
Les Cahiers du GERAD ISSN: 0711–2440

Integrated Production and Material
Handling Scheduling Using a Set of
Conflict Free Alternative Paths

G. El Khayat, A. Langevin
D. Riopel

G–2003–32

May 2003

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.

Integrated Production and Material Handling

Scheduling Using a Set of Conflict Free

Alternative Paths

Ghada El Khayat, André Langevin
Diane Riopel

GERAD and École Polytechnque de Montréal
C.P. 6079, Succ. Centre-ville
Montréal (Québec) H3C 3A7

ghada.el-khayat@polymtl.ca
andre.langevin@polymtl.ca
diane.riopel@polymtl.ca

May, 2003

Les Cahiers du GERAD

G–2003–32

Copyright c© 2003 GERAD

Abstract

Due to the increasing popularity of automated guided vehicles in modern indus-
try and the valuable investment they require, their design and operational issues have
been studied extensively in recent literature. On the other hand, machine scheduling
remains an active research area since several decades. However, material handling op-
erations should be synchronized with machine operations to get a better utilization of
resources. In this article, we optimally solve an integrated production and material
handling scheduling problem in a job-shop context. A mathematical programming
model and a constraint programming model are presented for the problem and tested
on problems from the literature. One of k-shortest paths between every two machines
may be used for a material handling operation or a deadhead. When a path is chosen,
all its segments are mobilized until the end of the handling operation or the deadhead.
A commercial software (ILOG OPLStudio) was used for modeling and solving both
models.

Keywords: Integrated scheduling, conflict-free routing, material handling, produc-
tion, mixed integer programming, constraint programming.

Résumé

À cause de l’usage, de plus en plus répandu, des chariots automatiques dans
l’industrie moderne et les investissements coûteux qu’ils requièrent, leurs problèmes
de design et d’opération ont été largement étudiés dans la récente littérature. D’autre
part, l’ordonnancement de la production demeure un domaine de recherche très actif
depuis plusieurs décennies. Cependant les tâches de manutention et celles de produc-
tion doivent être synchronisées pour réaliser une meilleure utilisation des ressources.
Dans cet article, nous résolvons à l’optimalité un problème d’ordonnancement intégré
de la production et de la manutention dans un contexte d’atelier multigamme. Un
modèle en programmation linéaire mixte et un autre en programmation par contraintes
sont présentés et testes sur des jeux de données de la littérature. Un des k-plus court
chemins entre chaque deux machines peut être utilisé pour une tâche de manutention
ou un voyage à vide. Quand un chemin est choisi, tous ses segments sont mobilisés
jusqu’à la fin de la tâche de manutention ou le voyage à vide. Un logiciel commercial
(ILOG OPLStudio) a été utilisé pour la modélisation et la résolution des deux modèles.

Mots clés : Ordonnancement intégré, routage sans conflit, manutention, produc-
tion, programmation linéaire mixte, programmation par contraintes

Les Cahiers du GERAD G–2003–32 1

1 Introduction

Production scheduling problems in real factories incorporate much more constraints than
those generally studied in literature. Constraints vary according to the production environ-
ment. In manufacturing, material handling constraints are very important and should be
considered to achieve a better resource utilization. Neglecting the interdependence of the
machines and the material handling equipment in a shop may lead to separate incompat-
ible production and material handling schedules. Recently, some researchers studied the
problem of simultaneous scheduling of production and material handling. Contributions in
this area proposed heuristic solution approaches. Moreover, most test problems correspond
to very special cases in manufacturing where travel times for material handling equipment
are comparable to processing times on machines. In this paper, based on common shop
dimensions and vehicle speed (3 km/hr), we consider material handling times that are
shorter than the processing times. This corresponds to real manufacturing settings.

In the problem studied in this article, we consider the production system with the
material handling resources. In addition to machines, material handling vehicles, such as
automated guided vehicles (AGVs), are considered. In order to optimize AGVs operation,
routing conflicts should be avoided. Production scheduling problems are very complex
because of their combinatorial nature, even if we do not consider additional constraints.
In this article, we propose a modeling strategy that accounts for routing conflicts by using
a set of k-shortest paths. The shortest paths, on a bidirectional network, are used for
either the material handling operations or the deadheads. When a handling operation
or a deadhead is assigned to a path, all the segments of that path can not be used by
another vehicle in the same time. A mathematical programming model and a constraint
programming model are proposed. The two formulations are solved to optimality on test
problems from the literature.

This paper is organized as follows. Section 2 presents a literature review. Section 3
presents the problem and the models. Section 4 presents the experimentation and the
conclusion follows.

2 Literature Review

Contributions in integrated scheduling started as extensions of the 2 machine flow-shop
problem solved optimally by Johnson [1]. Material handling considerations were added to
the problem. These include : equipment availability and capacity constraints for buffers.
To name some researchers, Maggu, Das and Kumar [2], Stern and Vitner [3], Panwalker
[4] and Levner, Kogan and Levin [5] studied the problem for the minimization of the
makespan. Raman, Talbot and Rachamadugu [6] studied a larger size flow-shop problem
where handling times were not sequence dependent.

Lee and DiCesare [7] study the integrated production and material handling scheduling
in a job-shop context. Two shortest path routes (in opposite directions) exist between
every pair of machines. Routes are constraining resources. A Petri-net is presented and
a heuristic method proposed. The objective is to minimize the makespan. They consider

Les Cahiers du GERAD G–2003–32 2

a shop of 3 machines and 1 robot for transformation activities and 5 AGVs for material
handling activities. Two cases are presented. In the first, the AGV is dedicated to a job,
accompanying it until the end of processing. In the second, the AGV is dedicated to a
machine to move the jobs after being processed by the machine. 2 AGVs are dedicated to
the load/unload station. Therefore, no assignment decisions are considered. The method
was applied to another problem with no a priori assignments (3 machines, 1 AGVs and 3
jobs). Operations per job are less than or equal to 3.

Integrated scheduling in a job-shop context was studied by Bilge and Ulusoy [8]. They
study the problem considering the objective of minimizing the makespan in an FMS. Unlike
in Raman, Talbot and Rachamadugu (1986), AGVs do not return to a load/unload station
after every material handling operation. Hence, handling time is sequence dependent. A
non linear formulation is presented. The problem is then decomposed into 2 sub-problems
and solved by a “Time-window” heuristic. At every iteration, they obtain a new machine
schedule this is used to determine time-windows for material handling operations. They
then search for a feasible solution for the material handling scheduling sub-problem. If this
is not possible, the machine schedule is revised and the heuristic continues.

Ulusoy, Funda and Bilge [9] study the same problem and propose a genetic algorithm to
solve it. Results are better than those obtained using the “Time-window” heuristic. The
algorithm solved optimally 60% of the test problems. The main difference between the
two approaches is that a solution obtained by the genetic algorithm contains simultane-
ously information on the machine scheduling and the material handling scheduling in the
chromosomes while the iterative approach considers the 2 systems separately. The shortest
path between 2 machines determines the handling time and deadheads time. There are no
buffer considerations.

Sabuncuoglu and Karabuk [10] study the integrated scheduling problem considering a
limited buffer capacity for machines. They use a partial enumeration method (Filtered
Beam Search). Their job-shop consists of 6 machines and a load/unload station. 3 AGVs
are responsible for material handling operations. However, the limited buffer capacity con-
straint is not rigid and overcome by a design solution that supposes that a central infinite
capacity buffer exists and that AGVs can be rerouted to it at any time to prevent blocking.
Conflict avoidance is not clearly discussed in the paper. Each route segment measures 5
distance units. Test problems have up to 25 jobs, 5 or 6 operations per job. Processing
times are determined by a 2-Erlang distribution. The performance of the algorithm is
superior compared to scheduling rules. Several objective functions were tested.

A 2-stage assembly production system composed of 4 machine cells is studied by Anwar
and Nagi [11]. The main distinction between single and 2-stage production is in the
nature of the precedence constraints. In assembly shops, precedence relations exist between
operations on different pieces that will ultimately be a part of one end-product. The
problem does not consider a route network and conflicts are not taken into account. The
authors present a formulation and a heuristic to solve the problem. Anwar and Nagi [12],
study the same assembly shop. They propose a heuristic methodology that accounts for
conflicts. No numerical results are reported.

Les Cahiers du GERAD G–2003–32 3

Smith, Peters and Srinivasan [13] consider not only material handling activities but
also explicitly loading and unloading activities. In their problem, a machine stays blocked,
if there is no material handling resource available to free it. Two heuristic approaches
are presented. One is a global random search procedure O (n2 log n) that considers all
operations to be scheduled: n being the number of operations to schedule. The second
approach is hierarchical and considers machines in the first place.

El Khayat, Langevin and Riopel [14], propose a mathematical programming and a
constraint programming formulation for the integrated production and material handling
scheduling problem. They consider the use of shortest paths to accomplish a handling
operation or a deadhead. Test problems presented in Bilge and Ulusoy [8] were used to
validate the models. They also proposed larger size problem instances. The two models
were solved to optimality. However, for large instances, the constraint programming model
outperformed the mathematical programming model.

Previous contributions consider inter-machine distances to be the most influencing for
the material handling activities. Lee and Maneesavet [15], however, present a contribu-
tion where material handling activities that influence the schedule take place between the
load/unload station and the machine. Dispatching strategies are proposed and evaluated
for rail-guided vehicles in a loading/unloading zone of a Flexible Manufacturing System
(FMS).

Some contributions were also presented in a dynamic setting. They consider contin-
uous arrival of jobs instead of a set of jobs available at the beginning of the scheduling
horizon. Myopic scheduling rules are generally used. Sabancuoglo and Hommertzhein [16]
studied scheduling rules for machines and AGVs in an FMS. Later, they studied integrated
scheduling of production and material handling for an FMS with a job-shop production
environment [17]. Simulation was used to evaluate the performance of different scheduling
rules. The objective considered was to minimize average flow-time. They consider finite
capacity for machines, material handling equipment and work-in-progress buffers. The
number of machines is between 1 and 6, and the system has 2 AGVs. Sabuncuoglu and
Hommertzheim [18] also proposed an on-line algorithm with a better vision compared to
the scheduling rules. The algorithm considers more than one operation at a time. The same
authors reconsider the experimental investigation of scheduling rules for a wide variety of
objective functions [19]. They also carried out this investigation for the case of machine
breakdown [20]. Jawahar et al. [21] also study the dynamic problem. They present a
heuristic that uses dispatching rules, accounting for conflicts, for AGVs.

As presented, although different complementary aspects are integrated to the machine
scheduling problem, solution methodologies in the literature are all heuristic. We optimally
solve the integrated scheduling problem, in a job-shop setting. We also use mathemati-
cal programming and constraint programming for the first time to solve the problem.
To our knowledge, this problem has not been formulated nor solved using the constraint
programming technique. However, production scheduling problems implying only machine
resources was studied by Jain and Grossmann [22] and solved using the constraint program-
ming technique and results were promising. On the other hand, vehicle routing problems

Les Cahiers du GERAD G–2003–32 4

were solved by Pesant et al. [23] using constraint programming. However, in their work,
conflicts were not accounted for.

3 Problem Statement And Models

Mathematical programming formulations proposed in the literature, for job-shop schedul-
ing problems, are quite difficult to solve for large size problems. They are mixed integer
and sometimes non-linear for disjunctive constraints. A rather new research area that has
proven effective for scheduling applications is constraint programming. In section 3.1, we
present a mixed-integer model for the integrated scheduling job shop. In section 3.2, we
present a constraint programming model for the problem. First, we describe the opera-
tional system.

The operational system considered is a job-shop environment, with machines and AGVs
referred to as workcentres. A job is composed of a certain number of pieces to be processed
on and handled between machines in a predefined sequence. These pieces form a lot or
several lots. A certain number of pieces forming a lot are gathered on a pallet and then
handled by AGVs. We consider one lot to schedule for each job. Operation refers to
processing on a machine or handling between two machines.

The number and types of machines are given. That is the lot assignment to machines
is already determined together with the order in which machines will be visited. Sufficient
input/output buffer space is available at each machine. Tools, pallets and resources for
loading and unloading are sufficiently available. Machine operations are not preemptive and
the set of operations to schedule together with relevant data is available at the beginning
of the time horizon. That is all jobs have zero ready times.

Trips may follow one of the k-shortest paths between 2 machines to accomplish whether
a material handling operation or an empty travel (deadhead). Material handling opera-
tions and deadheads are not preemptive. The duration of a material handling operation
depends on the route to which it is assigned. The duration of the deadhead depends on
the assignment sequence of the material handling operations to AGVs and consequently
the assignment to routes. All data are deterministic.

The problem reads as follows: given the shop layout, k-shortest path routes between
every origin-destination pair and job routes indicating precedence relations and processing
times, determine the starting time of production and material handling operations for all
jobs together with the assignment of material handling operations to AGVs and to routes
that minimize the makespan.

3.1 Mathematical programming formulation

The model includes variables and constraints representing the job-shop production schedul-
ing problem. To this, we add precedence constraints for material handling operations, as-
signment constraints of material handling operations to AGVs and to predetermined routes
and connectivity constraints ensuring that empty travel times are considered. Empty travel

Les Cahiers du GERAD G–2003–32 5

times depend on assignment of the deadhead to predetermined route. A material handling
operation corresponds to moving a job from a source machine to a destination machine on
which the following processing will take place. An empty travel corresponds to the move-
ment of the AGV from the machine destination of a material handling operation to the
machine source of the following material handling operation on the same AGV. Disjunctive
constraints are written for routes as these are considered constraining resources. Conflicts
are obviously accounted for. However, a route used by a material handling operation or a
deadhead is completely mobilized until the end of the operation.

3.1.1 Notation.
O Set of operations (j∈O), including potential deadheads and an end dummy operation
OR Set of production and material handling operations OR ⊂ O
OM Set of material handling operations OM ⊂ O
OP Set of production operations OP ⊂ O
OF Set of first operations of all jobs OF ⊂ O
OL Set of last operations of all jobs OL ⊂ O
OV Set of deadheads OV ⊂ O
OMV Set of material handling operations and deadheads OMV ⊂ O
W Set of all workstations w ∈ W
M Set of machines M ⊂ W
C Set of AGVs C ⊂ W
R Set of routes r ∈ R
Rc Set of pairs of conflicting routes
Ow Set of operations soliciting workstation w
Osi Set of deadheads that might be generated upon accomplishing material handling task i
Opj Set of deadheads that might precede material handling task j
Rj Set of routes that might host an operation j
Or Set of operations soliciting a route r

dr Time needed to travel a route r
n(j) Operation following operation j
s Start of the time horizon
tj Processing time of production or dummy operation j
H A big value

Ψij Variable having the value 1 if operation i precedes operation j , 0 otherwise
Φjw Variable having the value 1 if material handling operation jis assigned to AGV w,

0 otherwise
Πjr Variable having the value 1 if material handling operation or deadhead j is assigned to

the route r
Ωij Variable having the value 1 if material handling operation or deadhead i precedes ma-

terial handling operation or dead j on a route, 0 otherwise
Cmax Variable indicating the end time of the schedule (makespan)
Sj Variable indicating the start time of the operation or deadhead j

Les Cahiers du GERAD G–2003–32 6

3.1.2 Mathematical programming model.

Min Cmax (1)
Cmax ≥ Sj+ tj ∀j ∈ OL (2)
Sn(j) ≥ Sj+tj ∀j ∈ O\OL| j ∈ OP (3)
Sn(j) ≥ Sj +Σr drΠjr ∀j ∈ O\OL| j ∈ OM (4)
Sj ≥ s ∀ j∈OF (5)
Ψij +Ψji=1 ∀w, ∀i,j | i�=j, i,j ∈ Ow (6)
Ωij +Ωji=1 ∀r, ∀i,j | r∈ Rj , r∈ Ri , i�=j, i,j ∈ OMV (7)
∑

w Φjw=1 ∀w∈C, ∀j | j ∈ Ow (8)
ΣrΠjr =1 ∀j ∈OMV | r ∈ Rj (9)
Sj ≥ (Si+ti) + (Ψij-1) H ∀w∈M, ∀i,j | i�=j, i,j ∈ Ow (10)
Sj ≥ Si+Σr drΠjr+Σr drΠvr + (Πjr+
Πvr + (

∑
k �=i Ψik−

∑
k �=j Ψjk)+Φiw +

Φjw -5) H

∀w∈C, ∀i,j | i�=j, i,j ∈ Ow,v ∈ Osi∩ Opj (11)

Sj ≥ Si+ ds + (Πjr +Πis +Ωij -3) H ∀(r,s) ∈RC ,∀i,j | i�=j, i,j ∈ OMV , s ∈Ri, r∈Rj (12)
Sv ≥ Si+ ds + (

∑
k �=i Ψik −∑

k �=j Ψjk) + Φiw +Φjw +Πis -4) H
∀w∈C, v∈ Osi∩ Opj , ∀s ∈ Ri ,∀i,j | i�=j,
i,j∈OM

(13)

Sj ≥ Sv+ds+ ((
∑

k �=i Ψik −∑
k �=j Ψjk) + Φiw + Φj + Πvs-4)

H

∀w∈C, ∀i,j , v∈ Osi∩ Opj , ∀s ∈ Rv| i�=j,
i,j∈OM

(14)

Ψij ∈ {0,1} (15)
Φjw ∈ {0,1} (16)
Πjr ∈ {0,1} (17)
Ωij ∈ {0,1} (18)
Sj ≥ 0 (19)

Table 1: Complete model in mathematical programming

The model minimizes the makespan (1). Constraints (2) ensure that the makespan is
greater than the end times of last operations. According to constraints (3), precedence
relations between production operations and their successors are respected. Constraints
(4) state that precedence relations for material handling operations are respected and that
their duration depends on the assignment to one of the shortest path routes. Constraints (5)
impose that first operations start after the beginning of the scheduling horizon. Constraints
(6) determine the order in which operations are assigned to a machine or an AGV. Similarly,
constraints (7) determine whether a material handing operation or a deadhead i precedes
j on a route or vice versa. Constraints (8) state that a material handling operation is
assigned to an AGV. Constraints (9) state that a material handling operation or a deadhead
is assigned to a route. Constraints (10) model the disjunctive character of the machines.
For two successive operations on a machine, the second starts after the first is finished.

Les Cahiers du GERAD G–2003–32 7

Constraints (11) model the disjunctive character of AGVs. For two successive operations on
an AGV, the second starts after or at the end of the deadhead resulting from the operations
assignment. The duration of the deadhead and the material handling operation depends
on the used route. Constraints (11) also account for connectivity of the AGVs routes since
they consider empty travel time for two successive material handling operations on an
AGV. Constraints (12) ensure that no conflicts take place on routes, for any two routes
sharing one or several segments. According to constraints (13) and (14), deadheads occur
between successive material handling operations assigned to the same AGV. Constraints
(15-18,19) define binary and continuous variables respectively.

3.2 Constraint programming formulation

It is difficult to present standard notations and formulations for constraint programming
models. Hence, we present the declarative names as in the model formulated with using
the commercial software (OPLStudio). The choice of this software was based on the
fact that incorporates both Cplex and constraint programming algorithms. Therefore,
it was used with both models presented in this article. The constraint programming model
uses software functions that enable solving by the solver (Scheduler), part of OPLStudio.
This solver is specially designed for scheduling problems. The number of variables and
constraints is significantly less than those of the mixed-integer formulation. The model is
written in a more expressive manner and data structures are more compact.

First, we present main resource types in OPLStudio [24]. For an introduction to con-
straint programming the reader is referred to Marriott and Stucky [25]. For a presentation
of logic-based methods for optimization, we refer the reader to Hooker [26].

Unary resources: a unary resource cannot be shared by two activities/operations at the
same time.

Alternatives resources: alternative resources are equivalent from the activity/operation
stand point. We can use one or the other. The instruction ActivityHasSelectedRes-
source used with appropriate arguments holds if a resource is chosen by an activity. It
can be used to formulate global constraints.

Discrete Resources: discrete resources are used to model equivalent and interchangeable
resources.

In the model, we use a global constraint (alldifferent) to model assignment order to
AGVs. For a detailed presentation on types of global constraints (deterministic and non-
deterministic) and more generally on types of constraints in constraint programming (ele-
mentary and composite), we refer the reader to Van Hentenryk [27].

The software supports the definition of variable operation duration. The model devel-
oped is based on this aspect since material handling operations and deadheads have the
duration of the route chosen which is not determined a priori

3.2.1 Notation. In this section we present the notation for the constraint programming
model. Next, we present the model using usual logical constraints. In conjunction with

Les Cahiers du GERAD G–2003–32 8

the resource declaration, the OPLStudio keyword requires is used to model the resource
disjunction constraints.
Machines Set of machines
Tasks Set of operations
Tasksmach Set of production operations ⊂ Tasks
TasksMH Set of material handling operations ⊂ Tasks
Vehicles Set of vehicles
MHdum Set of dummy ending operations for AGVs (End1..Endx)
MHorigin Set of dummy starting operations for AGVs (Start1..Startx)
TasksMHdum Set of material handling operations and dummy ending operations for

AGVs TasksMH ∪ MHdum
TasksMHSour Set of material handling operations and start dummy operations for AGVs

TasksMH ∪ MHorigin
TasksMHSourDUM Set of material handling operations and dummy starting and ending op-

erations for AGVs TasksMH ∪ MHdum ∪ MHorigin
SetOfPrecedences Set of pairs of operations having a precedence relation
deadheads Set of potential deadheads
Routes Set of routes
mayHost[t] Set of routes that might host an operation t∈Tasks ∪ deadheads
ConflictingRoutes Set of pairs of conflicting routes (r1,r2) sharing one or several segments r1

∈ Routes, r2 ∈ Routes
durationR [r] Time needed to travel route r ∈ Routes
resourcem [t] “Machines” type data indicating which machine is needed to accomplish

operation t ∈ Tasksmach

followsOnVehicle[t] “Tasks” type variable indicating which operation follows another opera-
tion on an AGV t ∈ TasksMHSour

carries [t] “Vehicles” type variable indicating to which vehicle a material handling
or a dummy operation would be assigned
t ∈TasksMHSourDUM

hosts [t] “Routes” type variable indicating to which route an operation or a dead-
head would be assigned t ∈ Tasks ∪ deadheads

duration [t] Integer variable indicating the duration of an operation or a deadhead t
∈ Tasks ∪ deadheads

S[t] Integer variable indicating the start time of a production, a material han-
dling operation, a deadhead or the dummy ending operation “makespan”
t ∈ Tasks ∪ deadheads ∪ makespan

3.2.2 Constraint programming model. The constraint programming formulation
has the objective of minimizing the makespan. In the model, we define a set of production
operations to accomplish as well as a set of material handling operations. Deadheads arise
as material handling operations are assigned to AGVs. They are accounted for by the
constraints that formulate the AGVs disjunction. However, deadheads use routes which
are constraining resources. Consequently, when they occur they mobilize routes for which
disjunction constraints should be respected.

Les Cahiers du GERAD G–2003–32 9

Minimize S [makespan] (20)
S[makespan] ≥ S[t] + duration[t] ∀ t ∈ Tasks ∪ deadheads (21)
S[q] ≥ S[t] + duration [t] ∀(t,q) ∈ setOfPrecedences (22)
followsOnVehicle [p]= q ⇒ S[p] + duration [p] ≤ S[d]

∀ d ∈ deadheads, ∀(p,q)|{p ∈ TasksMH, q ∈ TasksMHdum, d after p & before q}
(23)

followsOnVehicle [p]= q ⇒ S[p] + duration [p] ≤ S[q]
∀ d ∈ deadheads, ∀(p,q)|{p ∈ TasksMH, q ∈ TasksMHdum, d after p & before q}

(24)

followsOnVehicle [p]= q ⇒ S[d] + duration[d] ≤ S [q]
∀ d ∈ deadheads, ∀(p,q)|{p ∈ TasksMH, q ∈ TasksMHdum, d after p & before q}

(25)

alldifferent (followsOnVehicle) (26)
followsOnVehicle [t] = q ⇒ t �= q

∀(t,q)|p ∈TasksMHSour & q ∈ TasksMHdum
(27)

followsOnVehicle [p]= q ⇒ q in TasksMHdum
∀ p ∈ TasksMHSour, q ∈ Tasks

(28)

carries [Start1] = carries[End1] (29)
carries [Start2] �= carries[Start1] (30)
carries[Start2] = carries[End2] (31)
carries [End1] �= carries[End2] (32)
DurationR [hosts [t]]=duration [t] ∀ t ∈ Tasksmach ∪ TasksMH (33)
followsOnVehicle[p]=q ⇒ duration[d]=DurationR [hosts[v]]

∀ r ∈ routes, ∀ d ∈ deadheads, ∀(p,q)|{p ∈ TasksMH, q ∈ TasksMHdum, d after p &
before q}

(34)

hosts[t]= r ⇒ r in mayHost[t]
∀t ∈ TasksMH ∪ deadheads, ∀ r ∈ Routes

(35)

followsOnVehicle[p]=q ⇒ carries [p] = carries [q]
∀ p ∈ TasksMHSour, q ∈ Tasks

(36)

S[q] ≥ S[t] + d[t] \/ S[t] ≥ S[q] +d[q]
∀ t ∈ Tasksmach, ∀ m | resourcem[t]= resourcem[q]= m

(37)

carriers[t]= c ⇒ t requires c ∀ t ∈ TasksMHSourDUM, ∀ c ∈ Vehicles (38)
followsOnVehicle[p]=q & carries [p]=c ⇒ a[d] requires c

∀ p ∈ TasksMHSour, ∀ q ∈ TasksMHdum, d after p & before q,∀ d ∈ deadheads, ∀ c
∈ Chariots

(39)

followsOnVehicle[p] = q & hosts [d]= r ⇒ a[d] requires r
∀ r ∈ routes, ∀ d∈deadheads, ∀(p,q)|{p ∈ TasksMH, q ∈ TasksMH, d after p & before

q}

(40)

hosts[t]= r ⇒ t requires r ∀ t ∈ TasksMH, ∀ r ∈ mayHost [t] (41)

hosts [d] =r2 & hosts[t]= r1 ⇒ a[t].start ≥ a[d].end \/ a[d].start ≥ a[t].end
∀ (r1,r2) ∈ ConflictingRoutes, ∀ t ∈ TasksMH ∪ deadheads
∀ d ∈ TasksMH ∪ deadheads | {r1 ∈ mayHost[t]& r2 ∈ mayHost[d]}

(42)

Sub-tour constraints as needed (43)

Table 2: Complete model in constraint programming

Les Cahiers du GERAD G–2003–32 10

In (20) we minimize the makespan. Precedence relations between makespan and all
other operations or deadheads are modeled by constraints (21). Precedence relations be-
tween operations are accounted for by constraints (22). More precedence relations are
generated according to assignment order to the AGVs and are modeled by constraints
(23), (24), and (25). They state that the deadhead resulting from the assignment of two
successive material handling operations to an AGV start at the end of the first material
handling task or later. Constraints (24) are redundant and are verified by constraints (25)
which define precedence relations between the resulting deadhead and the following mate-
rial handling task on the AGV. Global constraint (26) imposes that each material handling
task has a distinct time interval according to the assignment order to AGVs. Constraint
(27) ensures that material handling operation cannot be a successor to itself. Constraints
(28) indicate that a material handling operation on an AGV is followed by another mate-
rial handling operation or a dummy ending operation. Constraints (29-32) define the start
and the end of an AGV route and assign a dummy start and a dummy end operation to
each AGV. Constraints (33) determine the duration of an operation which corresponds to
the used route. Artificial routes are created for production operations. Constraints (34)
determine the duration of deadheads according to the routes. Constraints (35) state that
routes used for handling operations or deadheads are admissible. Constraints (36) ensure
that two following operations are assigned to the same vehicle. Constraints (37) model the
disjunctive character of machines. In the OPLStudio model, these are accounted for by
the unary resource declaration for the machines. The declaration is used in conjunction
with a requires constraint. The latter ensures that the resource requirements are met.
Similarly, constraints (38-39) and (40-41) account for the disjunction of AGVs and routes,
respectively. In the OPLStudio model, AGVs and routes are declared unary resources, as
defined earlier. This declaration is also used in conjunction with a requires constraint to
respect resource needs. Variables “carries” and “hosts” eliminates the need to define these
entities as alternative resources. Constraints (42) account for conflicts. They ensure that
two routes sharing one or several segments are not used at the same time.

By subtour constraints we refer to constraints that ensure that a number of routes
equivalent to the number of AGVs is created. They prevent the occurrence of a solution
where the following operations follow on an AGV: a1,a2,, ax,a1. To formulate this we
use a logical constraint that reads as follows:

followsOnVehicle[a1]=a2 &. & followsOnVehicle[ay]= ax ⇒ not followsOnVehicle[ax]=a1

Subtour constraints for three operations are generally sufficient because lots of them
are already prohibited by precedence constraints. Subtour constraints do not affect solving
time negatively.

In the model, resources are also declared discrete to facilitate search for solutions.
Once a solution is found for the discrete resource problem, it is then easier to find a
solution that respects the unary resource constraint.

Les Cahiers du GERAD G–2003–32 11

Complementary to the problem formulation, a good search procedure should be de-
signed. Several procedures are available in OPLStudio. In our problem, we use the gen-
erate instruction which is one of the generation procedures in OPL. The instruction acts
randomly. Generation procedures receive a discrete variable, or an arbitrary array of
discrete variables, and generate values for all these variables. The generate instruction
generates values for the variables in its arguments by first generating values for the variable
with the smallest domain. In addition to the generate instruction, we use a dichotomic
search combined with Limited Discrepancy Search (LDS). LDS is a search strategy that
assumes the existence of a good heuristic that it incorporates. Its basic intuition is that
the heuristic, when it fails, probably would have found a solution if it had made a small
number of different decisions during the search. The choices where the search procedure
does not follow the heuristic are called discrepancies. As a consequence, LDS systemati-
cally explores the search tree by increasing the number of allowed discrepancies. Initially,
a small number of discrepancies is allowed. If the search is not successful or if an optimal
solution is desired, the number of discrepancies is increased and the process is iterated
until a solution is found or the whole search space has been explored. LDS has been shown
to be effective for job-shop scheduling problems.

The constraint programming model presented in this article has a lot of variables and
constraints that are sometimes redundant. These helped improve the performance. On the
other hand, no numerical precision problems are experienced as in the case of the mixed
integer formulation when big H is not carefully chosen.

4 Experimentation

Four layouts are considered in generating the test problems. They are presented in Figure 1.
The layouts were presented in [8]. Each has 4 machines and one load/unload station. In
the article, the authors presented the only literature test problems that can be regenerated.
The test problems consist of 10 job sets with different routings (job-shop). Using these 10
sets with the four layouts, we generated 40 test problems.

In those problems, processing times on machines and material handling times are most
of the time comparable. In many industrial settings, material handling times are much
smaller than processing times on machines. Modifications were introduced to account
for this reality. An AGV travels at an average speed of 3 km/h. Considering common
dimensions of a shop and a lot production, handling times should be inferior to machining
times. Handling times were consequently divided by 2. The 2-shortest paths required for
testing the models can be generated by a k-shortest path generation algorithm such as
Yen’s algorithm [28].

A second modification is the use of a bidirectional network instead of a unidirectional
network as in [8]. In their work, travel time between machines x and y is not the same as
that between y and x. Detailed distance matrixes, job routes, processing times and route
lengths are presented in Annex A.

Les Cahiers du GERAD G–2003–32 12

L/U Load/Unload
M Machine

Figure 1: The four layouts

Tests were performed on a Pentium 4, 2.53GHz personal computer using OPLStudio
version 3.6 that includes Cplex version 8. Result tables are presented hereafter. Tables
3 and 4 show results for the mathematical programming and the constraint programming
model, respectively.

Les Cahiers du GERAD G–2003–32 13

nb. nb. nb. Time
Data operations machines AGVs Variables Contstraints (sec) Objective Nodes Iterations

MP-CR-1-1 21 4 2 16995 6583 4,86 63 70 620

MP-CR-1-2 21 4 2 16995 9111 5,64 61 37 1232

MP-CR-1-3 21 4 2 16995 8711 5,45 66 70 1208

MP-CR-1-4 21 4 2 16995 8207 6,31 62 100 1780

MP-CR-2-1 24 4 2 25401 1896 1,94 74 47 287

MP-CR-2-2 24 4 2 25401 1972 2,36 71 55 427

MP-CR-2-3 24 4 2 25401 1968 2,17 73 37 266

MP-CR-2-4 24 4 2 25401 1940 2,14 73 35 209

MP-CR-3-1 27 4 2 35940 2271 2,66 75 5 163

MP-CR-3-2 27 4 2 35940 2373 3,17 72 2 111

MP-CR-3-3 27 4 2 35940 2363 3,13 74 1 81

MP-CR-3-4 27 4 2 35940 2327 2,91 74 11 160

MP-CR-4-1 33 4 2 113388 4465 20 ∗ 62 — —

MP-CR-4-2 33 4 2 113388 4686 15,31 56 40 385

MP-CR-4-3 33 4 2 113421 4671 25∗ 59 — —

MP-CR-4-4 33 4 2 113408 4608 6∗ 57 — —

MP-CR-5-1 21 4 2 16995 1438 1,55 52 0 148

MP-CR-5-2 21 4 2 16995 1502 1,86 49 0 149

MP-CR-5-3 21 4 2 16995 1490 1,80 53 0 111

MP-CR-5-4 21 4 2 16995 1460 1,73 50 9 142

MP-CR-6-1 30 4 2 66768 3371 9,27 95 446 4762

MP-CR-6-2 30 4 2 66768 3507 10,69 91 427 4214

MP-CR-6-3 30 4 2 66768 3491 10,84 94 508 3907

MP-CR-6-4 30 4 2 66768 3439 9,30 93 211 2376

MP-CR-7-1 31 4 2 51021 2876 6,95 66 645 2839

MP-CR-7-2 31 4 2 51021 2986 7,14 66 155 801

MP-CR-7-3 31 4 2 51021 2986 72 68 37831 175756

MP-CR-7-4 31 4 2 51021 2942 6,64 66 141 957

MP-CR-8-1 34 4 2 114556 4567 18,59 147 1151 9419

MP-CR-8-2 34 4 2 114556 4735 22,03 143 1124 9904

MP-CR-8-3 34 4 2 114556 4735 20,70 149 949 9886

MP-CR-8-4 34 4 2 114556 4643 28,97 148 2548 27267

MP-CR-9-1 29 4 2 65911 3329 8,11 88 271 2135

MP-CR-9-2 29 4 2 65911 3459 10,25 84 440 2926

MP-CR-9-3 29 4 2 65911 3459 10,22 89 501 3160

MP-CR-9-4 29 4 2 65911 3397 16,36 87 946 4230

MP-CR-10-1 36 4 2 146475 5232 36,66 121 1561 9768

MP-CR-10-2 36 4 2 146475 5446 29,94 117 1689 11488

MP-CR-10-3 36 4 2 146475 5394 28,77 119 1318 11337

MP-CR-10-4 36 4 2 146475 5310 38,14 120 2106 15098

∗ Time to find the solution without proof of optimality.

Table 3: Results for the mathematical programming formulation

Les Cahiers du GERAD G–2003–32 14

The code in the first column of the table refers to a specific problem instance which is
characterized by some information presented in the problems code that follows.

Problems Code
MP-CR-no.1-no.2
MP Mathematical programming
CR Choice of Routes
nb. 1 Number of the job set
nb.2 Number of the layout

The time noted in the table refers to time needed for compilation, solving and display
of results. Results are obtained in acceptable time with proof of optimality (mean time
of 13 seconds) except for problems PM-CR-4-1, PM-CR-4-3 et PM-CR-4-4, where time
necessary for optimality proof is too long. Results for the two first problems, PM-CR-4-1
and PM-CR-4-3, are not optimal. The optimal solution for the first has the value of 61
and is obtained by solving the constraint programming formulation. For the second, the
constraint programming formulation gives an objective of 58 without proof of optimality.
For the third, PM-CR-4-4, we obtain an objective of 57 without proof of optimality. We
note that these problem instances; present a recirculation phenomenon where jobs visit the
same machine more than once.

Problems include a large number of variables and constraints and results are encour-
aging. We have tested machine scheduling problems including a comparable number of
constraints and variables and solving was very difficult. In other terms, consideration of
constraints relative to material handling system does not necessarily complicate resolution
since they reduce the solutions space. Criticality of resources and the alternative character
of some of them influence the solving time.

Problems code
CP-CR-nb.1-nb.2
CP Constraint programming
CR Choice of Routes
nb. 1 Number of the job set
nb.2 Number of the layout

In the table, choice points refer to different stages in the search for a solution. This
corresponds to nodes in a branching tree for a mixed-integer problem. Failures are choice
points that has been explored during the search and that correspond to infeasible or lower
quality solutions compared to the current solution.

The solution times given for problems CP-CR-6-1, CP-CR-6-2, CP-CR-8-1, CP-CR-8-
2, CP-CR-8-3, CP-CR-8-4, CP-CR-9-3, CP-CR-9-4 correspond to the time necessary to
find the optimal solution without proof of optimality. Obtaining optimality proof was very
long. Optimal solution was not obtained for problems CP-CR-4-2, CP-CR-4-3, CP-CR-4-4,
CP-CR-10-1, CP-CR-10-2, CP-CR-10-3, CP-CR-10-4.

Les Cahiers du GERAD G–2003–32 15

nb nb nb Time Choice
Data operations machines chariots Variables Constraints (sec) Objective Failures Points

CP-CR-1-1 21 4 2 971 5569 15 63 17638 18815
CP-CR-1-2 21 4 2 971 6778 26 61 24500 26176
CP-CR-1-3 21 4 2 971 5569 10 66 11324 12531
CP-CR-1-4 21 4 2 960 6773 14 62 19048 20522
CP-CR-2-1 24 4 2 1189 8829 21 74 24679 26329
CP-CR-2-2 24 4 2 1189 11284 27 71 10261 12966
CP-CR-2-3 24 4 2 1189 8813 28 73 26710 28307
CP-CR-2-4 24 4 2 1189 10363 83 73 32038 42846
CP-CR-3-1 27 4 2 1419 11258 55 75 57208 59316
CP-CR-3-2 27 4 2 1419 14207 30 72 12 12027
CP-CR-3-3 27 4 2 1419 13641 18 74 9 7069
CP-CR-3-4 27 4 2 1419 12763 27 74 9 14060
CP-CR-4-1 33 4 2 2353 29655 1739 61 118529 123133
CP-CR-4-2 33 4 2 2353 40484 250∗ 56∗∗ 8 19504
CP-CR-4-3 33 4 2 2353 37843 15524∗ 58∗∗ 156715 164530
CP-CR-4-4 33 4 2 2353 – 2711∗ 66∗∗ – –
CP-CR-5-1 21 4 2 971 5605 2,13 52 48 2938
CP-CR-5-2 21 4 2 971 6911 3,9 52 48 4176
CP-CR-5-3 21 4 2 971 6697 4,7 53 27 5979
CP-CR-5-4 21 4 2 971 6359 2,3 50 6 2953
CP-CR-6-1 30 4 2 1801 18780 78∗ 95 231 19638
CP-CR-6-2 30 4 2 1801 26912 400∗ 91 890 29844
CP-CR-6-3 30 4 2 1801 26184 170 94 206 13486
CP-CR-6-4 30 4 2 1801 24240 143 93 201 12074
CP-CR-7-1 31 4 2 1691 16383 30 66 41 11879
CP-CR-7-2 31 4 2 1691 21345 109 66 14 15965
CP-CR-7-3 31 4 2 1691 20967 120 68 42 16651
CP-CR-7-4 31 4 2 1961 19706 92 66 33 15084
CP-CR-8-1 34 4 2 2363 68344 500∗ 147 17 —-
CP-CR-8-2 34 4 2 2363 37112 600∗ 143 468 38339
CP-CR-8-3 34 4 2 2363 37664 500∗ 149 54 32746
CP-CR-8-4 34 4 2 2363 33124 650∗ 148 555 37091
CP-CR-9-1 29 4 2 1935 18661 60 88 138 15451
CP-CR-9-2 29 4 2 1935 25027 235 84 13 28741
CP-CR-9-3 29 4 2 1935 24664 90∗ 89 137 11911
CP-CR-9-4 29 4 2 1935 23188 125∗ 87 340 11712
CP-CR-10-1 36 4 2 2674 39961 194∗ 128∗∗ 17 7923
CP-CR-10-2 36 4 2 2674 54631 2010∗ 138∗∗ 61095 71982
CP-CR-10-3 36 4 2 2674 52047 2287∗ 131∗∗ 80649 91292
CP-CR-10-4 36 4 2 2674 46970 2480∗ 122∗∗ 94374 103293

∗ Time to find the solution without proof of optimality.
∗∗ Objective values not proven optimal.

Table 4: Results for the constraint programming formulation

Les Cahiers du GERAD G–2003–32 16

All problem instances except PM/CP-CR-4-3 and PM/CP-CR-4-4 were optimally solved.
However a rapid feasible solution is obtained for both instances. We also noticed, in the
tests, that for some instances constraint programming had a better performance compared
to mathematical programming. For other instances, the inverse was true.

We note that it is difficult to find the limits of the models in terms of maximal number
of variables and of constraints. The solving times change depending on data. It is a
combination of several factors that determines the difficulty of the problem. However, to
our knowledge, it is the first time in literature that the integrated scheduling problem is
optimally solved with both methodologies with conflicts accounted for.

5 Conclusion

We have presented in this article two models for the integrated production and material
handling scheduling problem with routing conflicts considerations. Only for two of the test
problems, we did not obtain optimal solutions. On the practical side, the developments
presented in this paper represent a dual tool to practitioners for solving the problem. In
the tests, the relative performance of the mathematical programming and the constraint
programming models vary according to the problem instance. For the same number of
operations, we may experience different levels of difficulty when using either of the tech-
niques. Precedence constraints have an important impact on the solution time. On the
other hand, processing time on resources combined with disjunction constraints determines
how critical a resource is.

Development of the constraint programming model was an interesting empirical exercise.
In spite of the overall better performance of the mixed-integer program, there are merits
in the constraint programming formulation. It allows formulation of direct successors in
an elegant and concise manner, to the opposite of the mixed-integer formulation.

Compared to results obtained in [14], this model allowed a better utilization of resources
even when conflicts are accounted for. Considering a bidirectional network, in this article,
contrary to [14], resulted in shorter schedules for some problem instances.

Material handling resource constraints influence the solving time for some instances.
The scheduling tools can be used to test scenarios when more or less AGVs or routes are in
the system. Sometimes, adding a resource does change the value of the makespan. If this
happens repeatedly when solving most of the problem instances for a certain operational
system, it justifies the addition of more resources. Hence, the scheduling tool can be used
to handle design issues. The solution time allows the evaluation of different scenarios to
determine resource requirements. Tight resource constraints for machines might also be
problematic. The two proposed models can be easily modified to account for alternative
machines.

Future research includes development of more complete formulations for the problem
and developing search strategies especially for the constraint programming model. Other
job-shop scheduling problems featuring resource constraints for buffers, for route segments
and for intersections are also part of future work.

Les Cahiers du GERAD G–2003–32 17

Annex A

2 shortest-path distance matrix between machines

Bidirectional arcs and adjusted handling times

M1 M2 M3 M4
M1 0 r1,r2 r3,r4 r5,r6
M2 r1,r2 0 r7,r8 r9,r10
M3 r3,r4 r7,r8 0 r11,r12
M4 r5,r6 r9,r10 r11,r12 0

Length of shortest paths

Layout 1 Layout 2 Layout 3 Layout 4
r1 3 r1 1 r1 2 r1 2
r2 3 r2 3 r2 10 r2 6
r3 4 r3 2 r3 4 r3 2
r4 4 r4 2 r4 8 r4 7
r5 5 r5 1 r5 2 r5 5
r6 5 r6 3 r6 10 r6 7
r7 3 r7 3 r7 6 r7 7
r8 3 r8 1 r8 6 r8 3
r9 4 r9 2 r9 4 r9 3
r10 4 r10 2 r10 8 r10 7
r11 3 r11 3 r11 2 r11 4
r12 3 r12 1 r12 10 r12 6

Job routes

Set no. 1

Job (1) : M1(8) ;M2(16);M4(12)

Job (2) : M1(20) ;M3(10);M2(18)

Job (3) : M3(12) ;M4(8);M1(15)

Job (4) : M4(14) ;M2(18)

Job (5) : M3(10) ;M1(15)

Set no. 2

Job (1) : M1(10) ;M4(8)

Job (2) : M2(10) ;M4(18)

Les Cahiers du GERAD G–2003–32 18

Job (3) : M1(10) ;M3(20)

Job (4) : M2(10) ;M3(15);M4 (12)

Job (5) : M1(10) ;M2(15);M4(12)

Job (6) : M1(10) ;M2(15);M3(12)

Set no. 3

Job (1) : M1(16) ;M3(15)

Job (2) : M2(18) ;M4(15)

Job (3) : M1(20) ;M2(10)

Job (4) : M3(15) ;M4(10)

Job (5) : M1(8) ;M2(10);M3(15);M4(17)

Job (6) : M2(10) ;M3(15);M4(8);M1(15)

Set no. 4

Job (1) : M4(11) ;M1(10);M2(7)

Job (2) : M3(12) ;M2(10);M4(8)

Job (3) : M2(7) ;M3(10);M1(9);M3(8)

Job (4) : M2(7) ;M4(8);M1(12);M2(6)

Job (5) : M1(9) ;M2(7);M4(8);M2(10);M3(8)

Set no. 5

Job (1) : M1(6) ;M2(12);M4(9)

Job (2) : M1(18) ;M3(6);M2(15)

Job (3) : M3(9) ;M4(3);M1(12)

Job (4) : M4(6) ;M2(15)

Job (5) : M3(3) ;M1(9)

Set no. 6

Job (1) : M1(9) ;M2(11);M4(7)

Job (2) : M1(19) ;M2(20);M4(13)

Job (3) : M2(14) ;M3(20);M4(9)

Job (4) : M2(14) ;M3(20);M4(9)

Job (5) : M1(11) ;M3(16);M4(8)

Job (6) : M1(10) ;M3(12);M4(10)

Les Cahiers du GERAD G–2003–32 19

Set no. 7

Job (1) : M1(6) ;M4(6)

Job (2) : M2(11) ;M4(9)

Job (3) : M2(9) ;M4(7)

Job (4) : M3(16) ;M4(7)

Job (5) : M1(9) ;M3 (18)

Job (6) : M2(13) ;M3(19);M4(6)

Job (7) : M1(10) ;M2(9);M3(13)

Job (8) : M1(11) ;M2(9);M4(8)

Set no. 8

Job (1) : M2(12) ;M3(21);M4(11)

Job (2) : M2(12) ;M3(21);M4(11)

Job (3) : M2(12) ;M3(21);M4(11)

Job (4) : M2(12) ;M3(21);M4(11)

Job (5) : M1(10) ;M2(14);M3(18);M4(9)

Job (6) : M1(10) ;M2(14);M3(18);M4(9)

Set no. 9

Job (1) : M3(9) ;M1(12);M2(9);M4(6)

Job (2) : M3(16) ;M2(11);M4(9)

Job (3) : M1(21) ;M2(18);M4(7)

Job (4) : M2(20) ;M3(22);M4(11)

Job (5) : M3(14) ;M1(16);M2(13);M4(9)

Set no. 10

Job (1) : M1(11) ;M3(19);M2(16);M4(13)

Job (2) : M2(21) ;M3(16);M4(14)

Job (3) : M3(8) ;M2(10);M1(14);M4(9)

Job (4) : M2(13) ;M3(20);M4(10)

Job (5) : M1(9) ;M3(16);M4(18)

Job (6) : M2(19) ;M1(21);M3(11);M4(15)

Les Cahiers du GERAD G–2003–32 20

References

1. JOHNSON, S.M. (1954). Optimal two and three stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1, 61-67.

2. MAGGU, P. L., DAS, G. and KUMAR, R. (1981). On equivalent-job for job-block
in 2xn sequencing problem with transportation-times. Journal of the Operations
Research Society of Japan, 24, 136-146

3. STERN, H. I., and VITNER, G. (1990). Scheduling parts in a combined production-
transportation work cell. Journal of the Operational Research Society, 41/7, 625-632.

4. PANWALKER, S. (1991). Scheduling of a two-machine flowshop with travel time
between machines. Journal of the Operational Research Society, 42, 609-613.

5. LEVNER, E., KOGAN, K. and LEVIN, I. (1995). Scheduling a two-machine robotic
cell: a solvable case. Annals of Operations Research, 57, 217-232.

6. RAMAN, N., TALBOT, F. B. and RACHAMADUGU, R. V. (1986). Simultaneous
scheduling of machines and material handling devices in automated manufacturing.
. In K. E. Stecke and R. Suri (eds), Proceedings of the second ORSA/TIMS confer-
ence on flexible manufacturing Systems, 321-332. Elsevier Science Publishers B.V.,
Amsterdam.

7. LEE, D.Y. and DiCESARE, F. (1994). Integrated scheduling of flexible manufactur-
ing systems employing automated guided vehicles,” IEEE Transactions on Industrial
Electronics, 41/6, 602-610.

8. BILGE, U. and ULUSOY, G. (1995). A time window approach to simultaneous
scheduling of machines and material handling system in an FMS. Operations Re-
search, 43/6, 1058-1070.

9. ULUSOY, G., FUNDA, S.-S. and BILGE, U. (1997). A genetic algorithm approach to
the simultaneous scheduling of machines and automated guided vehicles. Computers
and Operations Research, 24/4, 335-351.

10. SABUNCUOGLU, I. and KARABUK, S. (1998). Beam search-based algorithm and
evaluation of scheduling approaches for flexible manufacturing systems. IIE Trans-
actions, 30/2, 179-191.

11. ANWAR, M. F. and NAGI, R. (1998). Integrated Scheduling of material handling
and manufacturing activities for just in time production of complex assemblies. In-
ternational Journal of Production Research, 36/3, 653-681.

12. ANWAR, M. F. and NAGI, R. (1997). Integrated conflict free routing of AGVs and
workcenter scheduling in a just in time production environment. Proceedings of the
1997 6th annual Industrial Engineering Research Conference, May 17-18. Miami, FL,
USA.

Les Cahiers du GERAD G–2003–32 21

13. SMITH, J., PETERS, B. and SRINIVASAN, A. (1999). Job shop scheduling con-
sidering material handling. International Journal of Production Research. 37/7,
1541-1560.

14. EL KHAYAT, G., LANGEVIN, A. and RIOPEL, D. (2003). Integrated production
and material handling scheduling using mathematical programming and constraint
programming. Proceedings CPAIOR’03, Montreal, Canada, 8-10 May, 276-290.

15. LEE, J. and MANEESAVET, R. (1999). Dispatching rail-guided vehicles and schedul-
ing jobs in a flexible manufacturing system. International Journal of Production
Research, 37/1, 111-123.

16. SABUNCUOGLU, I. and HOMMERTZHEIM, D. (1989a). An Investigation of ma-
chine and AGV scheduling rules in an FMS. In K. E. Stecke and R. Suri (eds), Pro-
ceedings of the third ORSA/TIMS conference on flexible manufacturing Systems,
261-266. Elsevier Science Publishers.

17. SABUNCUOGLU, I. and HOMMERTZHEIM, D. (1992a). Experimental investiga-
tion of FMS machine and AGV scheduling rules against the mean flow-time criterion.
International Journal of Production Research, 30/7, 1617-1635.

18. SABUNCUOGLU, I. and HOMMERTZHEIM, D.L. (1992b). Dynamic Dispatching
Algorithm for Scheduling Machines and Automated Guided Vehicles in a Flexible
Manufacturing System. International Journal of Production Research, 30/ 5, 1059-
1079.

19. SABUNCUOGLU, I., and HOMMERTZHEIM, D.L. (1993). Experimental Investi-
gation of an FMS due-date scheduling problem: Evaluation of machine and AGV
scheduling rules. The International Journal of Flexible Manufacturing Systems, 5,
301-323.

20. SABUNCUOGLU, I. (1998). A study of scheduling rules of flexible manufacturing
systems: a simulation approach. International Journal of Production Research, 36/2,
527-546.

21. JAWAHAR, N., ARAVINDAN, P., PONNAMBALAM, S. G., SURESH, R. K. (1998).
AGV schedule integrated with production in flexible manufacturing systems. Inter-
national Journal of Advanced Manufacturing Technology, 14/6, 428-440.

22. JAIN, V. and GROSSMANN, I.E. (2001). Algorithms for Hybrid MILP/CP Models
for a Class of Optimization Problems. INFORMS Journal of Computing. 13/4.

23. PESANT, G., GENDREAU, M., POTVIN, J-Y. and ROUSSEAU J-M. (1998). Ex-
act constraint logic programming algorithm for the traveling salesman problem with
time windows. Transportation Science, 32/1, 12-28.

24. VAN HENTENRYCK, P. (1999). The OPL Optimization Programming Language.
The MIT Press.

25. MARRIOT, K. and STUCKEY, P.J. (1998). Programming with constraints: an
introduction. The MIT Press.

Les Cahiers du GERAD G–2003–32 22

26. HOOKER, J. (2000). Logic-Based Methods for Optimization: Combining Optimiza-
tion and Constraint Satisfaction. John Wiley & Sons.

27. VAN HENTENRYCK, P. (1989). Constraint Satisfaction in Logic Programming.
The MIT Press.

28. YEN, J. Y. (1971). Finding the k-shortest loopless paths in a network. Management
Science, 17, 712-715.

