this agent is the vector (αip, p ∈ P(i)), plus an agent for the (artificial
control) variable representing the Lagrange multiplier λ. The scheme works by observing
the process over an estimation interval, during which the value of the control parameter
does not change and the estimators Ĉε(n), B̂ε(n) for the sample averages are calculated,
along with the gradient estimators (60) of the form ∇̂Cε

(n), ∇̂Bε
(n). Notice that the

computation of each partial derivative can be made locally at each controller. Throughout
this section suppose that Assumptions 1, 2 and 3 hold. In addition, let:

h0(α) = Eπ(ψ)[∇̂Cε(n)], hl(α) = Eπ(ψ)[∇̂Bε
l (n)],

be the invariant averages of the batch estimation (refer to Section 5.3).

6.2.1 First-Order Primal Dual Algorithm. Consider the stochastic approximation
procedure where the control parameter (α, λ) is updated with (c.f. (28), (29))

αε(n+ 1) = αε(n)− ε
(
∇̂Cε

(n) +
L∑
l=1

(
λεl (n) + ρB̂

ε
l (n)
)

∇̂Bε

l (n)

)
(64)

λε(n+ 1) = λε(n) + ε B̂ε(n) (65)

Proposition 1 Define the interpolated process αε(t) as in (30) and analogously for λε(t).
Then as ε → 0, the interpolated process converges in distribution to the solution of the
ODE (c.f. (33))

d

dt
α(t) = −

(
h0[α(t)] +

L∑
l=1

(λ̄l + ρBl[α(t)])hl[α(t)] + κ[α(t)]

)
(66)

d

dt
λ(t) = B[α(t)],

where the added drift is defined as:

κ(α) = ρ lim
n→∞

L∑
l=1

Covπ(ψ)[B̂
ε
l (n), ∇̂Bε

l (n)].
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Proof: The result follows by direct application of Theorem 5, see also [18]. Indeed, the
uniform integrability of the updates is ensured by Assumption 3, while continuity of the
invariant expectations follows from Assumption 1. To characterize the drift functions, use:

Eπ(ψ)

(
B̂ε
l (n)∇̂B

ε

l (n)
)
= Eπ(ψ)(B̂

ε
l (n))Eπ(ψ)(∇̂B

ε

l (n)) + Covπ(ψ)[B̂
ε
l (n), ∇̂Bε

l (n)],

which establishes the result. ✷

Remark: Trade-off Between Bias and Tracking Ability. The three sources of bias
in the stochastic approximation algorithm (64), (65) are the bias in the estimates ∇̂B, ∇̂C
and B̂. In [2] we present several numerical examples that study the effect of this bias.

A quick mathematical artifice (with little practical value) for eliminating the bias is to
use batch sizes N(ε) → ∞ as ε → 0. Then the ODE (66) becomes identical to (33). In
the numerical examples of [1] we chose N = 1000 – recall for finite N the bias is O(1/N).
Although choosing N(ε) → ∞ is theoretically appealing, it is of no practical use since the
algorithm will not respond to changes in the optimal policy caused by time variations in the
parameters of the MDP. In [2] we us estimation intervals of length N = 5, 10 observations
to update often, and our results can be implemented even for N = 1.

Indeed, the bias in the gradient estimates ∇̂B, ∇̂C can be eliminated asymptotically
using the running averages in (58). Then the only source of bias is B̂ – this gives rise to the
term κ(α) in the ODE (66). Of course the bias in B̂ can also be eliminated asymptotically
using the running average (58) in which case κ(α) = 0.

On the other hand, the running averages (58) do not respond to changes in the un-
derlying parameters (e.g. transition probabilities) of the MDP since they are decreasing
step size algorithms. Hence they cannot be used for tracking time varying optimal poli-
cies. To handle this tracking case, we use the exponentially weighted running averages of
(58). Using a two time scale stochastic approximation argument it is easily shown [19]
that if ε/δ → 0, e.g., if δ =

√
ε, and ε → 0, then the estimates are unbiased. In practical

implementation, for non zero δ, the estimates are biased.

6.2.2 Augmented Lagrangian Multiplier Algorithm. Consider the following sto-
chastic approximation version of the multiplier algorithm (37):

αε(n+ 1) = αε(n)− ε
(
∇̂Cε

(n) +
L∑
l=1

((λεl (n) + ρB[α
ε(n)]) ∇̂Bl

ε
(n)

)
. (67)

where {λε(n), ε > 0, n ∈ N} is any tight sequence. A trivial example is when λε(n) is a
bounded constant (a.s.).

The following result regarding the weak convergence of (67) is proved in the appendix.
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Proposition 2 Assume that {λε(n), ε > 0, n ∈ N} is tight. Define the interpolated process
αε(t) of (67) as in (30). Then as ε → 0, the interpolated process αε(t) converges in
distribution to the solution of the ODE:

dα(t)
dt

= −
[
h0[α(t)] +

L∑
l=1

(λ̄l + ρBl[α(t)])hl[α(t)] + κ[α(t)]

]
, (68)

where λ̄l is an accumulation point of the sequence {λ̄(ε), ε > 0} of (convergent) Cesaro
sums:

λ̄(ε) ≡ lim
N→∞

1
N

N∑
n=1

λε(n),

and the added drift is defined as:

κ(α) = ρ lim
n→∞

L∑
l=1

Covπ(ψ)[B̂
ε
l (n), ∇̂Bε

l (n)].

Remark: In particular, if one uses Γ̂ε(n) = ˆ̂
F in the gradient estimation and also Ĝε(n) =

ˆ̂
Bn (58), then the ODE (68) reduces to (38) – which is the ODE for the deterministic fixed
multiplier algorithm. Then Result 1 of Section 3.2 applies which implies that αn converges
weakly to a near optimal, provided that the pair (λ̄, ρ) is well chosen.

Consider the following update of the multiplier λ in (67). Define J =  1/ε! and consider
the recursion

λ(n+ 1) = λ(n) + B̄(n/J)1{n
J
∈N} (69)

together with (67). Thus the multiplier is updated once every J time points. Here

B̄(n/J) =
1
J

nJ∑
j=(n−1)J+1

B̂(j)

If Γ̂n = ˆ̂
Fn in (60) and B̂ε

l (n) =
ˆ̂
Bn in (67), then as ε→ 0, the algorithm (69), (67) converges

weakly to the deterministic system (34), (35) which is the exact multiplier algorithm.
As mentioned in Section 3.2 this in turn converges to a local KT point. In a practical
implementation, one would choose J as a large positive integer, In our numerical examples
even a choice of J = 10 resulted in convergence to a KT point.
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6.2.3 Projected Gradient Primal Algorithm. Consider now the stochastic version
of the projection algorithm:

α̃ε(n+ 1) = αε(n)−ε∇̂Cε
(n) (70)

µεj+1(n) =
(
µε(n)−ε̄

[
∇̂Bε

(n)′ ∇̂Bε
(n)µεj(n)−B̂ε(n)+∇̂Bε

(n)(α̃(n+ 1)−α(n))
])

+

(71)

µε0(n+ 1) = µεJ(n)

αε(n+ 1) = α̃ε(n+ 1)−∇̂Bε
(n)µ(n+ 1). (72)

Using the known methods of [21], if the projection was accurate, then a modification
of Theorem 5 would yield the result that the interpolation process converges weakly as
ε → 0 to the solution of the corresponding projected ODE. By “accurate” we mean that
B(αε(n)),∇B(αε(n)) be exact in the updates of µε(n). This follows because even if B(·)
has been linearized to solve for the projection, from uniform boundedness of the gradients
in Assumption 1 there is a small enough value of ε that bounds the error of the linear
approximation within any specified tolerance.

The only way that accuracy can be obtained for µε(·) to converge to the projection
(within a tolerated error) is that the estimation be strongly consistent. That is, for the
terms ∇̂Bε

(n) one need to implement (60) in a manner such that for the fixed α process,

∇̂Bε
(n)′∇̂Bε

(n) → ∇B(α)′∇B(α), a.s

A straightforward solution to this estimation problem is simply to use running averages
in (58) as well as for the gradient itself.

7 Numerical Examples

Extensive numerical studies of the stochastic approximation algorithms for optimizing the
constrained MDP are given in [1] and [2]. Here we report a few of these examples.

7.1 Example 1: Learning Algorithm for MDP with 2 constraints

Here we consider the stochastic adaptive control of the following constrained MDP:
S = {0, 1}, A(i) = {0, 1, 2}, i ∈ S (i.e., d(0) = d(1) = 2),

A(0) =
(
0.9 0.1
0.2 0.8

)
, A(1) =

(
0.3 0.7
0.6 0.4

)
, A(2) =

(
0.5 0.5
0.1 0.9

)
.

The cost matrix (c(i, a)), two constraints (L = 2) matrices (β1(i, a)), (β2(i, a)) are

(c(i, a)) = −
[
50 200 10
3 500 0

]
, β1 =

[
20 100 −8
−3 4 −10

]
, β2 =

[
10 −20 22
−19 17 −15

]
.
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The optimal control policy incurs a cost of -111.80 (or equivalently a reward of 111.80)
and is randomized with probabilities (18)

θ∗ =
[
0 0.2 0.8
0 0.28 0.72

]
.

We illustrate the performance of the learning algorithm using the stochastic approxima-
tion versions of the multiplier algorithm (Section 6.2.2) and gradient projection algorithm
(Section 6.2.3). These algorithms assume no knowledge of the transition probabilities.
The batch size used for the frozen phantoms to estimate the gradient is N = 1000. The
algorithms run for n = 1, . . . , 10, 000 batches. The algorithms were initialized with initial
parameter θ(0) = (θia(0)) as

θ(0) =
[
0.1 0.1 0.8
0.4 0.1 0.5

]
.

Since the performance of the deterministic algorithms for the constrained MDP form the
basis for the stochastic versions, we also illustrate the performance of the correspond-
ing deterministic algorithms presented in Section 3. These assume full knowledge of the
parameters and theoretical values of the derivatives.

Figure 5 shows the reward (negative cost) trajectories of the fixed multiplier algorithm
with ρ = 5, ε = 5 × 10−6, λl = 1.0, l = 1, 2 We found the algorithm quite insensitive to
choice of the multiplier λ. The policy estimate at n = 10, 000 is

θ̂∗ =
[
0 0.192 0.808
0 0.275 0.724

]
The performance of the inexact multiplier method was very similar and hence omitted.

Figure 6 shows the reward (negative cost) trajectories of the gradient projection primal
algorithm with step sizes ε = 1 × 10−6 and ε̄ = 1 × 10−3. The algorithm gets trapped
at a local maximum with cost approximately -95. In Figure 7 we initialized the gradient
projection primal algorithm with policy

θ(0) =
[
0.1 0.1 0.8
0.0 0.2 0.8

]
.

The algorithm converges to the global maximum.
In general we found that the the primal dual, multiplier algorithm and gradient projec-

tion algorithms performed comparably.
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Figure 5: Fixed multiplier Algorithm
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Figure 6: Projected Gradient Primal Algorithm
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Figure 7: Projected Gradient Primal Algorithm with different initial condition

7.2 Example 2: Learning Algorithm for Constrained MDP with
unknown time-varying transition probabilities

The previous section dealt with large batch sizes N = 1000. For this case, the bias in the
estimates of the gradients and constraints is virtually zero and all three algorithms perform
similarly. However, for tracking MDPs with time varying parameters (e.g. transition
probabilities) often one needs the algorithm to operate on smaller batch sizes so as to
respond faster Here we consider a smaller batch size N = 10 and examine the effect of
exponential discounted weighting described in Section 5.3.

We consider adaptive stochastic control of the following time-varying constrained MDP:
For time n ≤ 4000, identical parameters to Section 7.1 with optimal cost -111.80. For
4000 < n ≤ 12000, the transition probabilities are

A(0) =
[
0.5 0.5
0.5 0.5

]
, A(1) =

[
0.9 0.1
0.1 0.9

]
, A(2) =

[
0.5 0.5
0.45 0.55

]
This has an optimal cost of -44.52 (i.e. reward of 44.52).

We only present results for the primal dual based stochastic gradient algorithm here
– see the paper [2] which gives several other numerical examples with small batch sizes
for the projected gradient and multiplier algorithm. The algorithm was initialized with
randomized policy

θ(0) =
[
0.1 0.1 0.8
0.0 0.2 0.8

]
.
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Figure 8 illustrates the performance of the primal dual based stochastic approximation
algorithm. The parameters used are in the primal dual algorithm are ρ = 100, ε = 2×10−7

(see (64), (65)).
The choice of the discounting factor δ (58) in the primal dual method clearly shows the

trade off between bias and tracking ability in Figure 8. For δ = 1.0, the algorithm has fast
tracking properties but a large bias. For δ = 0.5 and δ = 0.1 the bias gets smaller.

Overall we found the primal dual and fixed multiplier based stochastic gradient algo-
rithms easiest to use since they have very few parameters (step sizes) to tune.
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Figure 8: Primal dual algorithm based stochastic adaptive controller

8 Conclusions and Extensions

In this paper simulation based gradient algorithms have been presented for adaptively
optimizing a constrained average cost finite state Markov decision process. First a pa-
rameterization of the randomized control policy using spherical coordinates was presented.
Then a novel measure-valued gradient estimator using frozen phantoms was presented. As
illustrated in Section 5.2, this gradient estimator has much smaller variance than score
function based gradient estimators. The measure-valued gradient estimator was then used
in a stochastic gradient algorithm with fixed step size in order to track time varying Markov
decision processes with unknown transition probability matrices. For the unconstrained
case, these algorithms are optimal in that they converge weakly to a local minimum. For
the constrained case the algorithms are near optimal in that the algorithms converge weakly
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to a local minimum with a bias – however, this bias is identifiable and can be made neg-
ligible. In extensive numerical examples throughout the paper (Section 2.3, Section 5.2,
Section 7), the various steps in the design of the above simulation based adaptive controller
are examined.

In a companion paper [2], a detailed numerical study of the frozen phantoms (parameter
free gradient estimators) is conducted. The effect of moving averages and exponentially
discounted averages on the bias is also studied. See also [1] for further numerical examples.
In current work, we are examining applications of the techniques in this paper to admission
control of wireless networks. As mentioned in Section 1, in this case the quality of service
and blocking probability constraints naturally translate into constraints on the MDP.

Given that the proposed adaptive controller is a fixed step size stochastic approximation
algorithm, several variations such as iterate averaging [21, Chapter 11], adaptive step size
updating [21, Section 3.2] and decentralized asynchronous implementation [21, Chapter
12] are possible. It is also worthwhile examining the use of similar methods for partially
observed Markov decision processes.

9 Appendix: Proof of Proposition 2

Proof: First, from tightness of {λε(n)}, it follows that the family {λ̄(ε)} of (deterministic)
averages lies in a compact set, thus the accumulation points λ̄ exist.

From Assumption 3 and tightness of {λε(n)}, it follows that the sequences {(αε(n+1)−
αε(n)/ε)} is uniformly integrable, which implies that {αε(n)} is tight. Therefore for any
sequence (αεk(·), λ(εk)) there is at least one (weakly) convergent subsequence with a.s. Lip-
schitz continuous limit (refer to [21]). For the rest of the proof, until specified, assume that
ε labels a weakly convergent subsequence (to avoid the εk cumbersome indexing). We will
now identify the limits of such convergent subsequences and show that they all satisfy the
same ODE. Also to ease the notation in the proof, call Y ε

0 (n) = ∇̂Cε(n), Y ε
l (n) = ∇̂Bε

l (n).
From the definition (30) it follows that:

αε(t+ s)− αε(t) = −ε
�(t+s)/ε�−1∑
n=�t/ε�

[
Y ε

0 (n) +
L∑
l=1

λεl (n+ 1)Y ε
l (n)

]
.

Divide now the interval (t, t + s] into subintervals of small size δε containing each a
number nε of updates, as shown in Figure 9.

Using the δε grouping of subintervals, one obtains the telescopic sum:

αε(t+ s)− αε(t) = −
�(t+s)/δε�−1∑

l=�t/δε�
δε ×
 1
nε

(l+1)nε−1∑
j=lnε

[
Y ε

0 (j) +
L∑
l=1

λεl (j + 1)Y ε
l (j)

] .
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δ ε

εn ε
t t+s

Figure 9: δε = εnε. Condition: δε → 0, nε → ∞ as ε→ 0.

We now show that if Fε(t) denotes the σ-algebra generated by the interpolated process
up to time t, then:

E(αε(t+ s)− αε(t) | Fε(t)) ≈
�(t+s)/δε�−1∑

l=�t/δε�
δε

(
h0[αε(lnε)] +

L∑
l=1

(λ̄l(ε) +Bl[αε(lnε)])hl[αε(lnε) + κ[αε(lnε)]

)
(73)

where the expectation of the absolute error in the vanishes as ε → 0. Let Elnε denote
the expectation conditioning on the information available up to the start of the current
small subinterval of size δε. Use now conditional expectations to express E(Y ε

l (j) | Fε(t)) =
E[Elnε(Y

ε
l (j)) | Fε(t)], lnε ≤ j < (l + 1)nε for each term in the telescopic sum l = 0, . . . , L.

That is, we use a filter of the terms, focusing on each of the averages within subintervals.
Because one is interested in averages, any version of the process {αε(n)} can be used

to characterize these conditional expectations. In particular, Skorohod representation es-
tablishes that there is a process α̃ε(n) for each ε in the weakly convergent subsequence,
such that α̃ε(n) has the same distribution as αε(n) and it converges with probability 1 to
the same a.s. continuous limit α(t) (see [21]). Because α(t) is Lipschitz continuous w.p.1,
‖α(lδε + δε)− α(lδε)‖ = O(δε) and since α̃ε(n) converges w.p. 1, it follows that

sup
lnε≤j<(l+1)nε

‖α̃ε(j)− α(lδε)‖ → 0 a.s.

which implies that the underlying distribution of the batch estimators Y ε
l (j), j = lnε, . . . , (l+

1)nε − 1 converges to that of the fixed-ψ MDP at the parameter value ψ = α(lδε). Using
the fact that αε(lnε) converges in distribution to α(lδε), it follows that:

Elnε

 1
nε

(l+1)nε−1∑
j=lnε

[
Y ε

0 (j) +
L∑
l=1

λεl (j + 1)Y ε
l (j)

]
= Elnε

 1
nε

(l+1)nε−1∑
j=lnε

Eψ

[
∇̂Cε

0(j) +
L∑
l=1

(λεl (j) + B̂
ε(j)) ∇̂Bε

l (j)

] .
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The batch estimation procedure that we have suggested takes into account only new
information on each estimation interval. Given the initial state value (with the aggregated
information about the living phantoms), and the value of λεl (j), the expectation for the
fixed ψ process of the gradient estimator ∇̂Bε

l (j) is independent of λ
ε
l (j). As nε → ∞,

the underlying process {Zn} will have the stationary distribution for the j-th estimation
batch, so that:

Elnε

 1
nε

(l+1)nε−1∑
j=lnε

[
Y ε

0 (j) +
L∑

l=1

λε
l (j + 1)Y ε

l (j)

]
= h0[αε(lnε)] +

L∑
l=1

hl[αε(lnε)]Elnε

 1
nε

(l+1)nε−1∑
j=lnε

λε
l (j)

+ ρEπ(ψ)[B̂ε
l (n) ∇̂Bε

l (n)]


≈ h0[αε(lnε)] +

L∑
l=1

(λ̄(ε) + ρB[αε(lnε)])hl[αε(lnε)] + κ[αε(lnε)],

which establishes (73). Define now a piecewise constant function (on the δε-subintervals):

Gε(αε(t), λ̄(ε)) = h0[αε(lnε)] +
L∑
l=1

(λ̄l(ε) + ρB[αε(lnε)])hl[αε(lnε)] + κ[αε(lnε)],

for δε ≤ t < (l + 1)δε, then (73) implies that:

E(αε(t+ s)− αε(t) | Fε(t)) ≈
∫ t+s

t
Gε[αε(s), λ̄(ε)] ds (74)

which implies that the limit process is a martingale with zero quadratic variation. For a
detailed presentation of this methodology the reader is referred to [21]. Taking now the
limit along the weakly convergent subsequence, αε(t) → α(t), λ̄(ε) → λ̄ establishes the
limiting ODE for this subsequence.

✷
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