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Abstract

In CDMA mobile networks, callers that are transmitting through a power station may
cause interference at other power stations. When many users are already connected in the
network, a new call may cause the signal to noise ratio to drop below a tolerance threshold.
This phenomenon is called “outage” and it provides an important measure of performance,
useful in the design and control of the system. Evaluating this probability analytically has
proven unsuccessful and only approximations exist today. Direct simulation of such networks
is at present very slow because outage occurs infrequently– it may take hours to simulate
directly a realistic model if a reasonable precision is desired. Thus this approach is not useful
for design problems where one wishes to evaluate and compare performance of many different
network models. In this work we implement a change of measure to estimate the outage
probability using Importance Sampling. We present a functional estimator and a stochastic
approximation method that are capable of learning the best parameters for the change of
measure.

Résumé

Dans les résaux CDMA de téléphones mobiles, les utilisateurs transmettant à travers une
station de base peuvent créer de l’interférence aux autres stations. Lorsque plusieurs mobiles
sont déja connectés au réseau, un nouvel appel peut faire en sorte que le rapport “signal-
bruit” descende sous le seuil de tolérance. Ce phénomène est appelé “outage” (blocage) et
c’est un critère de performance utile pour la conception et le contrôle du système. Évaluer
cette probabilié de façon analytique s’étant avéré sans succès, il n’existe de nos jours que
des approximations. Or, une simulation directe de tels réseaux est présentement très lente,
car le blocage est un événement rare. Parfois, des heures de simulation sont nécessaires afin
d’obtenir une précision raisonable. Ainsi, cette approche n’est pas très utile lorsqu’il s’agit
de comparer la performance de différents modèles. Dans ce travail, nous développons un
changement de mesure nous permettant d’estimer la probabilité de blocage. Nous présentons
un estimateur fonctionnel et une méthode d’approximation stochastique par le gradient qui
sont capables de trouver les paramètres optimaux du changement de mesure.
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1 Introduction

CDMA is the next radio-frequency technology for future wireless networks, such as the Universal
Mobile Telecommunications System (UMTS) or IMT-2000. The outage probability is an impor-
tant performance measure of CDMA cellular mobile networks, and it is useful for planning and
design. While mobiles are transmitting, a slow fading effect attenuates the signal, which is thus
received at the various power stations at different intensities. The power station which is allo-
cated for transmission for each mobile is the one that has the smallest attenuation, that is, the
station that receives the highest intensity signal. Typically only neighboring power stations are
included in the set of possible candidates for transmission (soft handover). In this work we con-
sider the model for perfect power control, where each mobile can choose the exact transmission
power so that its signal is received at unit power at the chosen station [2]. The total interference
at a power station is the sum of all the interferences caused by mobiles not connected to that
station. Outage at a given base station occurs whenever a new mobile in the network causes the
signal to interference ratio (SIR) to decrease below a fixed threshold.

Analytical expressions for the outage probability are unavailable. Many studies have proposed
approximations under limiting regimes such as increasing the number of users per cell, but most
approximations are inaccurate for realistic values of the model parameters. In this work we
use a simulation method to evaluate the outage probability. It is common to use simulation to
validate or compare bounds and approximations, but most of the simulation studies use crude
Monte Carlo methods to replicate the dynamic model and compute whether outage occurs or
not at a given station. Because outage is typically a small quantity, the problem is akin to rare
event estimation: many samples of the process must be simulated before an outage event occurs
and this translates into highly inefficient algorithms, requiring prohibitive CPU times to obtain
accurate estimates. Because it is necessary to simulate many scenarios when designing networks,
it is therefore not viable to use crude Monte Carlo. Importance Sampling is a dramatically
successful technique when dealing with rare events [9]. This method is based on a change of
measure and it is possible to achieve a uniformly bounded relative error, when the parameters
are well chosen. However, in this problem it is not straightforward to use the large deviation
bounds that could point to the optimal change of measure. The difficulty is that the fading is
modeled according to the usual power path loss, which has a lognormal distribution. Moreover,
the distribution of the individual interferences is not known and thus it is impossible to solve
analytically for the best change of measure. In this work we implement two simulation-based
methods capable of learning the optimal parameters of a particular change of measure, in order
to minimise the variance of the ensuing estimator. The functional estimation approach of [6] is
implemented in Section 5, and in Section 6 , we apply the self-optimising method introduced in
[11] and [10]. But first, we start with the presentation of the model in Section 2, then Section 3
describes the methods used in our simulation, especially the random number generation, while
in Section 4, we present the change of measure.

2 Model and Problem Formulation

The model discribed here is based on the one used in [2]. There are K cells in the network, each
with a neighborhood of “adjacent” cells V(k), k = 1, . . . ,K. At each cell k the mobile callers are
placed according to independent Poisson spacial processes with intensity function λk(·). In this
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work we consider a homogeneous Poisson process per cell, so that each λk is a constant, but they
may be different for different k. For example, later in Section 6.1, we consider a particular case
where there are two different intensities: one for the neighborhood of the central cell and one for
the rest of the cells.

Let Nk ∼ Poisson(λk) be the number of users in cell k. For each mobile i = 1, . . . , Nk in cell k
denote by di,k(l) the distance from caller i to power station l ∈ V(k). The signal transmitted by a
mobile suffers degradation and some of the information is lost in the path due to the propagation
attenuation and physical obstacles like mountains, high buildings, etc. The loss of intensity in
the signal precision of the mobile i situated in l ∈ V(k) is called the attenuation factor at station
l and is denoted by Γik(l). Set:

Γik(l) =
1

dik(l)4
10Zik(l), Ci,k = max

l∈V(k)
{Γik(l)},

κ(i) = argmax{Γik(l) : l ∈ V(k)}
where {Zik(l)} are iid normal zero-mean variables N (0, σ2). Obviously, Γik(l) depends on the
distance from the mobile to the power station, but also on the term 10Zik(l) which represents the
shadowing effect that occurs randomly in the environment. Caller i is connected to the station
κ(i) which has the best transmission (the stronger signal from all the neighboring stations). If a
mobile transmits at unit power, the fading factor makes that it is received at the cell-site with
power Γik(l)−1. In our model we suppose perfect power control, meaning that each user can
choose the exact transmission power so that he can be received at unit power at the receiving
station. Because the attenuation factor with the chosen station is Cik, the mobile adjusts his
transmission power to 1

Cik
and this guarantees that all received signals are unity at κ(i). The

interference caused by mobile i in cell k to the base station 0 is Γi,k(0)/Ci,k. Notice that if
{0} ∈ V(k) then all users of cell k will cause an interference bounded by one. However if
{0} �∈ V(k) it is possible that Γi0/Ci,k > 1, actually this random variable will have a heavy tail.

power station and 

reference base
station {0}

       neighborhood

mobile

Gamma(i,0)

Gamma(i,k)

Figure 1: Mobile and base stations

In a network, the sum of all particular interference (the one of each user in the system) is
called the signal to noise ratio. Outage is the event that the signal to noise ratio at the reference
base station 0 is smaller than a threshold α. Because signals are always received at unit power,
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this is equivalent to all the interference being larger than 1/α. If we sum the signal to noise ratio
over all the users in each cell, we get the following event:

B =

{
K∑
k=1

Nk∑
i=1

Γi,k(0)
Ci,k

> α−1

}
. (1)

Let
p = E(1 (B)),

where 1 (B) is the indicator function of the event B. The problem is to calculate the outage
probability p = E(1 (B)).

3 Simulation

The “direct” way of simulating is very simple:

1. GENERATE the number of mobiles (LAMBDA per cell k);
2. PLACE mobiles in space;
3. CONNECT each mobile i:

for all cells j in neighborhood(k) except 0 (reference cell)
compute GAMMA{i,j} and choose the max;

for the reference cell
calculate GAMMA{i,0};
S += (GAMMA{i,0} / C_i);

4. TEST outage:
if (S > ALPHA)

count outage;

The simulation program in itself is not very complicated, but the large number of random
variables needed to be generated makes it very slow if not optimised in that direction. Here, we
present an important aspect of our simulation: the methods we use to generate different random
variables. In our model, generation of normal and Poisson variates is needed. The first is a
continuous one, while the second is discrete. The best known method is the Inversion which is
based on the knowledge of the distribution function F (x). In the case of the normal distribu-
tion, this function is not easy to invert. We use for example the Box-Muller algorithm or the
polar method. Regarding the Poisson variables, there are different methods whose performance
depends on the mean λ. For example, there is a particular algorithm for the Poisson variates
that works well with small mean. The Inversion method using a predefined array described in
Section 3.2.2 is always very efficient, because after an initialization requiring a time O(N), the
cost of every access is constant for each variable. This method is useful when many variables
must be generated with the same mean. Here are the algorithms found in our simulation with a
few proofs of their efficiency.

3.1 Normal variables X ∼ N (0, 1)

The normal variables are necessary to calculate the lognormal fading factor. Here is the algorithm
for the polar method (see also [7]):
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1. Repeat:

– Generate U1 and U2 iid U(−1, 1),
– until W = V 2

1 + V 2
2 < 1;

2. Let Y =
√

(−2 logW )/W .
3. Return X1 = Y V1 and X2 = Y V2. Then, X1 and X2 are iid N (0, 1).

The polar method is a modification of the Box-Muller one. Recall that the density function of
the normal variable N (0, 1) is:

f(x) =
1√
2π

e−x
2/2.

The idea is to generate two independent variables X,Y ∼ N (0, 1), using polar coordinates. The
joint density function of X and Y is:

f(x, y) =
1
2π

e
−(x2+y2)

2 .

If we make a change of variables, letting r = x2 + y2, θ = tan−1(y/x), or

x =
√
r cos θ

y =
√
r sin θ,

(2)

which Jacobian is equal to 1/2, then the joint density function becomes

f(r, θ) =
(

1
2π

)(
1
2
e

−r
2

)
, 0 < r < ∞, 0 < θ < 2π.

The latter can be viewed as a product of two density functions: the uniform U [0, 2π] and the
exponential exp(2). Therefore, we can see r and θ as two independent random variables, with
exponential and uniform densities: r ∼ exp(1/2) and θ ∼ U [0, 2π]. This transformation (Box-
Muller) implies calculation of trigonometric functions for every random variable generated (see
Eq. (2)), which may take time. This is why an alternative way to generate normals was found,
avoiding calculation of sinus and cosinus. In the polar method, instead of generating the radius
and an angle, we generate the two sides of the triangle defining the coordinates of a point, via
the acception/rejection method. This is what is done in step 1 of the algorithm above. The
triangle’s sizes Vi’s are U [−1, 1] and are accepted when inside the unit circle. Now, we can define

sin θ = V2√
V 2
1 +V 2

2

= V2/W

cos θ = V1√
V 2
1 +V 2

2

= V1/W,
(3)

where θ ∼ U [0, 2π]. Remark that W and θ are uniform and independent. The radius r is still
exp(2) and will be generated by inversion, using W : r =

√−2 logW , W being an uniform [0, 1]
variable. Finally,

X1 = R cos θ =
√

−2 logW
W V1

X2 = R sin θ =
√

−2 logW
W V2.

(4)

The variables being generated by pairs, time can be gained when calling the procedure one time
on two. Moreover, using W in the last step of the algorithm avoids generation of one extra
random number, so the only time-consuming place is step 1.
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3.2 Poisson variables X ∼ Poisson(λ)

For the Poisson(λ) variates, we use three methods: Inversion, Inversion with predefined array
and the particular method for λ small. When λ < 1, we use the particular method, when λ > 1,
we use Inversion with array or not, depending on the number of variates we need.

3.2.1 Particular method for λ small The following result is well known in simulation and
presents a method for generating Poisson random numbers for small values of intensity. We
reproduce it here for completeness of our presentation.

Lemma 1 Given λ, let U1, U2, . . . ∼ U(0, 1) be a sequence of iid uniform random variates and
set pn = Un pn−1, with p0 = eλ. Then the random variable M = min{n : pn < 1}−1 has Poisson
distribution with mean λ.

Proof: The idea of this algorithm is to simulate a Poisson process with mean λ and count the
number of arrivals in the interval (0,1]. This number will be the returned value of the random
variable M .

If pn = Un pn−1, p0 = eλ ({pi} is a decreasing sequence) and M is defined as M = min
n

{pn <

1}, then
M = min

n
{pn < 1}

= min
n

{pn < 1 ≤ pn−1}
= min

n
{eλU1 . . . Un < 1 ≤ eλU1 . . . Un−1} (5)

After dividing by eλ and taking the natural logarithm, we can equally write

P{M = n} = P

{
n∑
i=1

logUi < −λ ≤
n−1∑
i=1

logUi

}

= P

{
n−1∑
i=1

(
− 1
λ
logUi

)
≤ 1 <

n∑
i=1

(
− 1
λ
logUi

)}
(6)

If we set the random variables Ai as iid exp(1/λ), (6) becomes

P{M = n} = P

{
n−1∑
i=1

Ai ≤ 1 <
n∑
i=1

Ai

}
(7)

By definition of a Poisson process with rate λ, time intervals between arrivals are exponential
independent random variables with mean 1/λ. Ai, i = 1, 2, ... can be viewed as interarrival times
of a Poisson process with mean λ and the variable counting the number of arrivals in the interval
(0,1], which is M = min

n
{pn < 1}, has then a Poisson distribution.

Qed

The algorithm for the particular method is the following:

1. Let X = 0 and p = eλ;
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2. Generate U ∼ U(0, 1); p ← p ∗ U ; X ← X + 1;
3. If p > 1, go at 2;
4. Else return X − 1;

This method requires generation of many uniform variates, but it is very efficient when λ is
small. If λ increases, eλ increases also and many iterations are necessary before p < 1. The mean
number of iterations before satisfying this criteria is λ, so to avoid big values of λ, convolution
can be used (see next section for a proof).

3.2.2 Inversion method with predefined array

x_1 x_2 x_3 x_5 x_6x_4

1

F(x)

0

} p(x_4)
} p(x_5)

} p(x_6)

} p(x_2)

} p(x_1)

 } p(x_3)

U

X

x

Figure 2: Distribution function

The idea here is to represent the probabilities p(i) in an array. To understand better the
way this method works, refer to Figure 2 which shows a distribution function F (x). The inverse
function on [0, 1] is defined as F−1(u) = inf{x : F (x) ≥ u}. The inverse method for discrete
variables generates U ∼ U [0, 1] and returns X = �F−1(U)�. To accelerate the process, we
use a fixed size array, initialized at the beginning and representing the distribution function
(truncated). The problem is to calculate the size of the array t. We decide to ignore the X’s for
which P [X < t] < 10−6. For the Poisson variable with mean λ = 8 (intensity used in our tests),
this gives us an array of size t = 1000. One should be careful when the average λ increases,
because then the size of the array may become too big and consume too much memory. Once
initialized, the proportion of the array occupied by one value is the probability of that value.
Figure 3 shows the contents of the array.

1 2 3 3 3 4 4 4 52 2 3 3

p(1)          p(2)                        p(3)                       p(4)       p(5)

tab

Figure 3: Array for the inversion method
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To avoid the generation of variables with large mean, we use the following result on the
convolution of Poisson variables:

Lemma 2 If X ∼ Poisson(Kλ), then Y =
∑K
i=1 Xi, with Xi iid Poisson(λ) is also Poisson(Kλ).

Proof: We show the result by induction, for the general case where Xi ∼ Poisson(λi), i =
1, 2, . . . ,K. The generating function of a Poisson(λ) variable X is:

E[sX ] =
∞∑
n=0

e−λ
λn

n!
sn = e−λ

∞∑
n=0

(λs)n

n!
= e−λeλs = e−λ(1−s).

When K = 2, let Y = X1 +X2 with X1 ∼ Poisson(λ1), X2 ∼ Poisson(λ2). Then

E[sY ] = E[s(X1+X2)] = E[sX1sX2 ]
indep.∗
= [EsX1 ][EsX2 ] = e−λ1(1−s)e−λ2(1−s) = e−(λ1+λ2)(1−s),

which means that Y has a Poisson distribution with mean (λ1+λ2). By induction, if X1, X2, . . . ,

XK are independent Poisson variables with means λ1, λ2, . . . , λK respectively, then Y =
∑K
i=1 Xi

will be Poisson(
∑
iXi). In particular, when λi = λ, ∀i, we obtain the result.

Qed

Remark: The proof of E[sX1sX2 ] = [EsX1 ][EsX2 ] is in [4].
Here is the initialization algorithm:

1. Let: U ∼ U(0, 1); p ← e−λ; F ← 0; n ← 0;
2. For ∀m, 0 ≤ m < t,

while m/t > F do:
n ← n+ 1;
p ← p ∗ λn ;
F ← F + p;

3. Array[m] = n;

After the initialization, we generate U , a uniform distributed number between 0 and t (the array
size) and return tab[�U�]. This method is very convenient for all the Poisson numbers with
average bigger than 1, because the access time in the array is O(1).

1

1

0.5

0.8660.866

Figure 4: Dimensions of a cell

3.2.3 Generate the placing of the users in the hexagonal cells The points representing
the mobiles in an hexagonal cell are generated using the acceptance-rejection method. We need
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−x + y = 1 

x + y = 1 

−x + y = −1 

x + y = −1 

acceptance region 

Figure 5: Acceptance-rejection method

here to generate uniformly distributed points in an hexagonal shape which represents the cell.
Figure 4 shows the dimensions of a cell. A unit circle majorates the hexagon. The procedure is
very simple and it is illustrated in Figure 5.

1. Generate a point uniformly distributed in the rectangle [0.5, 0.5)× [1, 1);
2. If this point lies outside of the “squashed hexagon” bounded by ±x+y = ±1, it is rejected

and a new one is chosen;
3. If the point is inside the “acceptance region”, multiply the x coordinate of the point by

√
3

to normalize and return this point.

4 The Change of Measure

Estimating small probabilities with direct simulation may be a difficult problem. More precisely,
if Xi, i = 1, . . . , N is an iid sample of Bernoulli random variables with parameter p, then the
sample average has a relative error proportional to

√
p(1− p)/(Np), which implies that the num-

ber of replications N has to be considerably large if the event in question has small probability.
Estimation of probabilities of rare events has been the subject of numerous recent contributions
([9]). In some cases, using large deviation theory, it can be shown that a particular change of
measure, called exponential tilting, can yield estimators with uniformly bounded relative error
(in p) for fixed values of N , see [1] and Chapter 8 of [8], as we now explain.

To motivate the argument, recall that the outage probability is given by (1). Suppose that
X = (Xn;n = 1, 2, . . .) are iid zero-mean random variables and let Sn =

∑n
i=1 Xi. The problem

is estimating the probability:

pn = P

(
Sn
n

≥ a

)
= E(In(X)),

where In(X) = 1 (Sn ≥ na), for a > 0. Clearly as n → ∞ this event becomes rarer and the
probability sought tends to zero. Actually, under the appropriate conditions it tends to zero
exponentially fast: large deviations theory helps determining the decay rate of pn. Re-write now
the expectation as:
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E(In(X)) =
∫

Rn

1

(
n∑
i=1

xi ≥ na

)
n∏
i=1

f(xi) dx

=
∫

Rn

1

(
n∑
i=1

xi ≥ na

) (
n∏
i=1

f(xi)
fθ(x)

)
n∏
i=1

fθ(xi) dx

≡ E(Ln(θ, X̃)In(X̃)],

where X̃ = (X̃n, n = 1, 2, . . .) is now a sequence of iid variables with density fθ. Clearly, the
above is only true when the division by fθ is well defined. The necessary condition is that for
every null set B ⊂ R with

∫
B fθ(x) dx = 0 it holds that

∫
B f(x) dx = 0. This condition is

in general known as absolute continuity: the probability measure defined through f must be
absolutely continuous with respect to the new measure, defined through fθ, and the random
variable Ln(θ,X) is known as the Radon Nikodym derivative or the likelihood ratio.

Let us look at the variance of the estimation through such a change of measure. Because
E[Ln(θ, X̃)In(X̃)] = pn, then:

Var[Ln(θ, X̃)In(X̃)] = E[L2
n(θ, X̃)In(X̃)]− p2

n ≥ 0,

which implies (variance is always non negative):

1
n
log

(
E[L2

n(θ, X̃)In(X̃)]
)
≥ 2

n
log pn.

The idea is to use Cramer’s bound, namely that

lim inf
n→∞

2
n
log pn = −2

(
sup
θ
{aθ − logM(θ)}

)
,

where M(θ) = E[eθX ] is the moment generating function of Xi. The right hand side can be easily
calculated, because the function is concave in θ and has only one critical point θ∗:

d

dθ
(aθ − logM(θ))

⌋
θ=θ∗

= a− M ′(θ∗)
M(θ∗)

= 0.

Putting all this together, the following is a lower bound of the asymptotic expectation.
Var[Ln(θ, X̃)In(X̃)] ≥ 0 =⇒

lim inf
n→∞

1
n
log

(
E[L2

n(θ, X̃)In(X̃)]
)
≥ −2(aθ∗ − logM(θ∗)). (8)

Consider the new density fθ(x) = eθxf(x)/M(θ), called the exponential tilt of f . The the
Radon Nikodym derivative is simply the expression:

Ln(θ,X) =
n∏
i=1

e−θXiM(θ) = Mn(θ) e−θSn .
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Using the definition of In(X̃), E[L2
n(θ, X̃)In(X̃)] ≤ M2n(θ)e−2θna, so, diving by n and taking the

logarithm yields:
1
n
log

(
E[L2

n(θ, X̃)In(X̃)]
)
≤ −2aθ + 2 logM(θ), (9)

which gives the uper bound on the asymptotic rate of decay. Comparing the inequalities (8) and
(9) it follows that the asymptotic variance attains its possible minimal value precisely at θ = θ∗.

Unfortunately, direct application of this theory would require tilting a heavy tailed random
variable, for which the moment generating function does not exist. The change of measure that
we implement uses a Poisson number of callers per cell with a different mean, together with an
exponential tilt of the shadowing factors Zi,k(0) rather than transforming the heavy tailed path
loss Γi,k(l) or the ratio Γi,k(l)/Ci,k. Let Nk ∼ Poisson (λk), N∗

k ∼ Poisson (θk), ∀k.
Lemma 3 Let N = (N1, . . . , NK), where {Nk} are independent Poisson random variables with
means λk, and let Zi,k(0), . . . ZNk,k(0) be iid N (0, σ2), conditionally independent of N . For any
value of the parameter (θk, µk; k = 1, . . . ,K) ∈ R

2K and for any real valued function φ(N ;Z):

E[φ(N ;Z)] = E[L(N∗;Z∗)φ(N∗;Z∗)], (10)

where N∗
k ∼Poisson(θk), Z∗

i,k ∼ N (µk, σ2) are independent normal random variables, and:

L(N ;Z) = exp

{
K∑
k=1

[
(θk − λk) +

Nkµ
2
k

2σ2
− µk

σ2
k

BNk,k

]} K∏
k=1

(
λk
θk

)Nk

(11)

with BNk,k =
∑Nk
i=1 Z

∗
i,k.

Proof: Denote by φ̄(N) = E[φ(N,Z) |N ] the conditional expectation. Then E[φ(N ;Z)] =
E[φ̄(N)]. If we multiply and divide by the probability of the star measure, we get:

E[φ̄(N)] =
K∑
k=0

∞∑
nk=0

φ̄(n1, . . . , nK)×
K∏
k=0

(
P(N = nk)
P(N∗ = nk)

P(N∗ = nk)
)

=
K∑
k=0

∞∑
nk=0

φ̄(n1, . . . , nK)×
K∏
k=0


e−λk

λ
nk
k
nk!

e−θk θ
nk
k
nk!

[
e−θkθnk

k

nk!

]

=
K∑
k=0

∞∑
nk=0

φ̄(n1, . . . , nK)×
K∏
k=0

(
e−(λk−θk)

(
λk
θk

)nk
[
e−θkθnk

k

nk!

])

=
K∑
k=0

∞∑
nk=0

φ̄(n1, . . . , nK)×
K∏
k=0

P(N∗ = nk)× e−
∑

k(λk−θk) ×
K∏
k=0

(
λk
θk

)nk

= E

[
φ̄(N∗) e−

∑
k(λk−θk)

∏
k

(
λk
θk

)N∗
k

]
, (12)

where N∗
k ∼ Poisson (θk). Similarly, by independence of the normal random variables, letting

d =
∑K
k=1 Nk, z = (zi,k) ∈ R

d it follows that:
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E[φ(N ;Z) |N ] =
∫

Rd

φ(N ; z)P(φ(N ;Z) |N) dz

=
∫

Rd

φ(N ; z)
P(φ(N ;Z) |N)
P(φ(N ;Z∗) |N)

P(φ(N ;Z∗) |N) dz

=
∫

Rd

φ(N ; z)
K∏
k=1

Nk∏
i=1

(
ez

2
i,k/2σ

2

e(zi,k−µk)2/2σ2
× 1√

2πσ2
e(zi,k−µk)2/2σ2

)
dz

=
∫

Rd

φ(N ; z)e

{∑K
k=1

∑Nk
i=1

(
µ2

k−2µkzi,k

2σ2

)}
K∏
k=1

Nk∏
i=1

1√
2πσ2

e(zi,k−µk)2/2σ2
dz

= E

[
exp

{
K∑
k=1

Nk∑
i=1

(
µ2
k − 2µkZ∗

i,k

2σ2

)}
φ(N ;Z∗) |N

]
= φ̄(N), (13)

where for each k, Z∗
ik are iid normal N (µk, σ2). Replacing the expression (13) for φ̄(N∗) in (12)

above, we get:

E[φ̄(N)] = E[E[φ(N,Z) |N ]]

= E

[
φ̄(N∗) e−

∑
k(λk−θk)

∏
k

(
λk
θk

)N∗
k

]

= E


E


e

∑K
k=1

∑N∗
k

i=1

(
µ2

k−2µkZ∗
i,k

2σ2

)
φ(N∗;Z∗) |N∗


 e−

∑
k(λk−θk)

∏
k

(
λk
θk

)N∗
k




=


e

∑K
k=1

∑N∗
k

i=1

(
µ2

k−2µkZ∗
i,k

2σ2

)
e−

∑
k(λk−θk)

∏
k

(
λk
θk

)N∗
k


 E [E [φ(N∗;Z∗) |N∗]]

=


exp



K∑
k=1


(θk − λk) +

N∗
kµ

2
k

2σ2
− µk

σ2
k

N∗
k∑

i=1

Z∗
i,k






K∏
k=1

(
λk
θk

)N∗
k


 E [E [φ(N∗;Z∗) |N∗]]

= L(N∗;Z∗)E[φ(N∗;Z∗)]

= E[L(N∗;Z∗)φ(N∗;Z∗)]

which yields the result.
Qed

The above result leads to the following simulation procedure for estimating outage probability:
K random variables N∗

k ∼Poisson(θk) are generated, and for each k, standard normal variables
ξi,k(l) ∼ N (0, 1); i = 1, . . . , Nk; l ∈ V(k) ∪ {0} are generated independently. The shadowing
factors are set to Zi,k(l) = σξi,k(l). Then the attenuation terms are defined as:

Γ∗
i,k(l) =

{
Γi,k(l) l �= 0,
10µk Γi,k(l) l = 0,

C∗
ik = max

l∈V(k)
(Γ∗
i,k(l)).
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Using the transformation Z∗
i,k(0) = µk + Zi,k(0), the Brownian motion in (11) can be written as

(µk/σ2)B∗
N∗

k ,k
= N∗

k (µ
2
k/σ

2) + (µk/σ)
∑N∗

k
i=1 ξi,k(0). Finally, an unbiased estimator of outage at

the base station {0} is:

p̂(θ, µ) = e

∑K
k=1

[
(θk−λk)−N∗

k µ2
k

2σ2 −µk
σk

∑N∗
k

i=1 ξi,k(0)

]
×
K∏
k=1

(
λk
θk

)N∗
k

1


 K∑
k=1

N∗
k∑

i=1

10µkΓ∗
i,k(0)

C∗
i,k

> α−1


 ,

The efficiency of such estimation is measured in terms of the computational effort required to
achieve a certain relative precision and in this case improving efficiency is equivalent to finding the
values of θk, µk that minimise the variance Var[p̂(θ, µ)]. Because Var(p̂(θ, µ)) = E(p̂2(θ, µ))− p2

and p is independent of (θ, µ) ∈ R
2K , it suffices to find the values of θ and µ that minimise

E[p̂(θ, µ)2].

5 Functional Estimation

To simplify the exposition, we consider the homogeneous model where λk = λ is independent of
the cell. The notation can be simplified by calling M =

∑K
k=1 Nk and numbering all the mobiles

in sequence i = 1, . . . ,M regardless of the cell where they belong. Then M is a Poisson number
with mean Kλ. Consider the change of measure using also a homogeneous model: θk = θ, µk = µ.
In this section we propose a method to estimate

F (θ, µ) ≡ E[p̂2(θ, µ)] = E[L21 (B))], (14)

as a function of the simulation parameters. Using the simplified notation, whereM∗∼Poisson(Kθ),
for θ > λ,

L21 (B) = exp

{
2K(θ − λ)−M∗µ2

σ2
− 2µ

σ

M∗∑
i=1

ξi(0)

}
×
(
λ

θ

)2M∗

1

(
M∗∑
i=1

10µΓi(0)
Ci

> α−1

)
.

The idea is to generate a plot of the function in the plane (θ, µ). One way of doing this is to
generate a number of independent replications of the simulation for each value in a prespecified
grid. By the nature of the problem, it is clear that for many such values, the variance of the
estimator may be difficult to estimate (it may be as hard as estimating the outage probability
itself). Functional estimation presents two problems. First with independent replications, the
computational effort is proportional to the number of points, and for each point a large number of
replications may be necessary to obtain a reasonable estimate. The second problem is that func-
tional estimation deals with the estimation of a curve, and therefore the error in the interpolated
curves may be considerably larger than the pointwise error estimated at each run. Most of the
computational effort at each point goes into generation of random numbers and the calculation
of the outage event itself. A more sensible approach for functional estimation is to use common
random numbers (Chapter 4, [3]), which works well under stochastic monotonicity of the function
in the parameters (see Proposition 1). Suppose that we want to calculate F (θ, µ) by simulation,
for a range of values (θ1, . . . , θr) × (µ1, . . . , µs), in order to produce the plot of the variance.
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By “functional estimation with CRN” it is understood that the random variables L,1 (B) are
evaluated from a common simulation trajectory ω under different values for the pair (θ, µ). The
direct way to achieve this is to simulate first M1 ∼Poisson(Kλ) callers (θ0 = λ) and place them
in the network, then for each value of µm, evaluate the corresponding attenuation using the same
variable ξi,k per caller. That is, under CRN, Γi,0(θ0, µm) = 10µmΓi,0(θ0, µ0), for µ0 = 0. As well,
if k �= {0}, then the change of measure does not affect the attenuation and Γi,k(θ, µ) = Γi,k(λ, 0).
Next, for θn+1 = θn+∆θn, generate and place only the new callers, using the fact that the sum of
independent Poisson random numbers is Poisson, so that the new callers are just Poisson(∆θn),
and for these new mobile users and each µm compute the new attenuation factors only.

Proposition 1 Functional estimation using CRN implies that 1 (B) (θ, µ) is non-decreasing
a.s. in both arguments.

Proof: Denote the interference by I(θ, µ),

I(θ, µ) =
Mn∑
i=1

Γi,0(θ, µ)
Ci(θ, µ)

.

If outage occurs at a given value (θ0, µ0), then for all values θ ≥ θ0 and µ = µ0, the system
(under CRN) will have the same mobile callers’ interference plus a random number of new users
that can only contribute to I(θ, µ0) with positive terms.

To complete the proof of the claim, it suffices to show that if I(θ0, µ0) > α−1, then I(θ0, µ) >
α−1 for all µ ≥ µ0. Let M0 be the Poisson number of mobiles for the given sample where outage
occurs. For any µ ≥ µ0, the term I(θ0, µ) is affected only from the changes in the attenuation
factors Γi,0(θ0, µ) and the corresponding Ci(θ0, µ). There are a number of possibilities for each
user i = 1, . . . ,M0:

1. If κ(i; θ0, µ0) = 0 then Ci(θ0, µ) = Γi,0(θ0, µ) = 10µ−µ0Γi,0(θ0, µ0) > Γi,0(θ0, µ0) ≥ Γik(θ0, µ),
for all k ∈ V(k), because Γik(θ0, µ) is independent of µ (only Γi,0 is accelerated with the
change of measure). Thus the contribution of this user is unchanged: Γi,0(θ0, µ)/Ci(θ0, µ) =
1.

2. If κ(i; θ0, µ0) = k �= 0 then Ci(θ0, µ0) = Γi,k(n) and two situations may happen:

(a) If κ(i; θ0, µ) = k in the new simulation, that is if Ci(θ0, µ) = Ci(θ0, µ0) = Γi,k(θ0, µ0),
then its contribution to the interference will be larger in the new system:

Γi,0(θ0, µ)
Ci(θ0, µ)

>
Γi,0(θ0, µ0)
Ci(θ0, µ0)

,

and this happens even when {0} �∈ V(k).
(b) If the increase in Γi,0(θ0, µ) > Γi,k(θ0, µ0) causes a change in power station (which

can only happen if {0} ∈ V(k)), then Ci(θ0, µ) = Γi,0(θ0, µ), κ(i, θ0, µ) = 0 and
consequently its contribution becomes unity. Because Ci(θ0, µ0) > Γi,0(θ0, µ0), the
contribution of this caller to I(θ0, µ0) was necessarily less than one:

Γi,0(θ0, µ0)
Ci(θ0, µ0)

< 1 =
Γi,0(θ0, µ)
Ci(θ0, µ)
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This shows that for each i ≤ M0 the individual contributions are no smaller for the new system,
or:

M0∑
i=1

Γi,0(θ0, µ)
Ci(θ0, µ)

≥ I(θ0, µ0); µ ≥ µ0,

which establishes stochastic monotonicity.
Qed

The advantages of functional estimation with CRN are twofold: CPU time is saved by reusing
random variables and computation, plus the shape of the function can be judged better, because
relative variability will be minimal between samples.

A more sophisticated method can be used to dynamically adjust the grid sizes according to
the observations themselves. The method is a generalisation of the simulation tree method of
[6]. The idea is to produce a single simulation (with common random numbers), to generate the
function F (·) by adjusting the breakpoints to those particular values of θ that effect jumps in
the function: indeed with high probability (when ∆θn is small) many simulations of the systems
for θn and θn + ∆θn will have the same number of mobiles and will contribute nothing new
to the estimation. The simulation tree evolves calculating such points in θ that will produce a
discontinuous effect in L2 and 1 (B). Assume that the Poisson random variables for each θn use
the same random variates in the generator:

• Let U1, U2, . . . be iid uniform random variates,
• set pn = Un pn−1, with p0 = eθ

• M = min{n : pn < 1} − 1.

The algorithm is based on the following observation. Fix a value of µ. From (1), it is clear
that the indicator of outage will be a piecewise constant function of θ for each trajectory, that is,
for each sequence of iid uniform variates {Un} and each sequence of iid standard normal variables
{ξi}, different values of θ may yield different values of M∗, but between jumps in the number of
callers, all values of θ yield the same outage. Recall that:

L2 = exp

{
2K(θ − λ)−M∗µ2

σ2
− 2µ

σ

M∗∑
i=1

ξi

} (
λ

θ

)2M∗

,

where
∑M∗
i=1 ξi will be piecewise constant a.s. with the same breakpoints as M∗. It is therefore

possible to reconstruct the values of L2 between breakpoints by keeping track of the corresponding
values of M∗, BM∗ and the subinterval in θ corresponding to a constant M∗. This is the principle
of “retrospective simulation” where a single sample (simulation trajectory) can be used to keep
track of the corresponding value of the random variable L2 for a whole range of values of θ:
the simulation is performed without need for specifying the parameter of the Poisson variable a
priori. Let us now describe how the algorithm proceeds.

1. Start with n = 0,m = 0, θ0 = λ, µ0 = 0 and generate M0 ∼ Poisson(Kθ0). Place the
callers and generate Zi,0(l) ∼ N (0, σ2), l ∈ V(k(i)), where now k(i) is the cell where mobile
i is located.
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2. Given θn, for each value µm+1 = ∆µn + µm use the common random variable Zi,0(l) to
calculate the attenuation recursively by: Γi,0(θn,m + 1) = 10∆µnΓi,0(θn,m). All other
quantities Γi,l(θn,m), l �= 0 are independent of µ and remain unchanged. Keep the values
M∗, BM∗ for the retrospective evaluation of L2.

3. If n = S end. Otherwise set n = n+ 1. Generate Un ∼ U(0, 1) and look for the value ∆θn
for which there is exactly one more mobile M∗(n+1) = M∗(n). Simple algebra shows that
∆θn = − log(Un). The current breakpoint is set at θn = θn−1 + ∆θn. Notice that now θn
is a random variable. Go to 2.

At the end of S simulations, for every value of µ ∈ {µ1, . . . , µs} one has a list with the r + 1
breakpoints of each simulation, and the corresponding values of the variablesM∗(s), BM∗(s),1 (B) (s).
The average curve can be generated by merging all the partitions and averaging the S different
values of the estimator L21 (B) evaluated at, say the midpoint of the interval.
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0

0.005

0.01
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0.0395
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0.0405
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V
ar

[X
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Figure 6: Functional Estimation

While the algorithm is harder to code than a prefixed grid, it is often the case that a reasonable
range of values of θ is not known a priori and often many pilot simulations must be performed.
In contrast, the simulation tree lets the system define the most significant breakpoints. Figure 6
shows the result of functional estimation on the plane, where convexity of the variance is clear.

6 Self-Optimised Importance Sampling

The idea of intelligent simulation is to use stochastic approximation as in [11] to adjust the values
of θ and µ in the direction of decreasing variance. Let:

G(θ, µ) = ∇θ,µE[L2(M∗;Z∗)1 (B(M∗;Z∗)],
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and suppose that (Ĝθ(n), Ĝµ(n)) is an unbiased estimator of the gradient, obtained with Sn > 0
independent simulations of the variables (N ;Z) at a value (θ(n), µ(n)). Consider the recursion:

θ(n+ 1) = θ(n)− εnĜθ(n)
µ(n+ 1) = µ(n)− εnĜµ(n)

(15)

Then θ(n) → θ∗ and µ(n) → µ∗ a.s. (Chapter 5, [5]).
If the function L2(N∗;Z∗)1 (B∗) is a.s. Lipschitz continuous with integrable Lipschitz con-

stant, then the derivative and expectation can be interchanged and the stochastic gradient is
unbiased for ∇F (·) [6]. For our problem, discontinuities arise because both the number of terms
M∗ and the outage event may jump as the values of θ and µ change. To overcome this difficulty
and avoid gradient estimation methods that deal specifically with discontinuities, [10] propose
to change back the measure, as we now do. From (11), we have for the homogeneous case:

L(M∗;Z∗) = exp

{
K(θ − λ) +M∗ µ2

2σ2
− µ

σ2

M∗∑
i=1

Z∗
i (0)

} (
λ

θ

)M∗

. (16)

The outage itself (under the star measure) is:

B(M∗;Z∗) = 1

(
M∗∑
i=1

Γ∗
i (0)
C∗
i

> α−1

)
,

where M∗ is Poisson(Kθ), and Z∗
i (0), i = 1, . . . ,M∗ are iid ∼ N (µ, σ2). As before, let B∗

M∗ =∑M∗
i=1 Z

∗
i (0).

Lemma 4 Under the change of measure, the estimators:

Ĝθ =
(
K − M∗

θ

)
L2(M∗;Z∗)1 (B(M∗;Z∗)) (17)

Ĝµ =
(
M∗µ−B∗

M∗

σ2

)
L2(M∗;Z∗)1 (B(M∗;Z∗)) (18)

are unbiased for the derivatives of F (θ, µ) w.r.t. θ and µ, respectively.

Proof: Using Lemma 3 the expectation in F (θ, µ) can be written in terms of the original
measure, so that

G(θ, µ) = ∇θ,µE[L(M ;Z)1 (B(M ;Z))],

where now M ∼Poisson(Kλ) and Zi(0), i = 1, . . . ,M are iid ∼ N (0, σ2) are independent of θ
and µ. For every M ;Z the function L2(M ;Z) is differentiable in θ and µ, and this derivative
has uniformly bounded expectation over compact sets (in θ, µ). Indeed simple algebra yields:

∂

∂θ
L(M ;Z) =

(
K − M

θ

)
L(M ;Z) (19)

∂

∂µ
L(M ;Z) =

(
Mµ−BM

σ2

)
L(M ;Z) (20)
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where BM =
∑M
i=1 Zi(0). To show that these derivatives have uniformly bounded expectations

over compact sets in (θ, µ) we use the result that a Poisson random number has a finite moment
generating function, as shown below. For the sake of space only the result for (19) is shown:
similar arguments apply for (20). Clearly (K − M/θ)L1 (B) is bounded a.s. by (K − M/θ)L,
so it suffices to show that this random variable has uniformly bounded expectation over any
θ-compact set. Because now the measure is the original one, M ∼Poisson(Kλ) and Y (M) =
(µ/σ2)BM ∼ N (0,M(µ2/σ2)). Conditioning on M , and using E(e−Y |M) = e−Mµ2/σ2

, it follows
that E

[(
K − M

θ

)
L(M ;Z)

]
= E

[(
K − M

θ

)
eK(θ−λ) (λ

θ

)M]
, where this latter expectation is w.r.t.

a Poisson random number M . For such random variables the moment generating function
φ(a) = E[eaM ] exists and

E

[
−M

θ

(
λ

θ

)M]
=
∑
m≥0

−m

θ

(
λ

θ

)m λm

m!
=

∂

∂θ

∑
m≥0

(
λ

θ

)m λm

m!
=

∂

∂θ
φ[ln(λ/θ)] < ∞,

thus proving that the estimator has indeed a uniformly bounded expectation. This result es-
tablishes an unbiased estimator of the gradient to use in the stochastic approximation (15), the
practical problem is that the simulation itself is carried out under the change of measure, namely
M∗ is generated as a Poisson(Kθ) number. As proposed in [10], the measure is changed back,
this time for the stochastic gradients (19) and (20), to establish the result:

Gθ = E

[(
K − M∗

θ

)
L2(M∗;Z∗)1 (B(M∗;Z∗))

]

Gµ = E

[(
M∗µ−B∗

M∗

σ2

)
L2(M∗;Z∗)1 (B(M∗;Z∗))

]

Qed

6.1 Stratified Importance Sampling

By symmetry of our model, we use different control variables (θ1, µ1), (θ2, µ2) for those cells
within and without the neighborhood V(0), respectively. However, our method could be easily
adapted to other network models. The motivations are several: better performance can be
achieved as the dimension of the control variables grows; generally, simulation time increases
with the dimension (so more stratification is not useful); contrary to functional estimation, the
computational overhead for intelligent simulation is independent of the dimension of the problem.
For those reasons, we decided to stratify the network this way which gives us a more sensitive
estimation of the optimal parameters.

Here are the details of the calculation of each derivate. The likelihood ratio can be rewritten
in terms of the neighborhood as:
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L(M∗, Z∗) = L1(M∗
1 , Z

∗
1 )× L2(M∗

2 , Z
∗
2 )

L1(M∗
1 , Z

∗
1 ) = exp


7(θ1 − λ) +

M∗
1µ

2
1

2σ2
− µ1

σ2

M∗
1∑

i=1

Zi(0)



(

λ

θ1

)M∗
1

L2(M∗
2 , Z

∗
2 ) = exp


(K − 7)(θ2 − λ) +

M∗
2µ

2
2

2σ2
− µ2

σ2

M∗
2∑

i=1

Zi(0)



(

λ

θ2

)M∗
2

where all the variables with index 1 are the ones associated with the neighborhood V(0), while
those with index 2 are the others. Remark that because the cells are hexagonal, there are 7
cells in the neighborhood of the central cell and (K − 7) cells outside. Now, if we derivate each
component with respect to each variable passing through the original measure (like done in the
previous section), we obtain the following estimators:

Gθ1 = E

[(
7− M∗

1

θ1

)
L2

1(M
∗;Z∗)L2

2(M
∗;Z∗) 1 (B(M∗;Z∗))

]
(21)

Gθ2 = E

[(
(K − 7)− M∗

2

θ2

)
L2

1(M
∗;Z∗)L2

2(M
∗;Z∗) 1 (B(M∗;Z∗))

]
(22)

Gµ1 = E

[(
M∗

1µ1 −B∗
M∗

1

σ2

)
L2

1(M
∗;Z∗)L2

2(M
∗;Z∗) 1 (B(M∗;Z∗))

]
(23)

Gµ2 = E

[(
M∗

2µ2 −B∗
M∗

2

σ2

)
L2

1(M
∗;Z∗)L2

2(M
∗;Z∗) 1 (B(M∗;Z∗))

]
(24)

where B∗
M∗

1
=
∑M∗

1
i=1 Z

∗
i (0) and B∗

M∗
2
=
∑M∗

2
i=1 Z

∗
i (0).

Intelligent simulation uses the observations of the process under Importance Sampling to esti-
mate both the outage as well as the gradient of the variance, to adjust the simulation parameters
as the estimation itself is being carried out. Contrary to functional estimation, the computa-
tional overhead of the self-optimised method is independent of the dimension of the problem,
and better performance can be achieved with higher dimensional control variables. To compare,
Figure 7 shows the trajectories of the self-optimised parameters with and without stratification.
The dotted line is the optimal value as estimated from Figure 6. Not surprisingly, stratifying
yields virtually no change of measure for those callers outside the neighborhood of the base sta-
tion, while those inside have a higher intensity and tilted shadowing. The optimal variance was
15% better than without stratification. The intelligent simulations took a total of 5.1 minutes,
while the graph in Figure 6 required a total of 25.75 minutes.
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Figure 7: Intelligent Simulation

7 Conclusion

In this paper we have shown how two recent simulation-based methods can be applied to the im-
portant and yet unresolved problem of evaluating the performance of CDMA wireless networks.
The algorithms are robust: they can easily be adapted to imperfect power control, inhomogeneu-
ous traffic models and non-constant traffic intensities. While this would require code preparation
to set up the basic simulations, calculation of the change of measure and derivatives do not re-
quire more execution time. Our change of measure is not provably BRE (bounded relative error),
mostly because of the difficulty in tilting the distribution of the interference itself. Other changes
of measure could be used, in which case both the simulation tree as well as the accelerated sim-
ulation could be applied to learn the optimal parameters. It is well known that one of the major
problems applying stochastic approximation is the choice of initial values and step sizes: the
transient behaviour may be very sensitive to these. We are currently exploring the possibility of
using a simulation tree with adaptive grid to start the method and seek a reasonable step size,
as well as to determine an initial region for the parameters.

Because there are no other methods to solve this problem, simulation has become a benchmark
against which to test approximate solutions. We propose to provide the researches with an
intelligent simulation method that may give useful results in a reasonable amount of time. The
gain in computational time can be substantial and the optimisation of the parameters is done
concurrently with the simulation, requiring virtually no pilot simulations.
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