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Abstract

The one-sided one sample problem with bivariate data is considered. A condition-
ally distribution-free sign test is proposed for that problem. This test is related to
Hodges test and can be seen as a union-intersection test. Moreover, it is valid under
very mild assumptions and it can be easily implemented. An explicit formula for the
exact null conditional distribution of the test statistic is derived. This conditional
distribution can be used to compute exact conditional p-values. A simulation study
compares the new test to some competitors including the likelihood ratio test. The
results show that the new test is very competitive for a wide variety of distributional
models.

Key Words: Positive orthant alternative, One-sided alternative, Bivariate data, Con-
ditionally distribution-free, Sign test, Hodges test, Union-intersection, Random walk.

Résumé

Nous considérons le problème de position unilatéral bidimensionnel. Nous pro-
posons un test du signe conditionnellement “distribution-free”. Ce test, basé sur le
principe de l’union-intersection, est apparenté au test de Hodges. De plus, sa va-
lidité ne requiert que des conditions très peu restrictives. Le test peut également être
implémenté facilement. Nous donnons une formule explicite donnant sa loi condition-
nelle exacte sous l’hypothèse nulle. Cette loi conditionnelle peut être utilisée pour
calculer le seuil descriptif . Le nouveau test est comparé à certains compétiteurs, dont
le test du rapport de vraisemblance, à l’aide d’une étude par simulation. Les résultats
de cette étude démontrent que le nouveau test est très compétitif, et ce, pour une
grande variété de modèles.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be independent bivariate random vectors. For each 1 ≤ i ≤ n,
it is assumed that, for any line passing through the origin, the conditional univariate
distribution of (Xi−µ1, Yi−µ2) given that it is on that line has median 0. However, we do
not assume that the observations have the same distribution. These assumptions hold for a
random sample from an elliptical distribution, or for any symmetric distribution, centered
at (µ1, µ2) but they are a lot more general allowing for different kinds of skewed models.
We wish to test the hypotheses

H0 : (µ1, µ2) = (0, 0) vs H1 : (µ1, µ2) ≥ (0, 0) with at least one strict inequality.
(1)

For the more general case of p dimensional vectors and assuming that the observations
come from a multivariate normal population Np(µ,Σ), different testing procedures have
been proposed. Perlman (1969) derived the likelihood ratio test (LRT) when the covariance
matrix is unknown. The null distribution of the LRT depends on the unknown covariance
matrix but Perlman gave a bound for the critical point that can be used to perform a
conservative test at a given level. However, this results in a loss of power and the LRT
have been criticized over the years. In an interesting paper, Perlman and Wu (1999) came
to its defense but judging from the discussions that follow their article, it seems that the
matter is not completely resolved right now. Silvapulle (1995) proposed a Hotelling’s type
test that is asymptotically equivalent to the LRT. Wang and McDermott (1998a) proposed
a conditional version of the LRT test. This test can be difficult to use in practice because
it requires the numerical evaluation of integrals. Wang and McDermott (1998b) used a
similar approach to derive a conditional Hotelling’s test. Perlman and Wu (2002) proposed
another conditional version of the LRT that is simpler to implement. Schucany, Frawley,
Gray and Wang (1999) proposed to use the bootstrap to estimate the p-value of the LRT.
As long as the computation of the LRT statistic is practical, this is a good way of avoiding
the use of the conservative critical point and it also relaxes the normality assumption by
letting the test adapt itself to the data. Sen and Tsai (1999) proposed a union-intersection
test related to the LRT. As for the LRT, the direct application of this method results in a
conservative test. However, Sen and Tsai proposed a two-stage version of their test and of
the LRT which are unbiased. A possible disadvantage of this approach is that it requires
an arbitrary choice of two quantities, a first stage sample size and a p × p matrix. With
the exception of the bootstrap LRT test that can adapt itself to other distributions, all
the tests above rely on the normality assumption. In order to make the procedure less
dependent on the normality assumption, Mudholkar, Kost and Subbaiah (2001) proposed
stepwise tests and robust stepwise tests based on trimmed means.
Another approach consists in utilizing a procedure to test H0 against an alternative

different but related to H1 and then see how it performs for the one-sided problem. In
that vein, Tang (1994) investigated tests for half space alternatives and Follmann (1996)
proposed a simple an intuitive procedure to test H0 against another related alternative
specifying that the sum of the means is greater than 0.
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Sen and Silvapulle (2002) give an interesting an up to date review of some aspects of
inference under inequality constraints which includes the one-sided problem.
It seems that no tests exhibiting a finite sample distribution-free property, under H0,

over a large class of models have been proposed in the literature for the one-sided prob-
lem. This paper aims to fill that gap. We propose a bivariate sign test for the one-sided
alternative. Under the null hypothesis, the test statistic is conditionally distribution-free
under very mild assumptions. The conditional distribution can be used to compute exact
conditional p-values. We provide a simple way to compute the test statistic and give an
explicit formula for its conditional null distribution. The test procedure can then be im-
plemented easily. The performance of this test against some competitors is investigated
with an extensive simulation study.
The test statistic is presented in Section 2 where its null conditional distribution is de-

rived. The results from a simulation study are presented in Section 3 followed by concluding
remarks.

2 Test statistic

Let θ be in the interval [0, 2π]. For i = 1, . . . , n, define

Pi(θ) = Xi cos(θ) + Yi sin(θ) (2)

to be the projection of (Xi, Yi) on the directed line passing through the origin with angle
θ. Let ψ be the function defined by ψ(u) = 1 or 0 as u > 0 or u ≤ 0. Define

S(θ) =
n∑

i=1

ψ(Pi(θ)) (3)

as the number of positive observations among the projected points on the axis with angle
θ. S(θ) is thus equivalent to the sign statistic computed on the projected points. Let’s
assume throughout that, for any θ ∈ [0, π/2], P (Pi(θ) = 0) = 0 for any i. Then, under the
hypothesis H0, ψ(P1(θ)), . . . , ψ(Pn(θ)) are independent random variables taking the values
0 or 1, each with probability 1/2.
Let’s consider first the problem of testing H0 against the unrestricted alternative

H∗
1 : (µ1, µ2) �= (0, 0). (4)

Hodges (1955) was the first to proposed a sign test for that problem. His test is based on

sup
0≤θ≤2π

S(θ). (5)

This statistic is strictly distribution-free under H0. The basic idea behind this approach
is that, for a given angle θ a high (or low) value of S(θ) provides evidence against the null
hypothesis. The test statistic simply takes the maximum of those values over all angles.
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Larocque, Tardif and van Eeden (2000) studied different ways of averaging the values of
S(θ), as θ varies, to construct a test statistic.
Let’s go back to the one-sided problem (1). Roy’s (1953) union-intersection (UI) princi-

ple can be used to motivate our test statistic; see also Sen and Silvapulle (2002). Following
Sen and Tsai (1999), let (δ1, δ2) ∈ ∆ = {(x, y) : x ≥ 0, y ≥ 0, max(x, y) > 0}. If we define

H0,(δ1,δ2) : δ1µ1 + δ2µ2 = 0 and H1,(δ1,δ2) : δ1µ1 + δ2µ2 > 0,

then
H0 =

⋂
(δ1,δ2)∈∆

H0,(δ1,δ2) and H1 =
⋃

(δ1,δ2)∈∆

H1,(δ1,δ2).

For each (δ1, δ2) ∈ ∆, a one-sided univariate test statistic T (δ1, δ2) can be used to test
H0,(δ1,δ2) against H1,(δ1,δ2) and then, a UI test for testing H0 against H1 can be based on
sup(δ1,δ2)∈∆ T (δ1, δ2). If the univariate statistic is scale-invariant, we can restrict the search
of the supremum to the vectors satisfying δ2

1 + δ2
2 = 1 and then, the test statistic reduces

to sup0≤θ≤π/2 T (θ) where T (θ) is the univariate test statistic computed with the projected
observations P1(θ), . . . , Pn(θ).
Sen and Tsai (1999) proposed such a UI test by using the univariate t-test. Here, we

propose using the sign test instead. Our UI test can also be seen as an analogue of Hodges
test for the one-sided problem and is based on

S = sup
0≤θ≤π/2

S(θ). (6)

The hypothesis H0 will be rejected for large values of S. The statistic S is scale and
permutation invariant. This means that the value of S remains unchanged if we compute it
using the sample (Y1, X1), . . . , (Yn, Xn) or any sample of the type (aX1, bY1), . . . , (aXn, bYn)
where a > 0 and b > 0. The statistics S can also be quickly and easily calculated. A
straightforward way of doing so is given in the Appendix.
Let’s partition the two-dimensional plane in four mutually exclusive regions in the usual

way:

Quadrant I = {(x, y) : x ≥ 0, y ≥ 0}
Quadrant II = {(x, y) : x < 0, y > 0} (7)
Quadrant III = {(x, y) : x ≤ 0, y ≤ 0}
Quadrant IV = {(x, y) : x > 0, y < 0}.

For each 1 ≤ i ≤ n, let
φi = − arctan(Xi/Yi) (8)

be the angle (∈ [−π/2, π/2]) such that the projection of the point (Xi, Yi) on the line with
that angle is 0, i.e. Pi(φi) = 0. Since φi ∈ (−π/2, 0) for any observations in quadrant I or
III, we have ψ(Pi(θ)) = 1 (0) for all θ ∈ [0, π/2] for any observations in quadrant I (III). For
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the observations in quadrant II or IV, φi ∈ [0, π/2]. Thus, for an observation in quadrant
IV, ψ(Pi(θ)) = 1 or 0 according to θ ∈ [0, φi) or θ ∈ [φi, π/2). Similarly, for an observation
in quadrant II, ψ(Pi(θ)) = 0 or 1 according to θ ∈ [0, φi] or θ ∈ (φi, π/2).
On the contrary to Hodges statistic, S is not unconditionally distribution-free underH0.

This can be seen easily from the following example. Suppose that the observations arise
from a degenerate distribution on the main diagonal, i.e. the line x=y. Then under H0, S
is distributed as a binomial random variable with parameters n and 1/2, B(n, 1/2). This
comes from the fact that each observation is either in quadrant I or III with probability
1/2. On the other hand, if the observations arise from a degenerate distribution on the line
perpendicular to the main diagonal, then S has the same distribution as max(X,n −X)
where X has the B(n, 1/2) distribution. This comes from the fact that each observations
is either in quadrant II or IV with probability 1/2 and that sup0≤θ≤π/2 S(θ) takes its
maximal value when either θ = 0 or π/2. This also shows that we can not expect S to be
unconditionally distribution-free even as n→ ∞.
In the rest of this section, we obtain a conditional distribution of S under H0. DefineM

to be the number of observations in quadrants II and IV. We will show that, conditionally
on M , S is distribution-free under H0 and we will derive its exact null distribution. When
applying the test to data, this conditional distribution will permit the computation of exact
conditional p-values.
From now on, suppose that M = m is observed and let φ∗1, . . . , φ∗m be the φ angles, as

defined by (8), of the m observations in quadrant II and IV. For simplicity, we will assume
for the rest of the paper that those m angles are distinct with probability one.
Let Y be the number of observations in quadrant I. GivenM = m, the null distribution

of Y is B(n −m, 1/2). Define A and B to be the number of observations in quadrant IV
and II respectively. Given M = m, the null distribution of A, and also of B, is B(m, 1/2)
and we have A + B = m. When θ goes from 0 to π/2, the projection of any point in
quadrant I is always positive while the one of any point in quadrant III is always negative.
The contribution of those points to the statistic S is thus simply Y . The contribution of
any point in quadrant IV is 1 at first (when θ = 0), it changes one time along the way (at
the corresponding φ angle) and is 0 in the end (when θ = π/2). The opposite is true for
any point in quadrant II, i.e., its contribution is 0 at first and 1 in the end. Let

X = sup
0≤θ≤π/2

X(θ)

where
X(θ) = card {(Xi, Yi) ∈ quadrant II or IV : Pi(θ) > 0}.

X is thus the contribution of the points in quadrant II and IV to the statistic S. Conse-
quently, the distribution on S is the same as that of X + Y .
The process {X(θ) : θ ∈ [0, π/2]} starts at A and finishes at B in m steps. The steps in

the process X(θ) occur at φ∗1, . . . , φ∗m. At each of these steps, the value of X(θ) increases
or decreases by 1. Under the null hypothesis, each of those occurrences are equally likely.
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Thus the probability that the process moves up by one is 1/2 and the probability that it
goes down by one is also 1/2. Consequently, the null distribution of X is the same as that
of the maximum of a random walk that starts at A and finishes at B in m steps. We can
summarize all of the above in the next theorem.
Assumptions 2.1:

1. (X1, Y1), . . . , (Xn, Yn) are independent bivariate random vectors not necessarily hav-
ing the same distribution.

2. For each 1 ≤ i ≤ n, it is assumed that, for any line passing through the origin, the
conditional univariate distribution of (Xi − µ1, Yi − µ2) given that it is on that line
has median 0.

3. The angles φ∗1, . . . , φ∗m, as defined by (8), of the observations in quadrant II and IV
are distinct with probability one.

4. For each i = 1, . . . , n, P (Pi(θ) = 0) = 0 for any θ ∈ [0, π/2] where Pi(θ) is the
projection defined by (2).

These assumption are very mild and hold for any elliptical or symmetric distributions.
But they also hold for certain types of skewed distributions and they allow non identically
distributed observations.

Theorem 2.1 Under the assumptions (2.1) and conditionally on M = m, the null distri-
bution of S is the same as that of X+Y where X and Y are independent random variables.
Y has a B(n−m, 1/2) distribution and X has the distribution of the maximum of a ran-
dom walk that starts at A and finishes at B in m steps where A+B = m and where A is
distributed as a B(m, 1/2) variate.

Once assumptions (2.1) are met, the conditional distribution of S does not depend on
the specific distribution of (X1, Y1), . . . , (Xn, Yn). S is thus conditionally distribution-free
under H0. To use the test in practice, we need an expression for the exact conditional null
distribution of S. The next theorem, proved in the Appendix, gives such an expression.

Theorem 2.2 Under the assumptions (2.1) and conditionally on M = m, let x ∈ {m/2,
. . . , n} if m is even and x ∈ {(m+ 1)/2, . . . , n} if m is odd, then

P (S ≥ x|M = m) =
1
2n

n−m∑
y=0

F (x− y)
(
n−m

y

)

where

F (x) =
m∑

a=0

{a:x<max(a,m−a)}

(
m

a

)
+

m∑
a=0

{a:max(a,m−a)≤x≤m}

(
m

x

)
.

In practice, having observed M = m and the value of S, the formula above can be
used to compute the exact conditional p-value very easily . For example, suppose that the
sample size is n = 40 and that we observe M = m = 18 and S = 23, then P (S ≥ 23|M =
18) = 0.559.
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3 Simulation study and concluding remarks

In this section, we compare the new test to five competitors in a simulation study. The
first two, that are valid against the unrestricted alternative (4), are Blumen’s (1958) and
Hotelling’s tests. Blumen’s test is an affine-invariant bivariate sign test. There are a lot of
different bivariate sign tests for the unrestricted alternative that have been proposed in the
literature but Oja and Nyblom (1989) showed that, for elliptical distributions, Blumen’s
test is a locally most powerful invariant sign test. This is why it was selected to represent
the class of bivariate sign tests in this simulation study. Hotelling’s test was selected to
represent the class of tests for the unrestricted alternative under normality since it is uni-
formly most powerful among affine-invariant tests in that case; see Anderson (1984). The
three other tests are tailored for the one-sided alternative. The first one is the likelihood
ratio test (LRT) of Perlman (1969). The second one is the bootstrap version of the LRT
test proposed by Schucany, Frawley, Gray and Wang (1999). Since this paper is not yet
published, the bootstrap procedure is reproduced in the Appendix for completeness. The
last one has not been proposed explicitly anywhere but it is simply the bootstrap version
of the UI test of Sen and Tsai (1999), given by their equation (2.5), and discussed in the
preceding section. In that case, the resampling is done exactly as for the bootstrap LRT
and we call this test bootstrap UIT. We chose to do the bootstrap version of the Sen and
Tsai test because the critical point of this test is difficult to obtain. This also gives an
advantage to this approach because the use of the critical point produces a conservative
test like it does for the LRT test.
All tests were performed at the 5% level and the sample size is n = 40. For Blumen’s

test, the asymptotic (χ2
2) critical point is used. The exact (under normality) critical point

from the F distribution is used for Hotelling’s test. For the two bootstrap tests, the p-value
is approximated using 499 bootstrap samples. For the LRT test the conservative critical
point of Perlman (1969) is used. Since S has a discrete distribution, the critical points
were chosen such that the probability of falsely rejecting H0 is as close to but less than
0.05. For n = 40 this test can be written as, reject H0 if:

S ≥




26 if m = 0
27 if 1 ≤ m ≤ 6
28 if 7 ≤ m ≤ 18
29 if 19 ≤ m ≤ 40

By using these critical points, the actual level of the test, as a function ofm, varies between
0.0223 and 0.0494. Thus, this way of using S gives rise to a conservative test. It is important
to note that the conservative nature of the test comes from the fact that the exact null
conditional distribution is discrete and not because it depends on a nuisance parameter
as it is the case for the LRT. Consequently, as n becomes larger, the test becomes less
conservative.
The number of replications is 10000. The computations were performed using Ox

version 3.20; Doornik (1999).



Les Cahiers du GERAD G–2002–55 7

Six distributions were chosen. The first one is the standard bivariate normal distri-
bution N2(0, I) where I is the identity matrix. The next two are contaminated normal
distributions generated the following way: with probability p, a N2(0, I) random variable
is generated and with probability 1 − p, a N2(0, 16I) is generated. Two values of p, 0.1
and 0.2 are used. The third distribution is the standard (elliptic) Cauchy distribution
also known as the t distribution with 1 df. Those first four distributions are elliptical.
The fifth one is a symmetric but non-elliptical distribution generated the following way.
First we generate an angle (∈ [0, 2π]) by θ1 = π(Bet+Ber) where Bet is distributed as a
Beta random variable with parameters .2 and .2 and Ber is a Bernoulli random variable
(independent of Bet) with probability of success 0.5. Second, a radius R1 is generated as
a uniform random variable on the interval [0,10]. The generated random variable is then
R1(cos(θ1), sin(θ1)). We denote this distribution by beta-angle for simplicity. The last one
is a non-symmetric distribution, that satisfies assumptions (2.1), generated the following
way: let θ2 be an angle distributed uniformly on [0, π] and let R2 be a radius distributed as
(0.6931–E) where E is an exponential random variable with parameter 1. The observation
generated is R2(cos(θ2), sin(θ2)). We denote this distribution by exponential radius. Note
that the mean vector on this distribution is not (0,0) under H0 so the normal-theory tests
based on averages (LRT, bootstrap LRT and UIT, Hotelling) are not valid in that case but
the two sign tests are valid.
Three different dependence structure are considered for each distribution. First, the

original observations are used. This case is denoted by ρ = 0 in the tables that follows.
Then each bivariate observation is multiplied by the matrix ((0.97891, 0.20431),(0.20431,
0.97891)). This produces a correlation of 0.4 for the normal distributions and is denoted
by ρ = 0.4 in the tables. Then each observation is multiplied by the matrix ((–0.97891,
0.20431),(0.20431, –0.97891)). This produces a correlation of –0.4 for the normal distribu-
tions and is denoted by ρ = −0.4 in the tables. We thus have eighteen (6 × 3) different
distributions in all. For each of the eighteen distributions, the observed probability of re-
jection was recorded for the null hypothesis and for nine different shift alternatives, three
of them are on the X axis, three others are on the line with angle π/8 and the last three
are on the main diagonal (the line with angle π/4). The amounts of shift were selected so
that the power on the S test is about 0.2, 0.5 and 0.8 respectively for the three shifts in
each of the directions.
The results are presented in tables 1 to 6. Before examining each distribution separately,

here are some general remarks. The observed level of the test S is always below the nominal
level 0.05 while the one of Blumen’s test is always close to 0.05. In the situation where
they are valid, the observed levels of the average based tests are close to the nominal
value or below it for the conservative LRT test. For the Cauchy and exponential radius
distributions, those tests are not valid and their observed levels are either too high or too
low.
Let’s examine the observed powers. For each alternative, an asterisk has been added

to the test with the highest power and to any other that is not significantly different from
it at the 5% level. Overall, the test S is among the most powerful tests for 99 out of the
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162 different alternatives considered. The bootstrap tests are among the most powerful
tests for 45 of those alternatives and Blumen’s test is among the best for 36 of those
alternatives. The S test is at its best for alternatives that are on the main diagonal or on
the line with angle π/8 but is also generally good when the alternative is on the X-axis.
We see that the bootstrap LRT and bootstrap UIT tests are indistinguishable from each
other. Also, most of the time, but not always, the bootstrap tests are more powerful than
the LRT and Hotelling’s test.
Let’s look at each distribution in details. For the normal distribution (Table 1), the

two bootstrap tests are the most powerful everywhere. Among the two sign tests, the S
test is better than Blumen’s test when the alternative is either on the main diagonal or
on the line with angle π/8. Blumen’s test is better (ρ=0 or .4) or the two are equivalent
(ρ=–.4) when the alternative is on the X-axis. For the contaminated normal distribution
with p = 0.1, the bootstrap tests are better when the alternative is close to H0 but the
two sign tests are better otherwise, the test S being most powerful when the alternative
is on the main diagonal or on the line with angle π/8. The two sign tests are generally
preferable for the contaminated normal distribution with p = 0.2 with an edge for the S
test when the alternative is on the main diagonal or on the line with angle π/8. When the
alternative is on the X-axis, Blumen’s test is better when ρ=0 or .4 but the two sign tests
are close to each other (with a slight edge for the S test) when ρ = −.4.
For the Cauchy distribution, the S test is the best everywhere except when the al-

ternative is on the X-axis and ρ = .4 where Blumen’s test is better. For the beta-angle
distribution, the S test is most powerful when ρ = −.4 and Blumen’s test is preferable
when ρ = .4. When ρ = 0, the bootstrap tests are the best when the alternative is on
the X-axis but the S test is the best otherwise. This is an example that shows that sign
tests can be competitive even for bounded distributions. Finally, for the exponential radius
distribution, the average based tests are not valid, the S test is the most powerful when the
alternative is on the main diagonal or on the line with angle π/8 and Blumen’s test is the
best when the alternative is on the X-axis (although tied with the S test when ρ = −.4).
This simulation study shows that the new test is very competitive over a wide range of
situations.
In summary, we proposed a conditionally distribution-free bivariate sign test for the

one-sided location problem. The test statistic can be calculated easily and we provide a
simple formula to compute the exact conditional p-value. The simulation study showed
that the new test can be very competitive over a wide variety of situations. Moreover, the
test is valid under very mild assumptions and can be used with certain skewed models.
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Table 1: Observed probability of rejecting H0 for the normal distribution (n=40; 10000
replications; in each column, an * indicates that the corresponding test is either the one
with the highest power or any other that is not significantly different from it at the 5%
level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .032 .199 .481 .786 .188 .5 .785 .195 .507 .811

Blumen .049 .197 .502 .818 .148 .436 .733 .146 .422 .741
LRT .032 .267 .65 .926 .225 .614 .89 .226 .597 .894

Bootstrap LRT .046 .331* .717* .95* .285* .682* .92* .289* .663* .923*
Bootstrap UIT .046 .332* .716* .947* .279* .679* .918* .281* .659* .921*
Hotelling .05 .248 .616 .913 .185 .545 .849 .182 .523 .851

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .035 .215 .505 .807 .206 .508 .798 .209 .525 .81

Blumen .043 .247 .627 .913 .153 .437 .759 .13 .39 .7
LRT .035 .337 .777 .976 .23 .619 .902 .206 .557 .856

Bootstrap LRT .045 .381* .807* .983* .268* .659* .918* .24* .604* .879*
Bootstrap UIT .044 .387* .807* .983* .267* .656* .917* .237* .597* .876*
Hotelling .046 .309 .748 .97 .185 .551 .867 .157 .479 .806

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .024 .213 .508 .797 .228 .527 .802 .218 .523 .806

Blumen .043 .196 .489 .788 .194 .483 .778 .182 .468 .776
LRT .023 .276 .647 .905 .294 .666 .914 .282 .656 .912

Bootstrap LRT .041 .37* .734* .942* .393* .749* .947* .377* .744* .947*
Bootstrap UIT .041 .369* .73* .94* .391* .747* .945* .373* .74* .946*
Hotelling .047 .257 .617 .89 .246 .604 .881 .231 .583 .878
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Table 2: Observed probability of rejecting H0 for the contaminated normal distribution
with p=0.1 (n=40; 10000 replications; in each column, an * indicates that the correspond-
ing test is either the one with the highest power or any other that is not significantly
different from it at the 5% level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .03 .204 .498* .802 .199 .508* .804* .219 .538* .802*

Blumen .048 .199 .511* .833* .158 .434 .756 .168 .447 .73
LRT .027 .186 .455 .723 .169 .421 .681 .179 .434 .667

Bootstrap LRT .052 .244* .489 .715 .225* .463 .681 .238* .475 .666
Bootstrap UIT .051 .24* .487 .716 .221* .456 .679 .235* .468 .66
Hotelling .04 .171 .431 .706 .133 .362 .628 .14 .366 .604

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .037 .212 .497 .795 .218* .505* .82* .219* .526* .804*

Blumen .048 .239* .616* .905* .165 .442 .787 .144 .397 .693
LRT .03 .225 .54 .792 .174 .428 .711 .156 .394 .631

Bootstrap LRT .042 .25* .537 .761 .201 .441 .683 .188 .408 .611
Bootstrap UIT .041 .247* .536 .759 .197 .433 .678 .182 .404 .606
Hotelling .037 .207 .516 .773 .137 .367 .659 .114 .323 .563

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .033 .225 .507* .799* .22 .502* .804* .221 .518* .809*

Blumen .051 .211 .484 .792* .194 .463 .771 .188 .475 .784
LRT .022 .187 .428 .689 .189 .434 .697 .19 .451 .706

Bootstrap LRT .055 .276* .497* .708 .283* .507* .714 .282* .52* .72
Bootstrap UIT .054 .273* .498* .708 .278* .504* .713 .28* .514* .718
Hotelling .039 .172 .399 .666 .156 .38 .646 .156 .391 .647



Les Cahiers du GERAD G–2002–55 11

Table 3: Observed probability of rejecting H0 for the contaminated normal distribution
with p=0.2 (n=40; 10000 replications; in each column, an * indicates that the correspond-
ing test is either the one with the highest power or any other that is not significantly
different from it at the 5% level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .035 .21* .501 .804 .207* .516* .811* .207* .514* .799*

Blumen .049 .209* .52* .831* .163 .452 .763 .162 .426 .733
LRT .03 .149 .339 .591 .137 .327 .556 .137 .318 .538

Bootstrap LRT .056 .202* .39 .599 .192 .38 .574 .193 .37 .558
Bootstrap UIT .056 .2* .388 .601 .188 .376 .574 .193 .363 .554
Hotelling .042 .138 .324 .565 .111 .276 .499 .108 .261 .475

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .038 .216 .51 .793 .228* .512* .831* .229* .535* .811*

Blumen .053 .245* .628* .891* .172 .438 .787 .148 .402 .714
LRT .031 .179 .422 .672 .146 .327 .588 .133 .302 .519

Bootstrap LRT .046 .199 .433 .652 .171 .346 .576 .162 .328 .514
Bootstrap UIT .045 .198 .429 .652 .169 .343 .57 .157 .322 .509
Hotelling .042 .168 .397 .647 .119 .274 .526 .101 .241 .45

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .033 .222* .514* .807* .225* .512* .805* .216 .495* .827*

Blumen .054 .204 .493 .798* .191 .466 .779 .184 .452 .797
LRT .022 .145 .333 .565 .151 .335 .576 .149 .325 .602

Bootstrap LRT .061 .225* .411 .606 .235* .42 .616 .23* .413 .634
Bootstrap UIT .061 .225* .411 .604 .232* .415 .614 .224* .405 .63
Hotelling .043 .137 .308 .546 .135 .286 .523 .127 .274 .538
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Table 4: Observed probability of rejecting H0 for the Cauchy distribution (n=40; 10000
replications; in each column, an * indicates that the corresponding test is either the one
with the highest power or any other that is not significantly different from it at the 5%
level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .032 .211* .492* .803* .21* .501* .806* .2* .495* .803*

Blumen .049 .184 .431 .724 .167 .411 .737 .155 .423 .767
LRT .01 .034 .08 .161 .037 .082 .167 .038 .083 .165

Bootstrap LRT .066 .105 .147 .212 .109 .157 .221 .109 .159 .22
Bootstrap UIT .049 .086 .126 .183 .091 .133 .192 .09 .135 .193
Hotelling .018 .034 .07 .145 .03 .066 .134 .03 .064 .134

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .036 .201 .496 .827 .208* .507* .84* .211* .502* .817*

Blumen .051 .247* .602* .89* .181 .488 .823 .17 .47 .826*
LRT .017 .05 .118 .239 .046 .101 .212 .045 .095 .19

Bootstrap LRT .017 .043 .091 .167 .039 .081 .153 .04 .078 .14
Bootstrap UIT .012 .036 .077 .149 .033 .069 .133 .033 .064 .12
Hotelling .017 .041 .103 .217 .034 .078 .174 .031 .072 .152

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .031 .188* .524* .818* .213* .514* .831* .214* .521* .829*

Blumen .049 .153 .439 .737 .17 .454 .796 .175 .481 .813
LRT .008 .033 .079 .156 .038 .083 .173 .038 .09 .177

Bootstrap LRT .088 .134 .188 .249 .144 .199 .27 .145 .203 .273
Bootstrap UIT .084 .131 .184 .242 .137 .194 .261 .14 .193 .264
Hotelling .015 .028 .069 .142 .031 .069 .147 .031 .072 .148
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Table 5: Observed probability of rejecting H0 for the beta-angle distribution (n=40; 10000
replications; in each column, an * indicates that the corresponding test is either the one
with the highest power or any other that is not significantly different from it at the 5%
level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .031 .204 .494 .77 .22* .526* .796* .198* .499* .822*

Blumen .049 .186 .454 .735 .103 .276 .562 .096 .259 .602
LRT .032 .343 .815 .986 .035 .054 .136 .034 .046 .115

Bootstrap LRT .055 .403* .85* .989* .061 .086 .189 .058 .074 .164
Bootstrap UIT .055 .402* .853* .991* .058 .084 .186 .056 .074 .164
Hotelling .05 .319 .79 .983 .051 .058 .108 .051 .054 .099

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .036 .21 .484 .78 .219 .52 .812 .205 .496 .803

Blumen .048 .735* .949* .997* .505* .795* .938* .666* .873* .955*
LRT .04 .42 .905 .998* .201 .551 .877 .179 .447 .729

Bootstrap LRT .044 .438 .918 .999* .217 .568 .882 .206 .473 .739
Bootstrap UIT .045 .435 .918 .998* .214 .566 .88 .198 .47 .738
Hotelling .051 .394 .885 .997* .156 .471 .829 .145 .381 .671

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .036 .223* .513* .817* .242* .513* .816* .217* .504* .819*

Blumen .047 .099 .27 .613 .105 .259 .56 .096 .254 .557
LRT .024 .027 .06 .267 .026 .041 .125 .025 .038 .107

Bootstrap LRT .056 .064 .112 .377 .062 .088 .217 .06 .082 .188
Bootstrap UIT .056 .064 .113 .377 .06 .088 .212 .059 .082 .185
Hotelling .044 .045 .065 .249 .044 .052 .112 .045 .05 .098
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Table 6: Observed probability of rejectingH0 for the exponential radius distribution (n=40;
10000 replications; in each column, an * indicates that the corresponding test is either the
one with the highest power or any other that is not significantly different from it at the
5% level)

ρ=0
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .029 .222* .514 .823 .213* .503* .819* .211* .51* .808*

Blumen .044 .223* .541* .863* .17 .422 .757 .156 .402 .718
LRT .004 .034 .15 .435 .025 .101 .309 .019 .075 .225

Bootstrap LRT .003 .022 .095 .291 .018 .068 .211 .015 .054 .159
Bootstrap UIT .003 .026 .103 .313 .018 .068 .211 .015 .052 .156
Hotelling .18 .248 .429 .721 .154 .213 .391 .109 .114 .216

ρ=.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .042 .242 .555 .844 .24* .527* .81* .252* .537* .822*

Blumen .05 .279* .682* .951* .188 .476 .8* .167 .407 .732
LRT .008 .079 .344 .758 .049 .17 .447 .034 .089 .246

Bootstrap LRT .006 .04 .183 .515 .026 .093 .268 .019 .053 .152
Bootstrap UIT .006 .045 .201 .549 .028 .096 .271 .02 .053 .151
Hotelling .189 .339 .646 .92 .195 .294 .519 .113 .118 .222

ρ=–.4
Alternative is on the

Test H0 X axis line with angle π/8 main diagonal
S .03 .197* .515* .792* .201* .497* .809* .178* .488* .785*

Blumen .047 .187* .509* .796* .176 .459 .795 .158 .45 .764
LRT .186 .341 .592 .821 .388 .658 .898 .391 .702 .914

Bootstrap LRT .355 .522 .728 .874 .567 .776 .927 .569 .805 .938
Bootstrap UIT .349 .513 .718 .865 .56 .766 .921 .557 .799 .932
Hotelling .183 .278 .491 .745 .331 .571 .848 .348 .632 .876
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A APPENDIX

Calculation of S: Let m be the number of observations in quadrant II and IV as defined
by (7). Let 0 ≤ φ∗[1] < . . . < φ∗[m] ≤ π/2 be the ordered φ angles, as defined by (8), of those
m observations. Define φ∗[0] = 0 and φ∗[m+1] = π/2. For each i ∈ {1, . . . ,m + 1}, let θi be
any number in the interval (φ∗[i−1], φ

∗
[i]). Then

S = max{S(θ1), . . . , S(θm+1)}
where S(θ) is given by (3).
Proof of Theorem 2.2: First, let’s recall some basic facts about random walks. Let
Z1, Z2, . . . be independent and identically distributed random variables such that P (Zi =
−1) = P (Zi = 1) = 1/2. Let {Ri : i = 0, 1, 2, . . .} be the random walk defined by
R0 = 0 and Ri = Z1 + . . . Zi. Define Mn = max0≤i≤nRi to be the maximum attained by
the random walk after n steps. The joint distribution of (Mn, Rn), given on page 86 of
Billingsley (1968), is

P (Mn ≥ b, Rn = v) =
{
pn(v) if v ≥ b
pn(2b− v) if v ≤ b

for v ∈ {−n,−n + 2, . . . , n − 2, n} and b ∈ {max(0, v), . . . , (n + v)/2} where pn(v) =(
n

(n+v)/2

)
(1/2)n = P (Rn = v). From this, the conditional distribution of Mn given Rn = v

is
P (Mn ≥ b|Rn = v) =

pn(2b− v)
pn(v)

. (9)

These results are sufficient to prove Theorem 2.2. Recall that we are conditioning on
M = m and that A and B = m−A are the number of observations in quadrant IV and II
respectively. Now, we condition further on A. Given A = a, we have B = m − a and X
has the same distribution as a+Mm given Rm = b− a. Using (9), we obtain

P (X ≥ x|A = a,M = m) = P (Mm ≥ x− a|Rm = m− 2a)

=



0 if x > m
(mx)
( m

m−a)
if max(a,m− a) ≤ x ≤ m

1 if x < max(a,m− a)

From this and from the fact that A has a B(m, 1/2) distribution, we have

P (X ≥ x|M = m) =
m∑

a=0

P (X ≥ x|M = m,A = a)

=
1
2m




m∑
a=0

{a:x<max(a,m−a)}

(
m

a

)
+

m∑
a=0

{a:max(a,m−a)≤x≤m}

(
m
a

)(
m
x

)
(

m
m−a

)

 .
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for x ∈ {m/2, . . . ,m} if m is even and x ∈ {(m+ 1)/2, . . . ,m} if m is odd.
Finally, since S = X + Y where X and Y are independent and Y has a B(n−m, 1/2)

distribution,

P (S ≥ x|M = m) = P (X + Y ≥ x|M = m) =
n−m∑
y=0

P (X ≥ x|M = m)P (Y = y)

and this concludes the proof.
Bootstrap procedure for the LRT: Schucany, Frawley, Gray and Wang (1999)

1. Compute LRT(original) = value of the LRT statistic for the original set of observations.
2. Subtract the mean of the sample from each of the observations to get the n residuals.
3. For b = 1, . . . , B, draw with replacement a random sample of size n from the residuals
and compute LRT(b) = value of the LRT statistic for that sample.
4. Let K = number of times that LRT(b) > LRT(original) for the B bootstrap samples.
5. Estimated p-value = (K+1)/(B+1).
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