
Les Cahiers du GERAD ISSN: 0711–2440

Filtering for Detecting Multiple
Targets Trajectories on a
One-Dimensional Torus

Ivan Gentil
Bruno Rémillard

G–2003–09

February 2003
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Abstract

The aim of this paper is to present efficient algorithms for the detection of multiple
targets in noisy images of a torus. The algorithms are based on the optimal filter of a
multidimensional Markov chain signal. We also present some simulations, in the case
of one, two, three and four targets, showing the efficiency of the method for detecting
the positions of the targets on a torus. This paper is an extension of [1].
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Résumé

Le but de cet article est de présenter des algorithmes efficaces pour la recherche de
cibles dans des images bruitées d’un tore à une dimension. Les algorithmes reposent
sur le filtre optimal pour une châine de Markov multidimentionnelle représentant le
signal. Nous présentons aussi des simulations dans le cas d’une, deux, trois et quatre
cibles, démontrant l’efficacité de la méthode proposée pour la détection de positions
de cibles sur le tore. Ce papier est une extension de [1].
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1 Introduction

We are interested to locate m (m ∈ N) targets moving in a one-dimensional torus images.
Information is provided by a sequence of noisy images of the torus. As in [1], images are
not crystal clear and we are using filtering theory to find a good estimation the positions
of targets.

Model for targets: Let (Sk)k≥0 be a finite system of m targets evolving in a
countable space X . In our case we assume that X is a one dimensional torus, that is:

X = {1, · · · , N},
where we suppose that N + 1 = 1.

The state space of (Sk)k≥0 is the set {0, · · · , m}X so that
∑

x∈X
S(x) = m.

Targets have particular dynamics: we suppose that at each step, each target chooses the
dynamics is used. There are two possibilities the first or the second dynamic, and target
jump or not to an other dynamic by a Markov chain on {1, 2}. For sake of simplicity, the
results stated for two, but the same method applies for any finite number of dynamics. In
view to the simulations on Section 3 we consider that if a target choose the first (resp.
second) dynamic it will go to the right (resp. left), with greater probability.

Let A = Xm and B = {1, 2}m. The position of targets is exactly described by a set
A ∈ A. And if we note by Tk the dynamic used for the m targets at the step k, we have
Tk ∈ B.

For any k ≥ 0, set
ξk = (Sk, Tk).

We can easily see that (ξk)k≥0 be a finite Markov chain.

Let S ∈ {0, · · · ,m}X such that
∑

x∈X ξ(x) = m and let A ∈ A. If S is associated to the
set A, that mean that each coordinate of A represent a target, then we define FA(S) = 1
and if A don’t represent S we set FA(S) = 0. By this method we have builded a function
FA on {0, · · · ,m}X .

Let set now

M
(
(A, i), (B, j)

)
= E

(
FA(Sk+1)1Ii(Tk+1)|FB(Sk) = 1, 1Ij(Tk) = 1

)
, (1)

where A,B ∈ A and i, j ∈ B. The transition function M is important since it describes
exactly the movement of the Markov chain (ξk)k≥0.

Model for observations: Observations are denoted by Yk∈{0, 1}X . Given ξ0, . . . , ξk,
we assume the (Yk(x))x∈X are independent and

P (Yk(x) = 0|Sk(x) = 0) = p0, (2)
P (Yk(x) = 1|Sk(x) 6= 0) = p1, (3)

where 0 < p0, p1 < 1.
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Remark. The model is not the same as [1]. In the present case, targets are moving in
a one-dimensional torus and several targets can be on the same location. This is quite
interesting difference because in the light of (3), observations (Yk)k≥0 don’t detect if there
are more than one target on a pixel.

In the next section, we will present a straightforward algorithm to compute the optimal
filter. In Section 3 simulations for one, two, three and four targets, showing the performance
of the algorithm proposed.

2 Description of the optimal filter

Contrary to [1], throughout this article we assume the transition function M to be known.
Our aim is to find an easy algorithm to compute

E(FA(Sk)|Yk),

where A ∈ A and Yk is the sigma-algebra generated by observations Y1, . . . , Yk. The
conditional probabilities describe the estimation of the distribution of the m targets on the
torus.

The first step is to compute, for any y ∈ {0, 1}X , the following conditional probability

P (Yk = y|ξk = (S, T )) = P (∩x∈X {Yk(x) = y(x)}| ξk = (S, T )) ,

where S is associated to a set A ∈ A and T ∈ B.
Note that Yk does’t depend on the T , just on the position of targets S. Using the

independence assumption, together with (2) and (3), one can check that

P (Yk = y|ξk = (S, T )) =
∏

x∈X

(
(1− p0)y(x)p

1−y(x)
0

)Q(S(x))(
p

y(x)
1 (1− p1)1−y(x)

)R(S(x))

where

Q(x) =
m∏

i=1

x− i

−i
,

and

R(x)=
(

x

1
x− 2
1− 2

· · · x−m

1−m

)
+ · · ·+

(
x

m

x− 1
m− 1

· · · x− (m− 1)
m− (m− 1)

)
.

Polynomials R(x) and Q(x) satisfy




Q(x) = 0 if x = 1, · · · ,m
Q(x) = 1 if x = 0
R(x) = 0 if x = 0
R(x) = 1 if x = 1, · · · , m.



Les Cahiers du GERAD G–2003–09 3

Thus

P (Yk = y|ξk = (S, T ))=
(

1− p0

p0

)〈yQ(S)〉( p1

1− p1

)〈yR(S)〉
p0
〈Q(S)〉(1− p1)〈R(S)〉,

where 



〈y〉 =
∑

x∈X
y(x)

〈R(S)〉 =
∑

x∈X
R(S(x))

〈yR(S)〉 =
∑

x∈X
y(x)R(S(x)).

Next, set

Λ(y, ξ) ==
(

1− p0

p0

)〈yQ(S)〉( p1

1− p1

)〈yR(S)〉
p0
〈Q(S)〉(1− p1)〈R(S)〉,

where ξ = (S, T ).
Let P be the joint law of the Markovian targets with initial distribution ν, and the

observations, and let Q be the joint law of the Markovian targets with initial distribution
ν, and independent Bernoulli observations with mean 1/2.

Further let Gk be the sigma-algebra generated by Y1, . . . , Yk, ξ0, . . . , ξk. Then it is easy
to check that with respect to Gk, P is equivalent to Q and

dP

dQ

∣∣∣∣
Gk

=
k∏

j=1

2NΛ(Yj , ξj). (4)

Further define

Lk =
k∏

j=1

Λ(Yj , ξj). (5)

It follows that for any Gk-measurable random variable Z and for any sigma-algebra
F ⊂ Gk,

EP (Z|F) =
EQ (ZLk|F)
EQ (Lk|F)

. (6)

While this formula is an easy consequence of the properties of conditional expectations, in
the context of filtering, (6) is known as the Kallianpur-Striebel formula.

The key observation here is to note that expectations relative to Q are much easier
to evaluate since the signal and the observations are independent. Moreover all variables
{Yi(x)}1≤i≤k,x∈I are independent and identically distributed Bernoulli with mean 1/2.
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For any A ∈ A and i ∈ B, define

qk(A, i) = EQ

(
FA(Sk)1Ii(Tk)Lk|Yk

)
.

Note that, according to (6), we have, for any A ∈ A,

P (FA(Sk) = 1| Yk) =

∑

j∈B
qk

(
A, j

)

∑

B∈A,j∈B
qk

(
B, j

) .

Therefore the conditional law of ξk given Yk is completely determined by the qk(A, i)’s
with A ∈ A, i ∈ B.

Our goal will be attained if one can find a recursive formula for the “unnormalized
measure” qk. To this end, set

DA(y) = Λ(y, ξA)

where A ∈ A and ξA = (SA, T ) with SA exactly distributed by the set A ∈ A.
Using independence and identity (4), we have

qk+1(A, i) = EQ

(
FA(Sk+1)1Ii(Tk+1)Lk+1|Yk+1

)

= EQ

[
E

(
FA(Sk+1)1Ii(Tk+1)Λ(Yk+1, ξk+1)|Yk+1, ξk

)
Lk|Yk

]

=
∑

B∈A,j∈B
EQ

(
E

(
(FA(Sk+1)1Ii(Tk+1)

× FB(Sk)1Ij(Tk)Λ(Yk+1, ξk+1)|Yk+1, ξk

)
Lk|Yk

)

qk+1(A, i) = DA(Yk+1)
∑

B∈A,j∈B
M

(
(A, i), (B, j)

)
EQ

(
FB(Sk)1Ij(Tk)|Yk

)

= DA(Yk+1)
∑

B∈A,j∈B
M

(
(A, i), (B, j)

)
qk

(
B, j

)

Therefore we obtain the so-called “Zakai” equation

qk+1(A, i) = DA(Yk+1)
∑

B∈A,j∈B
M

(
(A, i), (B, j)

)
qk

(
B, j

)
. (7)

Under this finiteness hypothesis, Zakai equation (7) is a finite sum and it can be eval-
uated easily (theoretically). Note that by definition, q0 is determined by the initial law of
the targets. Having observed Y1, one can calculate the measure q1, and so on.
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The location of the m targets after the k-th observation can be estimated by choosing
A ∈ A, such that Qk(A) = max

C∈A

∑

i∈B
qk(C, i).

We can also estimate dynamics for targets at the k-th observation by choosing i ∈ B
such that Ik(i) = max

j∈B

∑

A∈A
qk(A, j).

Remark. In view of applications, one can either consider that the parameters p0 and p1

have been estimated or one can use the maximum likelihood method to estimate them
from the observation of images.

3 Applications and simulations

Animations representing the results of the simulations described below, as in Figure 1 for
two targets, can be obtained at the web site

http://www.lsp.ups-tlse.fr/Fp/Gentil/ensimulations2.html.

Calculations were done using C++ and MATLAB.
The targets are independent and move to the nearest neighbors, moving right or left,

with probabilities α1 and α2 (α1, α1 ∈ [0, 1] with α1+α2 = 1), if we are in the first dynamic
and α3 and α4 if we are in the second dynamic (α3, α4 ∈ [0, 1] with α3 + α4 = 1).

Moreover coordinates of Tk are independent Markov chains with values in {1, 2}, with
the following probability

{
P (Tk+1(i) = 2|Tk(i) = 1) = ai

P (Tk+1(i) = 1|Tk(i) = 2) = bi,

0 ≤ ai, bi ≤ 1.
Due to hardware limitations, we restricted the simulations to the case of one, two, three

and four targets, and torus of size 500 in the case of one and two targets, size 150 for three
targets and size 25 for four targets.

In order to estimate the efficiency of our algorithm, we computed the mean error over
several time intervals. We found out that the positions predictions were quite good after
5 to 10 steps. The error made at each iteration was calculated in the following way: in
case of just one estimate A, we calculated the L1-distance between the targets and the
estimate; in case of several estimates, the largest L1-distance was kept. The first iteration
is never considered.

We also took into account various values of parameters p0 and p1, the others parameters
are fixed as follow : 




α1 = α3 = 0.2
α2 = α4 = 0.8
ai = bi = 0.9.

http://www.lsp.ups-tlse.fr/Fp/Gentil/ensimulations2.html�
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Figure 1: MATLAB film with m = 2, N = 300 and p0 = p1 = 0.85.
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To finish, the initial distribution q0 was chosen to be the uniform law on all possible
configurations. The results are reported in Tables 1, 2, 3 and 4.

Table 1: Mean error for one target in torus of size 500.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 3.9 0.2 0.1
p0 = p1 = 0.95 2.8 0.4 0.3

Table 2: Mean error for two targets in torus of size 500.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 6.5 0.8 0.8
p0 = p1 = 0.95 5.5 0.2 0.3

Table 3: Mean error for three targets in torus of size 150.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 2.2 1.8 1.3
p0 = p1 = 0.95 1.0 0.4 0.4

Table 4: Mean error for four targets in torus of size 25.

t [2, 100] [10, 100] [30, 100]
p0 = p1 = 0.9 5.1 3.0 3.2
p0 = p1 = 0.95 0.6 0.5 0.6

Note that, in each case, the algorithm shows really satisfactory results. From the 5-th
or 10-th iteration (depending on the choice of parameters p0 and p1), the distance between
the estimation and the targets is about one or three pixels. This is due to the fact that
the algorithm provides an exact solution to the resolution of the optimal filter. There is a
little loss when we have a lot of targets, this is due to the fact that we use the L1 distance
to calculate the error.
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