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August, 2003

Les Cahiers du GERAD

G–2003–49

Copyright c© 2003 GERAD

∗Research supported by NSERC Canada.



Abstract

Using an inifinite-horizon two-player differential game, we derive and compare
Bertrand and Cournot equilibria, for a differentiated duopoly engaging in process R&D
competition. The main findings of this study are as follows. First, Bertrand competi-
tion is more efficient if either R&D productivity is low, or products are very different.
Second, Cournot competition is more efficient provided that R&D productivity is high,
products are close substitutes and spillovers are not close to zero. This last result is
different from what has been obtained in the literature. This shows hence that con-
sidering a dynamic model and more general investment costs do have an impact on
efficiency results.

Keywords: Differential games, Research and development, Bertrand equilibrium,
Cournot equilibrium, Social optimum, Duopoly.

Résumé

On considère un jeu différentiel à deux joueurs et à horizon infini où les joueurs
investissent en R&D pour réduire leurs coûts de production. On calcule et on com-
pare les équilibres de Bertrand et de Cournot. Les résultats sont comme suit. La
concurrence à la Bertrand est plus efficiente si la productivité de la R&D est basse ou
si les produits sont très différents. Par contre, si la productivité de la R&D est élevée,
les produits sont similaires et les effets de débordement sont différents de zéro, alors la
concurrence à la Cournot est plus efficiente. Ce dernier résultat est différent de ceux
obtenus dans la littérature avec des modèles statiques et des fonctions de coûts moins
générales que celle considérée ici.

Mots clés : Jeux différentiels, Recherche et développement, Équilibre de Bertrand,
Équilibre de Cournot, Optimum social, Duopole.
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1 Introduction

We develop in this paper infinite-horizon differential game models for a differentiated
duopoly producing substitutable goods. The firms’ aims are to maximize their total dis-
counted profit functions by choosing the optimal levels of either their outputs or prices
as well as research and development (R&D) investments. The latter investments are of
the production process type, i.e., are intended to reduce production costs. Due to the
presence of possible R&D spillovers, however, firms may also benefit from each other in
decreasing these costs, depending on the degree of substitutability between their products.
This implies that each firm may inadvertently make the other firm a tougher competitor.

Our main objectives are to characterize and compare the efficiency of Bertrand and
Cournot equilibria and to examine the robustness of the results obtained in the literature
in typically static or two-stage games setting.

In a seminal paper, Singh and Vives (Ref. 1) show that in a differentiated duopoly (i)
Bertrand (price) competition is always more efficient than Cournot (quantity) competition,
(ii) Bertrand prices (quantities) are smaller (larger) than Cournot prices (quantities) if the
goods are substitutes (complements), and (iii) it is a dominant strategy for a firm to
choose quantity (price) as its strategic variable provided that the goods are substitutes
(complements). These findings attracted economists’ attention and two main streams have
appeared in the literature. The first stream extends the above model in different ways,
e.g., more general class of cost and demand functions, more players, homogeneous product,
quality differences (see Refs. 2–8).

A second stream, to which this paper naturally belongs, introduces investments in R&D
as additional strategic variables. Such investments may lead to improvement of the quality
of product(s) (in the case of product R&D) and/or to reduction in production cost (in
the case of process R&D). Hence the demand and/or cost structures of the Cournot and
Bertrand markets may change. One objective of this stream is to reexamine the issue
of efficiency of the two equilibria (Cournot and Bertrand). For instance, Delbono and
Denicolo (Ref. 9) consider a homogenous duopoly with process R&D in the form of patent
race and show that although R&D investments are higher in the Cournot competition, the
comparison of the efficiency of Bertrand and Cournot outcomes is generally ambiguous.
The same conclusions are obtained in Motta (Ref. 10) for a vertically differentiated duopoly
with either fixed or variable costs of quality improvements. Qiu (Ref. 11) extends the model
in Ref. 1 by introducing a stage of process R&D. He shows that (i) although Cournot
competition induces more R&D effort than Bertrand competition, the latter results in
lower prices and higher quantities, (ii) Bertrand competition is more efficient if either
R&D productivity is low, or spillovers are weak, or products are very different, and (iii)
Cournot competition is more efficient if either R&D productivity is high, spillovers are
strong, and products are close substitutes. Finally, Symeonidis (Ref. 12) compares the
Bertrand and Cournot equilibria in a differentiated duopoly with substitute goods and
product R&D.
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This paper extends Qiu’s model in different respects and checks if the comparative
efficiency results still hold when firms are not necessarily symmetric, operate in a dynamic
environment rather than in a static one1, actual spillover is related to product differentia-
tion and face more general production and process R&D costs. Our conclusion is that the
results reported in Ref. 11 still hold in general but in the case where R&D productivity
and product substitutability are high.

The rest of the paper is organized as follows. In Section 2, the proposed model is
outlined. Cournot, Bertrand and first best equilibria are presented in Sections 3, 4 and 5,
respectively. In Section 6, Cournot and Bertrand outcomes are compared and the results
of numerical experiments are presented and analyzed. Finally, concluding remarks are
presented in Section 7.

2 The Model

Consider a non-cooperative differential game with two firms producing one variety of dif-
ferentiated but substitutable goods. Firms independently undertake cost-reducing R&D.
They also sell their products in the market.

As in Ref. 1, the representative consumer’s preferences are described by the following
utility function:

U(q1, q2) = A(q1 + q2)− ω2 (q1 + q2)2 − ηq1q2 (1)

where qi is firm i’s output, and 0 ≤ η ≤ ω. The ratio η
ω represents the degree of product

differentiation; the closer this term is to 1 the more substitutes the products are. The
resulting market inverse demands are linear and given by

Pi = A− ωqi − ηqj , i, j = 1, 2, i �= j. (2)

Let Ki be firm i’s accumulated capital stock of R&D. The total production cost of firm
i is supposed to depend on the quantity produced and, to take into account spillovers in
knowledge, on both players’ R&D stocks. The following quadratic form is adopted

Ci(qi,Ki,Kj) = (ci + σqi − ψ(Ki + η
ω
βKj))qi (3)

where ci < A, 0 ≤ ψ ≤ 1, σ ≥ 0, and 0 ≤ β ≤ 1. The degree of spillover of the process R&D
is thus given by η

ωβ, where the spillover parameter β is assumed to be exogenous. Note
that, contrary to previous contributions in this area, our formulation assumes that the
degree of spillover depends on the degree of product substitutability; the higher the latter,
the higher the degree of spillover can be. In particular, if the products are unrelated, then

1Typically in the R&D literature, the game is a two-stage one where in the first stage the firms determine
their investments in R&D and in the second stage they engage in market competition. In such framework
there is no dynamic or carry-over effects of investments in R&D.
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a reasonable assumption would be that firms will not benefit from each other’s research
effort. Equation (3) is assumed to be strictly positive. Note that Ci(·) is convex increasing
in qi and linear decreasing in capital stocks.

Denote by Ii the investment of firm i in R&D. The resulting investment cost is assumed
to be quadratic convex increasing

Fi(Ii) = θiIi +
φ

2
I2i (4)

where θi, φ > 0. This specification is similar to those used in Refs. 13–14.

Firm i’s capital stock evolves over time according to the following standard capital
accumulation process

K̇i = Ii − δKi, Ki(0) = Ki0 (5)

where δ, 0 ≤ δ < 1, is the depreciation rate.

The following table summarizes the assumptions made on the parameters values in
Ref. 11 and in this paper.

Qiu (Ref. 11) ci = cj σ = 0 ψ = 1 η
ω = 1 0 ≤ β ≤ 1 θi = 0

This paper ci �= cj σ > 0 0 ≤ ψ ≤ 1 0 ≤ η
ω ≤ 1 0 ≤ β ≤ 1 θi > 0

As readily seen, the firms’ costs of production (4) differ from the one proposed in Ref. 11
in the following aspects. First, for any given degree of spillover, the more substitutes the
firms’ products are the more each firm benefits from the other’s accumulated capital stock,
in reducing its costs. This in turn implies that, even if the degree of spillover is very high,
if firms’ products are unrelated (not substitutes) then these firms will not benefit from
each other’s capital stocks. Second, firm i’s production cost function is assumed to be
quadratic in its level of production rather than linear. Note also that this formulation is
more general than the one proposed in the seminal paper by d’Aspremont and Jacquemin
(Ref. 15), and adopted in subsequent literature of R&D.

Assuming that each player maximizes her total discounted stream of profits over an
infinite horizon, then player i’s objective functional is given by

πi =
∫ ∞

0
e−rt[Pi(t)qi(t)− Ci (qi(t),Ki(t),Kj(t))− Fi(Ii(t))]dt (6)

where r, 0 < r ≤ 1, is the discount rate.

In addition to deciding on the level of its R&D, firm i chooses either output (in the
Cournot game) or price (in the Bertrand game) levels so as to maximize πi subject to
the state dynamics in (5). Using differential game terminology, Ki, i = 1, 2, are the state
variables, and Ii and qi (or Pi) are the control variables. Note that the differential game
at hand is a linear-quadratic one. It is well known (see, e.g., Ref. 16) that value functions
of such games are quadratic and strategies are linear in state. Further, we confine our
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interest to stationary Markovian feedback strategies which is standard in infinite horizon
differential games in economics.

We shall compare outputs, prices, investments and R&D stocks obtained at steady
state under different modes of play, i.e., Cournot, Bertrand and social planner solution.
We then compare consumer surplus (CS), profits and total welfare (TW ) obtained under
these different modes of play which are defined as follows (the bar on a variable refers to
its steady state value):

CS = U(q̄1, q̄2)− P̄1q̄1 − P̄2q̄2 (7)
πi = P̄iq̄i − Ci(q̄i, K̄i, K̄j)− Fi(Īi) (8)

TW = CS +
2∑
i=1

πi (9)

3 Cournot Feedback Equilibrium

In the non-cooperative Cournot feedback game, firms select independently their output
qi and R&D investment levels Ii. The following proposition characterizes the resulting
feedback Cournot equilibrium, where the superscript C refers to Cournot solution.

Proposition 3.1 The firms’ Cournot feedback equilibrium output and R&D investment
strategies are given by

qC1 =
1
m6

(m1K1 +m2K2 +m3A+m4c1 +m5c2) (10)

qC2 =
1
m6

(m2K1 +m1K2 +m3A+m5c1 +m4c2) (11)

ICi =
1
φ
[zC2i + z

C
5 Ki + z

C
4 Kj − θi], i, j = 1, 2, i �= j, (12)

where the constants m1, . . . ,m6 are given by

m1 = 2ψω(ω + σ)− ψη2β
m2 = (2β(ω + σ)− ω) ηψ
m3 = (2(ω + σ)− η)ω
m4 = −2(ω + σ)ω
m5 = ηω

m6 =
(
4(ω + σ)2 − η2)ω,

and the coefficients zCij solve the system of equations in Appendix 1.
The value functions are quadratic and given by

V Ci (Ki,Kj) = zC1i + z
C
2iKi + z

C
3iKj + z

C
4 KiKj +

zC5
2
K2
i +

zC6
2
K2
j , i, j = 1, 2, i �= j. (13)
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Proof. We apply a standard sufficient condition for a stationary feedback equilibrium and
wish to find bounded and continuously differentiable functions Vi(Ki,Kj), i, j = 1, 2, i �=
j,satisfying the Hamilton-Jacobi-Bellman (HJB) equations

rVi(Ki,Kj) = max
Ii,qi

{(A− ωqi − ηqj) qi − (ci + σqi − ψ(Ki + η
ω
βKj))qi

−
(
θiIi +

φ

2
I2i

)
+
∂Vi(.)
∂Ki

(Ii − δKi) +
∂Vi(.)
∂Kj

(Ij − δKj)}. (14)

Differentiating the right-hand side w.r.t. qi and Ii and equating to zero leads to

qCi =
1

2(ω + σ)

(
A+ ηqCj − ci + ψ(Ki + η

ω
βKj)

)
, i, j = 1, 2, i �= j (15)

ICi =
1
φ

(
∂Vi(.)
∂Ki

− θi
)
, i, j = 1, 2, i �= j. (16)

Substituting for outputs and investments in (14) yields

rVi(Ki,Kj) =
(
A− ωqCi − ηqCj

)
qCi − (ci + σqCi − ψ(Ki + η

ω
βKj))qCi

−θi
φ

(
∂Vi(.)
∂Ki

− θi
)
− 1

2φ

(
∂Vi(.)
∂Ki

− θi
)2

+
∂Vi(.)
∂Ki

[
1
φ

(
∂Vi(.)
∂Ki

− θi
)
− δKi

]

+
∂Vi(.)
∂Kj

[
1
φ

(
∂Vj(.)
∂Kj

− θj
)
− δKj

]
, i, j = 1, 2, i �= j

where qCi and qCj are given by (10) and (11).
Straightforward (however long) algebraic manipulations show that the following quadratic

value functions are solutions to the above system of partial differential equations

V Ci (Ki,Kj) = zC1i + z
C
2iKi + z

C
3iKj + z

C
4 KiKj +

zC5
2
K2
i +

zC6
2
K2
j , i, j = 1, 2, i �= j, (17)

where the coefficients zCki solve the system of equations given in Appendix 1.
The following comments apply to the results in the above proposition:

• The value functions are quadratic and the strategies linear in the state. This result
is a by-product of the (linear-quadratic) structure of the game.

• Under the assumptions made before, namely that 0 ≤ β ≤ 1 and η ≤ ω, it is easy
to verify that m1 and m6 are positive and hence ∂q

C
i

∂Ki
= m1
m6
> 0 , i.e. each player’s

output is an increasing function of her own capital stock.

• A condition for having ∂qCi
∂Kj

= m2
m6
> 0, i, j = 1, 2, i �= j, is β > ω

2(σ+ω) ,which means
that the spillover parameter has to be above a certain threshold value for the capital
stock to have a positive impact on competitor’s output.
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• Each player’s value function in (13) involves six coefficients, three of them (zC5 , z
C
6

and zC4 ) being common to both players. The system of equations providing them
is nonlinear and its solution is a priori not unique. In the numerical simulations,
we chose one solution satisfying the condition of global asymptotic stability of the
steady state (to be given below) and check if everything makes sense (e.g., quantities
and costs are nonnegative). Note that in all numerical experiments, it turned out
that only one solutions satisfy these requirements.

The following proposition characterizes the steady state.

Proposition 3.2 If following condition holds

δ >
zC5 ± zC4
φ

, (18)

then Cournot feedback equilibrium steady state is given by

K̄Ci =
−zC4 (zC2j − θj) +

(
zC5 − δφ) (zC2i − θi)(

zC4
)2 − (

zC5 − δφ)2 , i, j = 1, 2, i �= j. (19)

Proof. Substituting for the equilibrium values of ICi (from (12)) into the state dynamics (5)
yields a system of first order differential equations. This system is globally asymptotically
stable and yields the steady state capital stocks in (19) if condition (18) holds.

Given (19), we can evaluate the output and investment strategies (using (10)-(12)) as
well as consumer surplus (CSC), profits (πCi ) and total welfare (TWC), given by (7)-(9),
at the steady state. Again the superscript C refers here to Cournot solution.

4 Bertrand Feedback Equilibrium

In the non-cooperative Bertrand game firms independently choose their price and R&D
levels. The representative consumer’s demand for product i is derived from equation (2)
and given by

qi =
(ω − η)A− ωPi + ηPj

ω2 − η2 , i, j = 1, 2, i �= j. (20)

The production cost and investment costs, profit function and state equation are as
defined previously.

The firms’ feedback equilibrium price and R&D strategies are given in the following
proposition, where the superscript B stands for Bertrand equilibrium.

Proposition 4.1 The firms’ Bertrand feedback equilibrium price and R&D investment
strategies are given by

PB1 =
1
y6

[y1K1 + y2K2 + y3A+ y4c1 + y5c2] (21)

PB2 =
1
y6

[y2K1 + y1K2 + y3A+ y5c1 + y4c2] (22)
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IBi =
1
φ
[zB2i + z

B
5 Ki + z

B
4 Kj − θi], i, j = 1, 2, i �= j, (23)

where the constants y1, . . . , y6 are given by

y1 = ψ
[(
η2β + 2ω2

) (
η2 − σω − ω2

) − σωη2β]
y2 = ωψη

[
(2β + 1)

(
η2 − ω2 − 2σω

)]
y3 = −

[(
ω2 − η2)2 + ω (1− η) (

ω2 − η2)] − 2σω
[(

2σω − η2) + ω (3ω − η)]
y4 = 2ω2

(
σω − η2 + ω2

)
y5 = ηω

(
2σω − η2 + ω2

)
y6 =

(
η2 − 2ω2

)2 + 4σω
(
2ω2 − η2) + ω2

(
4σ2 − η2)

and the coefficients zBij solve the system of equations given in Appendix 2.

The value functions are quadratic and given by

V i(Ki,Kj) = zB1i + z
B
2iKi + z

B
3iKj + z

B
4 KiKj +

zB5
2
K2
i +

zB6
2
K2
j , i, j = 1, 2, i �= j. (24)

Proof. Similar to that of Proposition 3.1 and it is hence omitted.

The following comments apply to the results in the above proposition:

• Under the assumptions made before, namely that 0 ≤ β ≤ 1 and η ≤ ω, it is easy
to verify that y1 is negative and y6 is positive and hence ∂P

B
i

∂Ki
= y1
y6
< 0 , i.e., each

player’s price is a decreasing function of her own capital stock. Similarly, it is easy
to check that ∂P

B
i

∂Kj
= x2
x6 < 0, i, j = 1, 2, i �= j, and hence each player’s price is a

decreasing function of competitor’s capital stock.
• Each player’s value function in (24) involves six coefficients, three of them (zB5 , z

B
6

and zB4 ) being common to both players. The same comment on the chosen solution
in the numerical experiments made in the Cournot case applies here.

The following proposition characterizes the steady state.

Proposition 4.2 If the following condition holds

δ >
zB5 ± zB4
φ

, (25)

then Bertrand feedback equilibrium steady state is given by

K̄Bi =
−zB4 (zB2j − θj) +

(
zB5 − δφ) (zB2i − θi)(

zB4
)2 − (

zB5 − δφ)2 , i, j = 1, 2, i �= j. (26)
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Proof. Substituting for the equilibrium values of IBi , from (23), into the dynamics (5)
yields a system of first order differential equations. This system is globally asymptotically
stable and yields the steady state capital stocks in (26), provided that condition (25) is
satisfied.

Given (26), we can evaluate the price and investment strategies (using (21)-(23)) as
well as consumer surplus (CSB), profits (πBi ) and total welfare (TWB), given by (7)-(9),
at the steady state. Again the superscript B refers here to Bertrand solution.

5 First-Best Equilibrium

We determine in this section the socially optimal allocation, referred to as first-best solu-
tion, which will serve as a benchmark for Bertrand and Cournot equilibria. To obtain this
allocation, it is well known that the social planner solves an optimization problem where
the objective is defined as the difference between consumer’s utility and producers’ costs,
i.e.,

J = max
(q1,q2,I1,I2)

∞∫
t=0

e−rt[U(q1, q2)−
2∑
i=1

Ci(qi,K1,K2)−
2∑
i=1

Fi(Ii)]dt (27)

subject to (5). (28)

where U(qi, qj), Ci(qi,Ki,Kj) and Fi(Ii) are given by (1), (3), and (4).
The firms’ socially optimal price and R&D strategies are given in the following propo-

sition, where the superscript S stands for social optimum.

Proposition 5.1 The socially optimal output and investment strategies are given by

qS1 =
1
v6

[v1K1 + v2K2 + v3A+ v4c1 + v5c2] (29)

qS2 =
1
v6

[v1K2 + v2K1 + v3A+ v4c2 + v5c1] (30)

ISi =
zS2i + z

S
5Ki + z

S
4Kj − θi

φ
, i, j = 1, 2, i �= j (31)

where the constants v1, . . . , v6 are given by

v1 = ψ
(
2σω + ω2 − η2β)

v2 = ηψ (2βσ + ωη − ω)
v3 = (2σ + ω − η)ω
v4 = − (2σ + ω)ω
v5 = η

v6 =
(
4σ(ω + σ) + ω2 − η2)ω.
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where the coefficients zSijsolve the system of equations given in Appendix 3.

The value function is quadratic and given by

V (Ki,Kj) = zS1 + zS2Ki + z
S
3Kj + z

S
4KiKj +

zS5
2
K2
i +

zS6
2
K2
j . (32)

Proof. The Hamilton-Jacobi-Bellman equation of the optimization problem is

rV (Ki,Kj) = max
qi,qj ,Ii,Ij

{
U(qi, qj)−

2∑
i=1

Ci(qi,Ki,Kj)

−
2∑
i=1

Ci(Ii) +
2∑
i=1

∂V (.)
∂Ki

(Ii − δKi)
}
, i, j = 1, 2, i �= j (33)

Differentiating the right-hand side with respect to qi, i = 1, 2, and equating to zero leads
to the results in (29)-(30). The maximization with respect to Ii yields

Ii(Ki,Kj) = 1/φ(∂V/∂Ki − θi), i, j = 1, 2, i �= j

Substituting for outputs and investments in (33) yields

rV (Ki,Kj) = U(qi, qj)−
2∑
i=1

Ci(qi,Ki,Kj)−
2∑
i=1

[
θi
φ

(
∂V

∂Ki
− θi)]

−
2∑
i=1

[
1
2φ

(
∂V

∂Ki
− θi)2] + [

∂V (.)
∂Ki

]
[
1
φ
(
∂V

∂Ki
− θi)− δKi

]

+ [
∂V

∂Kj
]
[
1
φ
(
∂V

∂Kj
− θj)− δKj)

]
.

The following quadratic value function solves the above partial differential equation

V (Ki,Kj) = z1 + z2Ki + z3Kj + z4KiKj +
z5
2
K2
i +

z6
2
K2
j , i, j = 1, 2, i �= j (34)

where the coefficients are given in Appendix 3.

The following comments apply to the results in the above proposition:

• Under the assumptions made before, namely that 0 ≤ β ≤ 1 and η ≤ ω, it is easy to
verify that v1 and v6 are positive and hence ∂q

S
i

∂Ki
= v1
v6
> 0 , i.e. each player’s output

is an increasing function of her own capital stock.

• A condition for having ∂qSi
∂Kj

= v2
v6
> 0, i, j = 1, 2, i �= j, is β > ω(1−η)

2σ which means, as
in the Cournot scenario, that the spillover rate has to be above a certain threshold
value to increase own output when the capital stock of the other player increases.
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• Each player’s value function in (13) involves six coefficients, three of them (zC5 , z
C
6 and

zC4 ) are common to both players. These coefficients satisfy the system of equations
given in Appendix 3. As one can expect, this solution is not unique and the previous
remarks regarding the numerical simulations applies here.

The following proposition characterizes the steady state.

Proposition 5.2 If the following condition holds

δ >
1
2φ

[z5 + z6 ±
√
z5 − 2z5z6 + 4z24 ], (35)

then social optimum steady state capital stocks are given by

K̄S1 =
−zS4 (zS3 − θ2) +

(
zS6 − δφ) (zS2 − θ1)(

zS4
)2 − (

δφ− zS6
) (
δφ− zS5

) , (36)

K̄S2 =
−zS4 (zS2 − θ1) +

(
zS5 − δφ) (zS3 − θ2)(

zS4
)2 − (

δφ− zS6
) (
δφ− zS5

) . (37)

Proof. Substituting for the equilibrium values of IPi , from (31), into the dynamics (5)
yields a system of first order differential equations. This system is globally asymptotically
stable and yields the steady state capital stocks in (36)-(37), provided that condition (35)
is satisfied.

Given (36)-(37), we can evaluate the output and investment strategies (using (29)-(31))
as well as consumer surplus (CSS), profits (πSi ) and total welfare (TWS), given by (7)-(9),
at the steady state. Again the superscript S refers here to Social optimum.

6 Comparison

As highlighted before, the proposed value functions for Cournot and Bertrand equilibria as
well as for the first-best optimum have multiple solutions. Further, these value functions
are not amenable to analytical comparison. For this reason, we shall compare numerically
the strategies, profits, consumer surplus and total welfare at the steady state. We shall
check that each derived solution is an interior one, satisfies the conditions for asymptotic
stability and the costs of production and investment are positive.

Recall that the model includes the following thirteen parameters

Demand function: A,ω, η

Investment cost functions: θ1, θ2, φ

Production cost functions: c1, c2, σ, ψ, β

Depreciation and discount rates: δ, r.
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Varying all these parameters in an ordered manner, e.g., one at a time, poses no conceptual
difficulty but will induce a huge number of tables to report. Instead, we choose to fix once
for all the values of the following parameters which do not play an essential role with
respect to the objectives of the paper:

A = 100, ψ = 0.4, δ = 0.09, r = 0.6, ω = 2, σ = 1.

Further, we organize the simulations into two sets where in the first one we consider a
symmetric setting, i.e., the players have the same investment and production costs, and in
the second an asymmetric one.

6.1 Symmetric Games

Assume that the players have the same cost parameters, i.e., θ1 = θ2 = 3 and c1 = c2 = 5.
Three parameters, namely β, η and φ will be varied in turn to assess the impact of spillover,
products substitutability and investment cost on steady state and payoffs.

Table 1 provides the results for various values of the spillover parameter β for a given
“high” φ (φ = 6) and a given high level of products substitutability ( ηω = 1.8

2 ). Note that
a high value for φ corresponds to a low productivity of investment in process R&D. In
Table 2 the level of products substitutability is given a low value ( ηω = 0.3

2 ). From these
results we note the following:

• Prices are the lowest under first-best followed by Bertrand and Cournot. The same
ordering applies to consumer surplus and total welfare. Hence, if consumer has a
say with respect to the solution to be chosen, his preference would be clear cut. This
is by no mean a surprising result.

• Firms make the highest profits in the Cournot equilibrium. The ordering between
first-best and Bertrand depends on the values of β and η. If the spillover parameter
is high (β = 0.9) and the degree of products substitutability is also high ( ηω = 1.8

2 ),
then first-best leads to higher profits than Bertrand. In all other cases, we obtain
the reverse. Note that when η

ω is low, profits under Bertrand and Cournot are very
close. This could be explained by the fact that when the products are only far
substitutes, each firm faces little competition and therefore in this near monopolistic
situation it does not matter to play Bertrand or Cournot from profits perspective.

• In all cases, first-best leads to the highest steady-state levels of R&D capital, followed
by Cournot and Bertrand. Note that when the degree of products substitutability
is low, Cournot and Bertrand steady-state stocks are very close to each other and
almost do not vary with the degree of spillover.
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Table 1: Equilibrium values for symmetric games with low R&D productivity and high
products substitutability

Values of

parameters

A = 100, φ = 6, δ = .09, ψ = .4, θ1 = 3, θ2 = 3, r = 0.6, c1 = 5, c2 = 5, ω = 2, σ = 1
β = 0.9, η

ω
= 1.8

2
β = 0.4, η

ω
= 1.8

2
β = 0, η

ω
= 1.8

2

Values of

variables at
equilibria

Cournot Bertrand First Best Cournot Bertrand First Best Cournot Bertrand First Best

K1 5.8349 2.99634 34.68377 7.8366 5.4376 21.2713 9.3949 7.3678 12.9899
K2 5.8349 2.99634 34.68377 7.8366 5.4376 21.2713 9.3949 7.3678 12.9899
I1 0.52514 0.26967 3.12154 0.7053 0.4894 1.9144 0.8455 0.6631 1.16910
I2 0.52514 0.26967 3.12154 0.7053 0.4894 1.9144 0.8455 0.6631 1.16910
q1 12.7211 15.7232 20.70880 12.7260 15.8508 18.3744 12.6613 15.8490 17.2752
q2 12.7211 15.7232 20.70880 12.7260 15.8508 18.3744 12.6613 15.8490 17.2752
P1 51.6599 40.25186 21.30655 51.6411 39.7669 30.1772 51.8871 39.7736 34.3543
P2 51.6599 40.25186 21.30655 51.6411 39.7669 30.1772 51.8871 39.7736 34.3543
TC1 174.094 292.7529 50.97538 174.9381 285.8015 233.6083 180.7152 287.037 302.6534
TC2 174.094 292.7529 50.97538 174.9381 285.8015 233.6083 180.7152 287.037 302.6534
π1 483.075 340.1349 390.2578 482.2479 344.5363 320.8807 476.2423 343.337 290.8239
π2 483.075 340.1349 390.2578 482.2479 344.5363 320.8807 476.2423 343.337 290.8239
π1 + π2 966.150 680.2698 780.5156 964.4958 689.0726 641.7615 952.4846 686.674 581.6478
CS 614.939 939.4318 1629.646 615.4178 954.7443 1282.9519 609.1701 954.531 1134.039
TW 1581.089 1619.7016 2410.161 1579.9136 1643.8169 1924.7134 1561.654 1641.20 1715.687

Table 2: Equilibrium values for symmetric games with low R&D productivity and low
products substitutability

Values of

parameters

A = 100, φ = 6, δ = .09, ψ = .4, θ1 = 3, θ2 = 3, r = 0.6, c1 = 5, c2 = 5, ω = 2, σ = 1
β = 0.9, η

ω
= 0.3

2
β = 0.4, η

ω
= .3

2
β = 0, η

ω
= .3

2

Values of

variables at
equilibria

Cournot Bertrand First Best Cournot Bertrand First Best Cournot Bertrand First Best

K1 11.4465 11.4386 24.5182 11.4516 11.4442 22.0605 11.4564 11.4496 20.1771
K2 11.4465 11.4386 24.5182 11.4516 11.4442 22.0605 11.4564 11.4496 20.1771
I1 1.0302 1.0293 2.2066 1.0306 1.0299 1.9854 1.3011 1.0305 1.8159
I2 1.0302 1.0293 2.2066 1.0306 1.0299 1.9854 1.3011 1.0305 1.8159
q1 15.9042 16.0181 24.6817 15.8501 15.9636 24.2683 15.8068 15.92 23.9699
q2 15.9042 16.0181 24.6817 15.8501 15.9636 24.2683 15.8068 15.92 23.9699
P1 63.4202 63.1584 43.2321 63.5448 63.2837 44.1829 63.6445 63.3839 44.8691
P2 63.4202 63.1584 43.2321 63.5448 63.2837 44.1829 63.6445 63.3839 44.8691
TC1 256.0905 259.753 479.083 259.7943 263.4663 501.0764 262.7342 266.413 516.2919
TC2 256.0905 259.753 479.083 259.7943 263.4663 501.0764 262.7342 266.413 516.2919
π1 752.5604 751.923 587.958 747.3959 746.7699 571.167 743.2784 742.660 559.2184
π2 752.5604 751.923 587.958 747.3959 746.7699 571.167 743.2784 742.660 559.2184
π1 + π2 1505.1208 1503.84 1175.916 1494.791 1493.539 1142.335 1486.556 1485.32 1118.4368
CS 581.7734 590.131 1401.127 577.8172 586.1243 1354.585 574.6635 582.929 1321.4859
TW 2086.8942 2093.97 2577.143 2072.609 2079.664 2496.920 2061.220 2068.25 2439.9226
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In Tables 3 and 4, we provide the same type of results with a lower value for φ (φ = 2)2.
The main difference with the above results is that now Cournot produces a higher total
welfare than Bertrand when the degree of products substitutability is high ( ηω = 1.8

2 )
provided that the spillover rate is high (β = 0.9) or moderate (β = 0.4)3. When the
spillover rate is near zero, then we recover again the result that total welfare is higher
under Bertrand. This shows that the investment cost has a significant effect on the results,
not only quantitatively speaking but also qualitatively.

Table 3: Equilibrium values for symmetric games with high R&D productivity and high
products substitutability

Values of
parameters

A = 100, φ = 2, δ = .09, ψ = .4, θ1 = 3, θ2 = 3, r = 0.6, c1 = 5, c2 = 5, ω = 2, σ = 1
β = 0.9, η

ω
= 1.8

2
β = 0.4, η

ω
= 1.8

2
β = 0, η

ω
= 1.8

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 21.6643 10.52185 27.93956 18.75377 32.47696 25.07075
K2 21.6643 10.52185 27.93956 18.75377 32.47696 25.07075
I1 1.94979 0.94697 2.51456 1.68784 2.92293 2.25637
I2 1.94979 0.94697 2.51456 1.68784 2.92293 2.25637
q1 14.19038 16.60482 14.12809 17.02299 13.84497 16.99487
q2 14.19038 16.60482 14.12809 17.02299 13.84497 16.99487
P1 46.07655 36.90167 46.31325 35.31265 47.38911 35.41949
P2 46.07655 36.90167 46.31325 35.31265 47.38911 35.41949
TC1 59.39401 235.98945 69.37557 209.13992 98.36335 215.23062
TC2 59.39401 235.98945 69.37557 209.13992 98.36335 215.23062
π1 594.44981 376.75624 584.94229 391.98689 557.7375 386.71906
π2 594.44981 376.75624 584.94229 391.98689 557.7375 386.71906
π1 + π2 1188.8996 753.75624 1169.88458 783.97378 1115.4750 773.43812
CS 765.19442 1047.73679 758.49138 1101.17174 728.3963 1097.53737
TW 1954.0940 1801.24927 1928.37596 1885.14552 1843.8713 1870.97549

6.2 Asymmetric Games

We now turn to the case where the players differ in terms of their production and investment
costs. We adopt the following parameters’ values

c1 = 5, c2 = 7, θ1 = 2, θ2 = 3,

assuming hence that player 1 has both a lower investment and production cost.
In Tables 5 and 6, the results are reported for a low investment productivity (φ = 6) and

various spillover rates β and products substitutability parameter ηω . It is straightforward to

2We present from now on only the results for Bertrand and Cournot equilibria. The results for the
first-best are clear-cut without any surprise.

3Our numerical experiments show that for even lower values for β one still has the same qualitative
result. For instance for β = 0.2, whereas total welfare is 1892.593 in Cournot equilibrium, it is equal to
1887.084 in Bertrand equilibrium. Profits are, as in all other experiments, higher under Cournot than
under Bertrand and consumer surplus is higher under Bertrand.
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see that the results are qualitatively similar to those obtained in the symmetric case. The
main (expected) difference is that the cost-advantaged player is doing better, profit-wise,
than her competitor.

Table 4: Equilibrium values for symmetric games with high R&D productivity and low
products substitutability

Values of
parameters

A = 100, φ = 2, δ = .09, ψ = .4, θ1 = 3, θ2 = 3, r = 0.6, c1 = 5, c2 = 5, ω = 2, σ = 1
β = 0.9, η

ω
= 0.3

2
β = 0.4, η

ω
= .3

2
β = 0, η

ω
= .3

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 41.23081 41.19829 40.68892 40.69951 40.28109657 40.25403817
K2 41.23081 41.19829 40.68892 40.69951 40.28109657 40.25403817
I1 3.71077 3.70785 3.6620 3.65936 3.625298693 3.622863433
I2 3.71077 3.70785 3.6620 3.65936 3.625298693 3.622863433
q1 18.0506 18.17810 17.81779 17.94399 17.63689502 17.76204880
q2 18.0506 18.17810 17.81779 17.94399 17.63689502 17.76204880
P1 58.48362 58.190367 59.01907 58.72778 59.43514145 59.14728775
P2 58.48362 58.190367 59.01907 58.72778 59.43514145 59.14728775
TC1 103.0940 106.20189 123.56461 126.72778 139.0898391 142.2966752
TC2 103.0940 106.20189 123.56461 126.72778 139.0898391 142.2966752
π1 952.5704 951.58849 928.0251 927.10157 909.1615109 908.2803368
π2 952.5704 951.58849 928.0251 927.10157 909.1615109 908.2803368
π1 + π2 1905.1408 1903.17698 1856.0502 1854.20312 1818.3230218 1816.5606736
CS 749.3956 760.01957 730.1897 740.56973 715.438152 725.627869
TW 2654.5364 2663.19655 2586.2399 2594.77285 2533.761174 2542.188542

Table 5: Equilibrium values for asymmetric games with low R&D productivity and high
products substitutability

Values of
parameters

A = 100, φ = 6, δ = .09, ψ = .4, θ1 = 2, θ2 = 3, r = 0.6, c1 = 5, c2 = 7, ω = 2, σ = 1
β = 0.9, η

ω
= 1.8

2
β = 0.4, η

ω
= 1.8

2
β = 0, η

ω
= 1.8

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 7.8774498 5.046532165 9.947360497 7.58726556 11.57937346 9.627724094
K2 5.5616956 2.736031195 7.433123903 5.021198298 8.859348795 6.784316611
I1 0.7089704 0.4541878949 0.8952624456 0.68285390 1.042143611 0.8664951688
I2 0.5005526 0.2462428079 0.6689811520 0.45190784 0.7973413915 0.6105884951
q1 12.934043 16.08785539 12.97209033 16.28019724 12.94297207 16.34950605
q2 12.415948 15.24460026 12.34265115 15.25038592 12.20773163 15.13347395
P1 51.783204 40.38400876 51.83904727 39.98891073 52.14013893 40.06073481
P2 51.886823 40.55265978 51.96493511 40.19487299 52.28718701 40.30394125
TC1 170.82363 294.0489846 171.8304307 288.0300744 177.6292606 290.0758969
TC2 184.01010 298.4207067 187.7115049 294.0032162 195.5210960 296.8384604
π1 498.94258 355.6431084 500.6303731 362.9972797 497.2191013 364.8973292
π2 460.21404 319.7883811 453.6735612 318.9841089 442.7868507 313.1001846
π1 + π2 959.15663 675.4314895 954.3039343 681.9813886 940.0059520 677.9975138
CS 610.50443 932.6721922 608.8141389 944.5218209 600.9570303 941.6930640
TW 1569.6610 1608.103682 1563.118073 1626.503210 1540.962982 1619.690578
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Decreasing the value of φ to 2 (Tables 7 and 8), leads also to the same qualitative results
as in the symmetric case. Again, we obtain that Cournot is more efficient, i.e., produces
a higher total welfare, than Bertrand when the products substitutability rate is high and
the spillover rate is high (β = 0.9) or moderate (β = 0.4). Actually, this last reult still holds

Table 6: Equilibrium values for asymmetric games with low R&D productivity and low
products substitutability

Values of
parameters

A = 100, φ = 6, δ = .09, ψ = .4, θ1 = 2, θ2 = 3, r = 0.6, c1 = 5, c2 = 7, ω = 2, σ = 1
β = 0.9, η

ω
= 0.3

2
β = 0.4, η

ω
= .3

2
β = 0, η

ω
= .3

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 13.45664526 13.44885444 13.46503742 13.45782922 13.47276976 13.46602092
K2 11.07515611 11.06718015 11.06695735 11.05953989 11.06114481 11.05416641
I1 1.211098073 1.210396900 1.211853368 1.211204630 1.212549279 1.211941883
I2 0.9967640503 0.9960462136 0.9960261611 0.9953585897 0.9955030331 0.9948749771
q1 16.05227744 16.16738402 16.00068918 16.11550760 15.95954636 16.07413095
q2 15.55683967 15.66799246 15.49162284 15.60237642 15.43943233 15.54986184
P1 63.22839322 62.96483425 63.35113479 63.08827189 63.44907758 63.18677955
P2 64.07063743 63.81379991 64.21654757 63.96059489 64.33327143 64.07803703
TC1 248.7553487 252.4020073 252.4251266 256.0811606 255.3330603 258.9968003
TC2 276.6617598 280.3875060 280.8116824 284.5476563 284.1005663 287.8448856
π1 766.2043613 765.5746477 761.2366904 760.6183644 757.2854347 756.6757687
π2 720.0748743 719.4466298 714.0068526 713.3896212 709.1686245 708.5597372
π1 + π2 1486.279236 1485.021278 1475.243543 1474.007986 1466.454059 1465.235506
CS 574.6076839 582.8634282 570.3754250 578.5757995 567.0050912 575.1610432
TW 2060.886920 2067.884706 2045.618968 2052.583786 2033.459150 2040.396549

Table 7: Equilibrium values for asymmetric games with high R&D productivity and high
products substitutability

Values of
parameters

A = 100, φ = 2, δ = .09, ψ = .4, θ1 = 2, θ2 = 3, r = 0.6, c1 = 5, c2 = 7, ω = 2, σ = 1
β = 0.9, η

ω
= 1.8

2
β = 0.4, η

ω
= 1.8

2
β = 0, η

ω
= 1.8

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 28.506168 17.21645979 35.35324635 26.2590336 40.78967653 33.92397885
K2 21.312721 10.04574688 26.61204263 17.22540662 29.84343264 21.87807479
I1 2.5655551 1.549481381 3.181792171 2.36331303 3.671070887 3.053158094
I2 1.9181449 0.9041172196 2.395083836 1.55028659 2.685908939 1.969026730
q1 14.666568 17.30048053 14.71661672 17.96001118 14.62173236 18.33763553
q2 14.060210 16.31405645 13.70762907 16.28845737 13.10304247 15.69485974
P1 45.358484 36.03373760 45.89303423 34.76075441 47.17105883 35.07398119
P2 45.479755 36.23102242 46.09483176 35.09506515 47.47479681 35.60253635
TC1 31.641810 215.8576892 42.14115715 189.4798534 69.15632896 194.5509210
TC2 55.820086 227.3198838 81.07524960 212.5656151 122.2669467 228.6274608
π1 633.61149 407.5432866 633.2490378 434.8236844 620.5662684 448.6229626
π2 583.63486 363.7550612 550.7756062 359.0788575 499.7973322 330.1493536
π1 + π2 1217.2463 771.2983478 1184.024644 793.9025419 1120.363601 778.7723162
CS 783.98482 1073.488884 767.5917642 1114.449421 730.3453041 1100.649418
TW 2001.2311 1844.787232 1951.616408 1908.351963 1850.708905 1879.421734
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true provided that the spillover parameter is not close to zero. Indeed, if we let β = 0.2,
then total welfare would be equal to 1907.136 in Cournot equilibrium and to 1902.416 in
Bertrand equilibrium. Ranking of profits and consumer surplus are the same as in all other
experiments.

Table 8: Equilibrium values for asymmetric games with high R&D productivity and low
products substitutability

Values of
parameters

A = 100, φ = 2, δ = .09, ψ = .4, θ1 = 2, θ2 = 3, r = 0.6, c1 = 5, c2 = 7, ω = 2, σ = 1
β = 0.9, η

ω
= 0.3

2
β = 0.4, η

ω
= .3

2
β = 0, η

ω
= .3

2
Values of
variables at
equilibria

Cournot Bertrand Cournot Bertrand Cournot Bertrand

K1 48.45285085 48.41961795 47.82626857 47.79746190 47.45453796 47.42820490
K2 40.15112275 40.11682688 39.33904842 39.30891718 38.80647554 38.77862366
I1 4.360756564 4.357765622 4.304364168 4.301771569 4.270908419 4.268538444
I2 3.613601060 3.610514424 3.540514357 3.537802548 3.492582801 3.490076130
q1 18.54059412 18.67188777 18.30918498 18.43929980 18.13795917 18.26713483
q2 17.68578747 17.81021391 17.39844905 17.52122857 17.18020041 17.30164719
P1 57.61307552 57.31316030 58.16209532 57.86503187 58.57002154 58.27523622
P2 59.06624682 58.77800587 59.71034641 59.42575297 60.19821143 59.91656519
TC1 64.65746901 67.62114333 86.35807756 89.37647226 102.1664456 105.2304209
TC2 130.1707686 133.3792247 153.9061164 157.1760098 171.4153611 174.7357597
π1 1003.523180 1002.523754 978.5424844 977.6141987 960.1742134 959.2911761
π2 914.4623194 913.4696333 884.9613036 884.0361912 862.8019759 861.9195123
π1 + π2 1917.985499 1915.993387 1863.503788 1861.650390 1822.976189 1821.210688
CS 754.912211 765.608206 733.497710 743.924982 717.628981 727.850666
TW 2672.897710 2681.601593 2597.001498 2605.575372 2540.605170 2549.061354

7 Concluding Remarks

The numerical experiments (both symmetric and asymmetric) suggest the following:

• Bertrand prices (quantities) are lower (higher) than their Cournot counterparts. Con-
sumer surplus under Bertrand competition is always higher than under Cournot com-
petition. These results are expected in view of those in, e.g., Refs. 1–3.

• Firms’ profits under Bertrand competition are always lower than those of the Cournot
competition. Note however that they are very close when the rate of products sub-
stitutability is low.

• Firms’ capital stocks and process R&D investments under Cournot competition are
higher than their Bertrand counterparts. The same result has been obtained by Qiu
(Ref. 11).

• Bertrand competition is more efficient than Cournot if either R&D productivity is
low, or products are very different. Cournot competition is more efficient provided
that R&D productivity is high, products are close substitutes and R&D spillovers
are not close to zero.
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Comparing our results to Qiu’s ones, we obtain that his conclusions still hold true with
one important difference however. Indeed, our simulations show that for any but not close
to zero spillover rate (and not only for strong spillovers as in his case), Cournot is more
efficient than Bertrand provided that R&D productivity is high and the products are close
substitute.

Given the important role played by the spillover rate, a natural extension to this work
is to allow for endogenous R&D spillovers by letting, e.g., the firm invests in acquiring
knowledge from its competitor’s R&D.

Appendix 1
The coefficients of the value functions in Cournot game are the solutions of the following

nonlinear system of equations

−z25 − 2z24 + nz5 + C1 = 0

−z24 − 2z6z5 + nz6 + C2 = 0

−2z4z5 − z6z4 + nz4 + C3 = 0

(−z21 + θ1)z5 + (−z22 + θ2 − z31)z4 +mz21 + C4 = 0

(θ2 − z22)z6 + (−z21 + θ1)z4 − z31z5 +mz31 + C5 = 0

(−2z22 + 2θ2)z31 − z221 − θ21 + 2φrz11 + 2z21θ1 + C6 = 0

(θ2 − z22)z5 + (θ1z21 − z32)z4 +mz22 + C7 = 0

(−z21 + θ1)z6 + (θ2 − z22)z4 +mz32 − z32z5 + C8 = 0

(2θ1 − 2z21)z32 + 2z22θ2 + 2φrz12 − z222 − θ22 + C9 = 0

where
C1 = −2φψ2(σ + ω)(−2ω2 − 2σω + η2β)2

ω2(2σ + 2ω + η)2(2σ + 2ω − η)2

C2 = −2φη2ψ2(σ + ω)(−ω + 2ωβ + 2βσ)2

ω2(2σ + 2ω + η)2(2σ + 2ω − η)2

C3 =
2φψ2η(σ + ω)(−ω + 2ωβ + 2βσ)(η2β − 2ω2 − 2σω)

ω2(2σ + 2ω + η)2(2σ + 2ω − η)2

C4 = −2φψ(σ + ω)(−2ωA + 2ωc1 + Aη − 2Aσ − ηc2 + 2σc1)(η
2β − 2ω2 − 2σω)

ω(2σ + 2ω + η)2(2σ + 2ω − η)2

C5 =
2φηψ(σ + ω)(−2ωA + 2ωc1 + Aη − 2Aσ − ηc2 + 2σc1)(−ω + 2ωβ + 2βσ)

ω(2σ + 2ω + η)2(2σ + 2ω − η)2

C6 = −2φ(σ + ω)(−2ωA + 2ωc1 + Aη − 2Aσ − ηc2 + 2σc1)
2

(2σ + 2ω + η)2(2σ + 2ω − η)2

C7 =
2φψ(σ + ω)(−2ωc2 + 2ωA − 2σc2 − Aη + c1η + 2Aσ)(η2β − 2ω2 − 2σω)

ω(2σ + 2ω + η)2(2σ + 2ω − η)2
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C8 = −2φηψ(σ + ω)(−2ωc2 + 2ωA − 2σc2 − Aη + c1η + 2Aσ)(−ω + 2ωβ + 2βσ)

ω(2σ + 2ω + η)2(2σ + 2ω − η)2

C9 = −2φ(σ + ω)(−2ωc2 + 2ωA − 2σc2 − Aη + c1η + 2Aσ)2

(2σ + 2ω + η)2(2σ + 2ω − η)2

n = φ(r + 2δ), m = φ(r + δ)

Appendix 2
The coefficients of the value functions in Bertrand game are the solutions of the following

nonlinear system of equations

−z2 + nz5 − 2z24 + C1 = 0

−z24 + nz6 − 2z6z5 + C2 = 0
−2z5z4 − z6z4 + nz4 + C3 = 0

(θ1 − z21)z5 + (−z22 + θ2 − z31)z4 +mz21 + C4 = 0
(θ2 − z22)z6 +mz31 + (−z21 + θ1)z4 − z31z5 + C5 = 0

−2z31z22 + 2z31θ2 − θ21 − z221 + 2φrz11 + 2θiz21 + C6 = 0
(θ1 − z21 − z32)z4 +mz22 + (−z22 + θ2)z5 + C7 = 0

(θ2 − z22)z4 − z32z5 + (−z21 + θ1)z6 +mz32 + C8 = 0

2z32θ1 + 2θ2z22 − θ22 − z222 + 2φrz12 − 2z32z21 + C9 = 0

where
C1 =

2(η2 − σω − ω2)(η2β + η2 − 2σω − 2ω2)2ψ2ωφ

(−2ω2 − 2σω − ηω + η2)2(−2ω2 − 2σω + ηω + η2)2

C2 =
2(η2 − σω − ω2)(η2β + ω2 − 2σωβ − 2ω2β)2ψ2η2φ

ω(−2ω2 − 2σω − ηω + η2)2(−2ω2 − 2σω + ηω + η2)2

C3 =
2(ω2 + ωσ − η2)(−ω2 + 2ω2β + 2βωσ − η2β)(−2ωσ − 2ω2 + η2 + η2β)ψ2ηφ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

C4 = −2(ω2 + ωσ − η2)Φ(−2ωσ − 2ω2 + η2 + η2β)ωφψ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

C5 =
2(ω2 + ωσ − η2)Φ(−ω2 + 2ω2β + 2σβω − η2β)ωφψ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

C6 = − 2(ω2 + ωσ − η2)Φ2ωφ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

C7 = − 2(ω2 + ωσ − η2)Ψ(−2ω2 − 2ωσ + η2β)ωφψ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2
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C8 =
2(ω2 + ωσ − η2)Ψ(2ω2β − ω2 + 2σβω − η2β)φηψ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

C9 = − 2(ω2 + ωσ − η2)Ψ2ωφ

(2ωσ − η2 + 2ω2 + ωη)2(2ωσ − η2 + 2ω2 − ωη)2

n = φ(r + 2δ), m = φ(r + δ)

Φ = (−2ω2A + 2ω2c1 + ωηA + 2ωσc1 − ωηc2 − 2ωσA − c1η
2 + Aη2)

Ψ = (2ω2c2 − 2ω2A − ωc1η + 2ωσc2 + ωηA − 2ωσA + Aη2 − c2η
2)

Appendix 3
The coefficients of the value function of social optimum are the solutions of the following

nonlinear system of equations

−z25 − z24 + nz5 + C1 = 0

−z24 − z26 + nz6 + C2 = 0
(−z6 + n− z5) z4 + C3 = 0

(−z2 + θ1)z5 + (−z3 + θ2)z4 +mz2 + C4 = 0
(−z3 + θ2)z6 +mz3 + (−z2 + θ1)z4 + C5 = 0

−z22 − z23 − θ22 − θ21 + 2z2θ1 + 2φrz1 + 2z3θ2 + C6 = 0

where
C1 = − (ω3 + 2σω2 + ωη2β2 − 2ωη2β + 2ση2β2)ψ2φ

ω2(2σ + ω + η)(2σ + ω − η)

C2 = − (ω3 + 2σω2 + ωη2β2 − 2ωη2β + 2ση2β2)ψ2φ

ω2(2σ + ω + η)(2σ + ω − η)

C3 =
(ω2 − 2ω2β − 4σβω + η2β2)φηψ2

ω2(2σ + ω + η)(2σ + ω − η)

C4 =
(−Ψ+ ω2c1 + c2ηβω − c2ηω − ηβAσω + 2c1σω + 2c2σηβ − c1η

2β)φψ

ω(2σ + ω + η)(2σ + ω − η)

C5 = − (−ω2c2 +Ψ+ ηβAω − ηβc1ω + c1ηω − 2c2σω − 2ηβc1σ + c2η
2β)φψ

ω(2σ + ω + η)(2σ + ω − η)

C6 =
2A(ω + 2σ − η)(A − c1 − c2) + (ω + 2σ)(c2

1 + c2
2)− 2ηc1c2

(2σ + ω + η)(2σ + ω − η)

n = ψ(r + 2δ), m = φ(r + δ)

Ψ = −ω2A + Aηω − 2Aσω − 2ηβAσ + η2βA
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