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Abstract 

 
In this study, we present a unified Bayesian approach to small area estimation of mean 
parameters in generalized linear models. The basic idea consists of incorporating into such a 
model nested random effects that reflect the complex structure of the data in a multistage 
sample design.  However, as compared to the ordinary linear regression model, it is not 
feasible to obtain a closed form expression for the posterior distribution of the parameters.  
The approximation most commonly used in empirical Bayes studies is that proposed by 
Laird (1978), where the posterior is expressed as a multivariate normal distribution having 
its mean at the mode and covariance matrix equal to the inverse of the information matrix 
evaluated at the mode.  Inspired by the work of Zeger and Karim (1991) and Gu and Li 
(1998), we also study a stochastic simulation method to approximate the posterior 
distribution.  Alternatively, a hierarchical Bayes approach based on Gibbs sampling similar 
to Farrell (2000) can also be employed.  We present here the results of a Monte Carlo 
simulation study to compare point and interval estimates of small area proportions based on 
these three estimation methods. 
 
Key Words:  Logistic Regression, Overdispersion, Random Effects, Small Area 
Proportions. 
 
 
 

Résumé 
 
Dans cette étude, on présente une approche bayésienne unifiée pour l’estimation des 
paramètres de moyenne d’un modèle linéaire généralisé avec de petites aires.  L’idée de 
base consiste à incorporer dans un tel modèle des effets aléatoires emboîtés qui reflètent la 
structure complexe des données dans un plan d’échantillonnage multiphase.  Cependant, en 
comparaison avec le modèle de régression linéaire, il n’est pas possible d’obtenir une 
expression analytique pour la distribution a priori des paramètres.  L’approximation la plus 
utilisée dans les études bayésiennes empiriques est celle proposée Laird (1978), où la 
distribution a priori est approximée par une normale multivariée ayant comme moyenne le 
mode et comme matrice de covariance l’inverse de la matrice d’information évaluée au 
mode.  Inspirés par les travaux de Zeger et Karim (1991) et de Gu et Li (1998), on étudie 
aussi une méthode de simulation stochastique pour approximer la distribution a priori.  
Alternativement on peut aussi employer une approche bayesienne hiérarchique basée sur des 
échantillonnages de Gibbs similaire à celle de Farrell (2000).  On présente ici des résultats 
d’une étude de simulation de Monte Carlo pour comparer les estimations ponctuelles et par 
intervalle des proportions de petites aires basées sur ces trois méthodes d’estimation. 
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1 INTRODUCTION 
 
The estimation of parameters for small areas has received considerable attention of late.  Model-
based estimators have gained acceptance over direct survey estimators, since the latter are 
unstable due to the small or nonexistent sample sizes that result from small areas. Excellent 
summaries of these methodologies can be found in Ghosh and Rao (1994) and Rao (1999). 
 
 Model-based estimators borrow strength from related areas and are therefore less variable.  
Synthetic estimation proposed by Gonzales (1973) was the first of these approaches.  However, 
the resulting estimator has a tendency to be biased.  Other model-based estimators have been 
developed since then in order to deal with the above deficiencies, including those based on 
empirical and hierarchical Bayes estimators.  Ghosh and Rao (1994) illustrated that small area 
estimates based on such approaches often outperformed other methods such as classical unbiased 
and synthetic estimation.  Farrell et al (1997) reached a similar conclusion in a study that 
compared empirical Bayes, synthetic, and direct survey estimators.  The proven optimality 
properties of empirical Bayes methods and their documented successful performance have made 
them popular (See Efron 1998).  Farrell et al (1997) noted, however, that interval estimates 
based on an empirical Bayes technique do not attain the desired level of coverage when a naive 
approach is employed since the variability arising from estimating the parameters of the prior 
distribution is not acknowledged.  They proposed the use of bootstrap techniques for adjusting 
these estimates. 
 
 Fay and Herriot (1979) were among the first to apply empirical Bayes methods based on 
linear models to the problem of small area estimation, while Datta and Ghosh (1991) 
investigated hierachical Bayes models.  A nubmer of studies have focused on the specification of 
the prior distribution.  Lahiri and Rao (1995) robustified the Fay-Herriot model by relaxing the 
assumption of a normal prior distribution.  Datta and Lahiri (1995) developed a robust 
hierarchical Bayes approach for handling outliers. 
 
 Several authors have considered the problem of estimating small area rates and binomial 
parameters using empirical and hierarchical Bayes approaches.  See for example, Dempster and 
Tomberlin (1980), Wong and Mason (1985), Tomberlin (1988), MacGibbon and Tomberlin 
(1989), Farrell et al (1994, 1997), Stroud (1994), Malec et al (1997), and Farrell (2000).  
Following the approach of MacGibbon and Tomberlin (1989), Farrell et al (1994) obtained 
empirical Bayes point estimates of small area proportions, and also provided guidelines for the 
choice of prior distribution.  Farrell et al (1997) extended this approach to interval estimation, 
while Farrell (2000) considered analogous hierarchical Bayes estimation approaches. 
 
 In this study, we present unified empirical and hierarchical Bayes approaches to small area 
estimation of mean parameters in generalized linear models. This should be contrasted with the 
work of McCullagh and Nelder (1989) and Breslow and Clayton (1993) who study quasi-
likelihood methods of approximate inference for these models.  The basic idea considered here 
consists of incorporating into such a model nested random effects that reflect the complex 



Les Cahiers du GERAD G–2002–53 2 

structure of the data in a multistage sample design.  However, as compared to the ordinary linear 
regression model, it is not feasible to obtain a closed form expression for the posterior 
distribution of the parameters.  The approximation most commonly used in empirical Bayes 
studies is that originally proposed by Laird (1978), where the posterior is expressed as a 
multivariate normal distribution having its mean at the mode and covariance matrix equal to the 
inverse of the information matrix evaluated at the mode.  Inspired by the work of Zeger and 
Karim (1991) on Gibbs sampling and of Gu and Li (1998) on stochastic approximation 
computing techniques, we also study a stochastic simulation method to approximate the 
posterior distribution by assuming a normal prior.  Alternatively, a hierarchical Bayes approach 
based on Gibbs sampling similar to Farrell (2000) can also be employed to estimate the 
posterior.  We present here the results of a Monte Carlo simulation study to compare point and 
interval estimates of small area proportions based on these three estimation methods that is based 
on data from a two-stage sample design.  A normal prior distribution is specified for all three 
approaches; however this assumption is not necessary. 
 
 
2 THE MODEL AND ESTIMATION PROCEDURES ON GIBBS SAMPLING 
 
We follow the framework of Dempster and Tomberlin (1980) used previously for small area 
estimation by MacGibbon and Tomberlin (1989), Farrell et al (1994, 1997), and Farrell (2000).  
This basic framework is re-formulated to be consistent with the notation of McCullagh and 
Nelder (1989) for generalized linear models.  In these models, the expected value of a variable of 
interest is expressed as a function of K covariates as well as random sampling characteristics.  
For example, consider the case of a two-stage cluster sample consisting of samples of 
individuals within each of I primary sampling units or local areas. 
 
 Specifically, let Yij represent a random variable for the characteristic of interest for the j-th 
individual within the i-th local area, and let yij represent a realization of Yij.  If µij is the expected 
value of Yij, then following McCullagh and Nelder (1989) the µij are related to a linear function 
of covariates and sampling characteristics via a link function g with differentiable inverse h, that 
is ηij =g(µij) and µij =h(ηij).  We concentrate here on the estimation of small area characteristics.  
In this framework, we might be interested in the total of yij’s for each local area, that is 
 
 ∑=

j
ijyT  (1) 

 
These types of parameters we propose to estimate using a prediction approach based on the 
linear model 
 

 ∑ ++=
=

K

k
iijkkij X

1
0 φββη  (2) 
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where φi represents a random effect associated with the i-th local area, and βk represents the 
regression coefficient  associated with the k-th covariate.  
 
 Let us henceforth illustrate the techniques on a problem where the objective is the 
development of point and interval estimates for the proportion of individuals, pi, in each of I 
small areas that possess a characteristic of interest.  The data to be used in obtaining these 
estimates will be obtained using a two stage sample design, where individuals are sampled from 
selected small areas.  For example, imagine that two choices of surgical procedure, A and B, are 
available for treatment of a certain disease, and that interest is in the proportion of patients at 
each of I hospitals (the small areas) that select procedure A.  A sample is drawn from each 
selected hospital, and information is recorded on the choice of procedure for each patient in the 
sample.  In addition, suppose that covariate information on gender and age is available for all 
patients in each hospital for which point and interval estimates are desired, regardless of whether 
the individual is sampled or not. 
 
 In the framework of the sample design proposed for this example, pi can be written as 
 
 i

j
iji Nyp /∑=  (3) 

 
where Ni is the population size of the i-th local area (hospital), and yij takes on a value of zero or 
one, depending upon whether or not the j-th individual in the i-th local area possesses the 
characteristic of interest.  Using a predictive model-based approach proposed by Royall (1970), 
an estimator for pi is 
 
 i

Sj
ij

Sj
iji Nyyp /)ˆ(ˆ ∑+∑=

′εε
 (4) 

 
where the sum over j ε S of yij is the sum of the outcome variable for sampled individuals from 
the i-th local area, and the sum over j ε S ′ of ijŷ  is the sum of the estimated outcome variables  

for nonsampled individuals in the i-th local area.  Values for ijŷ  are obtained by initially 

specifying a model to describe the probability πij that the j-th individual within the i-th local area 
possesses the characteristic of interest.  Specifically, the model is given by 
 

 ijijy π ∼  i.i.d. Bernoulli (πij),     logit i

K

k

T
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In the notation of McCullagh and Nelder (1989), πij = µij, and as indicated above, φi represents a 
random effect associated with the i-th small area, which is assumed to follow some specified 
prior probability distribution.  These random effects are included in the model to account for the 
influence of unobserved covariates on the variation in the pi.  For purposes of the simulation 
study conducted here, we will assume that 
 
 φi  ∼   i.i.d. Normal(0, σ 2) (7) 
 
 Once estimates for β and φi have been determined, πij is estimated by 
 

 11

1
0 )]ˆˆexp(1[)]ˆˆˆexp(1[ˆ −−

=
++=∑ +++= i

T
ij

K

k
iijkkij XX φβφββπ  (8) 

 
The estimates ijπ̂  in conjunction with (4) ultimately allow for the development of point and 

interval estimates for the pi.  The approaches employed are described next. 
 
 
2.1 Empirical Bayes Model Parameter Estimates Based on Classical EM Algorithm 
 
Typically, the random effects variance, σ 2, is unknown.  Suppose that a value is assigned to this 
variance (that will be updated and possibly altered later).  For this value of σ 2, the distribution of 
the data is given by 
 

 f(y | β, φ, σ 2) α ∏ − −

ij

y
ij

y
ij

ijij 1
)1( ππ  (9) 

 
where φ is a vector containing the random effects φi.  If a flat prior is placed upon β, then the 
prior distribution of the parameters is 
 

 f(β, φ | σ 2) α )
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Thus, the joint distribution of the data and the parameters is given by 
 

 f(y, β, φ | σ 2) α ∏ − −
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so that the posterior distribution of the parameters is 
 
 f(β, φ | y,σ 2) = P(y, β, φ | σ 2) / P(y | σ 2) (12) 
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 It is not possible to obtain a closed form for the expression in (12) due to the intractable 
integration required to evaluate the denominator on the right hand side.  Therefore, according to 
a proposal by Laird (1978), we approximate (11) by a multivariate normal having its mean at the 
mode and covariance matrix equal to the inverse of the information matrix evaluated at the 
mode. 
 
 The resulting estimates are conditional on the initially specified value of σ 2, say 2

}0{σ̂ .  Let 

these estimates be represented by }0{β̂ and }0{̂φ .  The EM algorithm proposed by Dempster, 

Laird, and Rubin (1978) can be used to find a maximum likelihood estimate for σ 2.  
Specifically, using the estimates obtained with 2

}0{σ̂ , an updated value for σ 2, 2
}1{σ̂  is determined 

using ∑ +=
=

I

i
ii IraV

1
}0{

2
}0{

2
}1{ /)]ˆ(ˆˆ[ˆ φφσ .  If 2

}1{σ̂ is approximately equal to 2
}0{σ̂ , then }0{β̂ , }0{̂φ , and 

the associated covariance matrix serve as the empirical Bayes estimates of the model parameters.  
Alternatively, if these two successive estimates of the random effects variance are deemed to be 
different, another set of estimates for the fixed and random effects parameters would be 
computed using the Laird approximation with  2

}1{σ̂  as the value specified for the random effects 

variance.  This iterative procedure would continue until successive estimates for σ 2 converge.  
As above, at the {n + 1}-th iteration, 2

}{ˆ nσ would be updated using 
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2.2 Empirical Bayes Model Estimates Based on Stochastic Simulation 
 
Gu and Li (1998) proposed an alternative iterative approach for estimating the random effects 
variance that also makes use of the assumption that the posterior distribution in (12) is 
multivariate normal. It consisted of a stochastic approximation based on the Robbins and Monro 
(1951) procedure. Here we use a simpler method inspired by the work of Zeger and Karim 

(1991).  At the {n + 1}-th iteration, ( }{}{
ˆ,ˆ

nn φβ ){1}, ( }{}{
ˆ,ˆ

nn φβ ){2}, …, ( }{}{
ˆ,ˆ
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from this multivariate normal.  Then 
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is maximized over σ 2 to obtain 2

}1{ˆ +nσ .  If it is assumed that the estimates for σ 2 have converged 

at iteration n, then the T values of ( }{}{
ˆ,ˆ

nn φβ ){t} are averaged to produce the empirical Bayes 

estimates of the fixed and random effects parameters. The inverse of the information matrix is 
then evaluated at this average in order to obtain a covariance matrix. 
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2.3 Empirical Bayes Local Area Estimates 
 
Once the empirical Bayes estimates of the model parameters have been obtained according to 
Section 2.1 or 2.2, (8) is used to determine a value for ijπ̂  for all j ε S ′  in the i-th local area, 

then (4) is used to obtain empirical Bayes  point estimates of small area proportions by setting 
∑ ∑= ijijy π̂ˆ .  To develop empirical Bayes interval estimates, we consider the mean square error 

of ip̂ as a predictor for pi.  When ∑ ijŷ in (4) is replaced by ∑ ijπ̂ , this mean square error can be 

estimated as 
 

 
2
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For sampled local areas, where the sample size, ni, is greater than zero, the first term in (15) is of 
order 1 / ni, while the second term is of order 1 / Ni.  In this study, the approximation of the mean 
square error of ip̂ is based  on the first term only, yielding a useful approximation so long as Ni  
is large compared to ni. 
 
 To develop an expression for the variance of ip̂ , we let Zij represent a vector of fixed effects 
predictor variables for the ij-th individual augmented by a series of binary variables, each 
indicating whether or not the ij-th individual belongs to a particular local area.  We also let Γ̂ be 
the vector containing the estimates of the fixed and random effects parameters.  Then 

i
T
ij

T
ij XZ φβ ˆˆˆ +=Γ where β̂ and iφ̂ are the empirical Bayes estimates of β and φi.  To obtain an 

expression for the variance of ip̂ , a first order multivariate Taylor series expansion of (4) with 

∑ ijŷ replaced by ∑ ijπ̂ is taken with respect to the realized values of the fixed and random 

effects estimates, yielding an approximate expression that describes ip̂ as a linear function of 
these estimates.  If the variance of this expression is taken, the result is 
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where Σ̂ represents the covariance matrix of the estimated vector .Γ̂   A 100(1 - α)% naive 

empirical Bayes confidence interval for pi can be determined using )ˆ(ˆˆ )2/1( ii praVzp α−± , where 

z(1-α/2) is the 100(1 - α/2) percentile of a standard normal distribution. 
 
 However, note that estimates of posterior variances given by (16) do not include the 
uncertainty due to estimating the prior parameters; hence empirical Bayes confidence intervals 
based on these variances are often too short to achieve the desired level of coverage.  A number 
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of methods for addressing this shortcoming are available.  Farrell, MacGibbon, and Tomberlin 
(1997) made use of a parametric Type III bootstrap proposed by Laird and Louis (1987).  Carlin 
and Gelfand (1991) proposed a modification to this bootstrap.  It is this modification that is used 
in the simulation study in Section 3.  For a complete description of the procedure, see Farrell 
(2000). 
 
 
2.4 Hierarchical Bayes Model Parameter and Local Area Estimates 
 
To develop hierarchical Bayes estimates for the parameters in the model in (5) requires that a 
distribution for the random effects variance be specified.  If a flat prior is chosen for σ 2, then the 
joint distribution P(y, β, φ, σ 2) is identical to P(y, β, φ | σ 2) in (11). Using (11) then allows for 
the determination of marginal posterior distributions of each parameter up to a constant of 
proportionality (See Gilks, Best, and Tan 1995); the evaluation of the actual distribution is not 
possible due to the intractable integration required to obtain P(β, φ, σ 2 | y).  Specifically the 
posterior distribution for any given parameter is proportional to the product of all terms in (11) 
that contain it, thus yielding the following 
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 Under Gibbs sampling, an initial set of values would be assumed as the estimates for β, φ, 

and σ 2, say ,ˆ
}0{β ,ˆ

}0{φ and .ˆ 2
}0{σ   An updated estimate for β0, say ,ˆ

}1{0β  is obtained by sampling 

from the distribution ).ˆ,ˆ,ˆ,,ˆ,( 2
}0{}0{}0{}0{10 σφβββ Kyf �  Sampling from 

)ˆ,ˆ,ˆ,,ˆ,ˆ,( 2
}0{}0{}0{}0{2}1{01 σφββββ Kyf � based on }1{0β̂  yields the revised estimate }1{1β̂ for β1. 

The completion of a first iteration is realized once the revised estimates ,ˆ
}1{β ,ˆ

}1{φ  and 2
}1{σ̂ are 

obtained. This procedure of sampling from full conditional distributions using the most up-to-
date revised estimates continues until the estimates of each parameter are deemed to have 
stabilized from one iteration to the next.  See Geman and Geman (1984) and Gelfand and Smith 
(1990) for a general discussion on Gibbs sampling, and Gelman and Rubin (1992) for methods 
of convergence. 
 



Les Cahiers du GERAD G–2002–53 8 

 Note that a different full conditional distribution must be sampled every time a new estimate 
is obtained, regardless of which parameter is being estimated.  Since many iterations are usually 
needed to ensure that estimates for each parameter have stabilized, efficient methods for 
constructing full conditional distributions and sampling from them are required.  For log-
concave distributions, this can be accomplished through adaptive rejection sampling (See Gilks 
and Wild, 1992).  For applications where the full conditional distributions are not log-concave, 
Gilks, Best, and Tan (1995) propose appending a Hasting-Metropolis algorithm step to the 
adaptive rejection sampling scheme.  They suggest using the resulting adaptive rejection 
Metropolis sampling scheme within the Gibbs sampling algorithm.  We follow this approach 
here. 
 
 Specifically, suppose that the Gibbs sampler has been applied to the full conditional 

distribution of the parameter θ, ),ˆ,( ψθ yf to obtain an updated estimate, say CURθ̂ .  Here, 

ψ̂ contains the most recent updated estimates for all other parameters with associated full 

conditional distributions. For example, one possibility is that θ = β0, 

ψ̂ = }ˆ,ˆ,ˆ,,ˆ{ 2
}10{}10{}10{}10{1 σφββ K� , so that CURθ̂  = .ˆ

}11{0β  In what follows, the various distributions 

referred to are conditional upon y and ψ̂ ; however we will suppress the conditioning, writing 

)ˆ,( ψθ yf  as )(θf , for example.  Let SM = {θi; i = 0, 1, …, M + 1} denote a set of values in 

ascending order for θ at which )(θf  is to be evaluated, where θ0 and θM+1 are possibly infinite 

lower and upper limits.  Further, for 1 ≤ i ≤ j ≤ M, let Lij(θ; SM) denote the straight line through 
the points [θi, ln f(θi)] and [θj, ln f(θj)]; for other (i, j) assume that Lij(θ; SM) is undefined.  Under 

adaptive rejection Metropolis sampling, in order to determine if CURθ̂  is to be kept or replaced 
when applying the Gibbs sampler to the full conditional of the next parameter, we proceed as 
follows: 
 

(1) Sample θ from )](exp[
1

)( θθ M
M

M h
v

g =  where ∫= ,)](exp[ θθ dhv MM  and hM(θ) is a 

piecewise linear function given by hM(θ) = max[Li, i+1(θ; SM), min{Li-1, i(θ; SM), Li+1, i+2(θ; 
SM)}], θi ≤ θ ≤ θi+1. 

 
(2) Sample W1 from a uniform (0, 1) distribution. 
 
(3) If W1  > )(θf  / )](exp[ θMh , set SM+1 = SM ∪  {θ}, ensure that all values for θ in SM+1 are 

arranged in increasing order, increment M, and go back to (1).  Otherwise, set θA = θ, and 
continue. 

 
(4) Sample W2 from a uniform (0, 1) distribution. 
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(5) If W2 >












)]}(exp[),(min{)ˆ(

)]}ˆ(exp[),ˆ(min{)(
,1min

AMACUR

CURMCURA

hff

hff

θθθ
θθθ

, then use CURθ̂  when applying the Gibbs 

sampler to the next full conditional distribution.  Otherwise, use θA instead.  
 
 When making use of adaptive rejection Metropolis sampling within the Gibbs sampler here, 
for each parameter SM = {θi; i = 0, 1, …, M + 1} initially comprised six θi values based on the 
5th, 30th, 45th, 55th, 70th, and 95th percentiles of hM(θ) from the previous Gibbs iteration. This 
adaptive rejection Metropolis sampling scheme is applied immediately following each time a full 
conditional distribution is sampled via the Gibbs sampler. 
 
 Following Gilks, Best, and Tan (1995) when running the above algorithm here for a 
particular data set, it was executed twice, using 15,000 iterations each time.  A different set of 
starting values for the parameter estimates was used for each of the two runs.  To construct the 
posterior distributions of the parameters, the last 3,000 iterations in each run were used in order 
to ensure proper convergence.  The method of Gelman and Rubin (1992) was used to assess 
convergence.  This approach yields 6,000 sets of estimates for the fixed and random effects 
parameters in the model, where a set is linked by the iteration number at which the estimates 
were produced.  For each set of estimates, (8) is used to determine values for ijπ̂  for all j ε S ′ in 

the i-th local area.  A value for ijŷ  where j ε S ′ is then generated from a Bernoulli distribution 

with parameter ijπ̂ .  The resulting values of ijŷ  are then used in (4) to determine a value for ip̂ .  

There would be 6,000 such estimates for ip̂ , one associated with each of the 6,000 sets of model 
estimates.  These estimates for ip̂  are then treated as an empirical distribution.  If a point 
estimate for the proportion of the i-th local area is desired the median of this distribution could 
be used.  In addition, if a 100(1 - α)% interval estimate is required, then the 100(α/2) and 100(1 
- α/2) percentiles of this distribution can be taken as the lower and upper limits, respectively. 
 
 
3 SIMULATION STUDY 
 
A simulation study was conducted in order to compare the performance of estimators for small 
area proportions based on a hierarchical Bayes estimation approach with those based on 
empirical Bayes techniques that use the classical EM method with a Laird approximation and a 
stochastic normal approximation.  We imagine that two choices of surgical procedure, A and B, 
are available for treatment of a certain disease, and that interest is in the proportions of patients 
at particular hospitals that select procedure A.  Suppose also that when sampling takes place in 
order to estimate these proportions, covariate information on gender and age is collected along 
with the surgical procedure selected.   
 Treating the hospitals as local areas, a population of 2,500 patients was created for each.  To 
develop these populations, for each hospital a random effect value, φi, was first generated from a 
normal distribution with mean zero and standard deviation 0.25.  Then, for the j-th patient at the 
i-th hospital, outcomes for gender, Xij1, and age, Xij2, were generated from a Bernoulli 
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distribution with parameter 0.5, and from a continuous uniform distribution ranging from 25 to 
65, respectively.  The indicator variable for gender took on a value of one for females, and zero 
for males.  For the j-th patient at the i-th hospital, the probability πij of choosing surgical 
procedure A was then computed according to the model 
 

iijij
ij

ij
XX φβββ

π
π

+++=










− 221101
log  

 
where β0 = -0.5, β1 = -0.5, and β2 = 0.02.  Using the πij, the small area proportion of individuals 
at the i-th hospital opting for procedure A was determined as 
 

2500/
2500

1
∑=
=j

ijip π  

 
This yielded the small area proportions given in Table 1, which range from 0.35 to 0.59.  For the 
j-th patient at the i-th hospital, a response variate value for Yij of 1 or 0 to indicate selection of 
procedure A or  B respectively was generated from a Bernoulli distribution with parameter πij. 
 
 In order to study the properties of small area estimators of proportions using the three 
estimation methodologies, samples of 50 individuals were drawn from each of the twenty 
hospitals, yielding a total sample size of 1,000.  For each approach, a point estimate and 95% 
confidence interval was determined for the proportion of patients at each hospital opting for 
procedure A. This process was repeated 1,000 times to allow for a comparison of the three 
approaches over repeated realizations of the sampling design. 
 
 The results over the entire 1,000 replications are presented in Table 1.  Included for each 
hospital are summaries for each of the three estimation methods that reflect an average point 
estimate for the proportion of interest, an average confidence interval width, and a coverage rate.  
The average point estimates suggest that the design bias in the small area estimators associated 
with the three estimation approaches is quite small for most hospitals.  In order to compare the 
three procedures, the mean absolute difference between the small area proportions and the 
average estimated proportions was determined for each approach.  The hierarchical Bayes 
technique produced a mean absolute difference of 0.0028, as compared to 0.0058 and 0.0041 for 
the empirical Bayes methods based on classical and stochastic approximation approaches, 
respectively.  The hierarchical Bayes approach resulted in the smallest absolute difference for 
half of the twenty hospitals, while the empirical Bayes method based on stochastic 
approximation had the smallest absolute difference in seven others. 
 



 

Table 1:  A comparison of the three estimation methods 
 
 
Info 
 

True p EBayes SS HBayes LengthEB LengthSS LengthHB CovEB CovSS CovHB 

Small Area Size: 
2500 
 
Sample Size:  
50 
 
Replications:  
1000 
 
Normal Prior:  
sd 0.25 
 

0.35 
0.40 
0.47 
0.49 
0.51 
0.51 
0.51 
0.52 
0.52 
0.53 
0.54 
0.54 
0.55 
0.55 
0.56 
0.56 
0.58 
0.58 
0.59 
0.59 

0.356421 
0.405710 
0.464604 
0.489121 
0.509368 
0.507591 
0.518245 
0.533892 
0.516117 
0.539127 
0.547885 
0.540483 
0.540491 
0.562211 
0.549658 
0.555629 
0.583034 
0.577056 
0.594618 
0.594970 

0.345471 
0.411713 
0.475181 
0.492494 
0.504117 
0.505628 
0.517595 
0.512017 
0.522476 
0.526676 
0.547268 
0.544656 
0.551902 
0.553931 
0.553354 
0.555698 
0.568609 
0.585506 
0.582714 
0.588955 

0.347934 
0.405080 
0.470655 
0.487850 
0.507329 
0.502191 
0.518074 
0.518343 
0.521422 
0.526501 
0.538503 
0.539384 
0.550977 
0.550421 
0.558175 
0.565672 
0.576189 
0.575505 
0.593583 
0.592129 

0.2136 
0.2183 
0.2245 
0.2244 
0.2225 
0.2243 
0.2237 
0.2243 
0.2255 
0.2243 
0.2223 
0.2241 
0.2224 
0.2228 
0.2230 
0.2244 
0.2204 
0.2228 
0.2196 
0.2190 

0.2112 
0.2206 
0.2225 
0.2226 
0.2233 
0.2266 
0.2224 
0.2222 
0.2250 
0.2267 
0.2213 
0.2262 
0.2218 
0.2235 
0.2236 
0.2237 
0.2187 
0.2203 
0.2212 
0.2171 

0.2130 
0.2170 
0.2230 
0.2231 
0.2198 
0.2240 
0.2239 
0.2237 
0.2267 
0.2248 
0.2219 
0.2231 
0.2227 
0.2211 
0.2204 
0.2262 
0.2224 
0.2213 
0.2198 
0.2187 

92.4 
94.3 
96.8 
93.3 
92.7 
95.4 
94.2 
94.5 
96.8 
92.5 
93.1 
93.7 
96.9 
96.9 
95.4 
95.2 
94.4 
94.9 
94.2 
94.0 

95.2 
94.3 
95.5 
93.9 
95.3 
93.6 
93.2 
95.5 
95.9 
93.7 
96.0 
94.2 
94.1 
96.7 
95.2 
95.9 
94.9 
95.6 
94.8 
94.5 

94.8 
95.2 
94.7 
95.5 
95.0 
96.0 
95.2 
95.6 
95.6 
94.5 
94.5 
95.5 
94.6 
95.6 
95.4 
94.1 
95.6 
95.0 
95.6 
95.0 
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 There is little difference in the average interval lengths obtained using the various 
procedures.  In addition, the average coverage rates over the twenty hospitals are similar for the 
three approaches, and very close to the 95% nominal rate.  The average coverage rates for the 
empirical Bayes approaches based on classical and stochastic approximation procedures are 
94.58% and 94.90% respectively, while the average coverage rate for the hierarchical Bayes 
intervals is 95.15%.  However, of note is the difference in the variability of the twenty coverage 
rates obtained for the three methods.  The standard deviation of the coverage rates for the 
hierarchical Bayes intervals is only 0.497%, as compared to 1.458% and 0.937% for the 
empirical Bayes intervals based on classical and stochastic approximation approaches, 
respectively. 
 
 
4 CONCLUSION AND DISCUSSION 
 
In the context of the simulation study conducted here for estimating small area proportions, both 
the empirical and hierarchical Bayes procedures yielded point estimates with a small design bias, 
with the latter approach being slightly better than the others.  The average coverage rates for the 
three methods are similar and very close to the 95% nominal rate.  However, the variability in 
the individual local area coverage rates based on the hierarchical Bayes intervals is noticeably 
smaller than that in counterparts based on the two empirical Bayes approaches.  This is clearly 
an advantage of the hierarchical Bayes approach.  Of note also is the reduction in variability in 
the individual coverage rates when an empirical Bayes stochastic simulation is used instead of 
the classical approach.  Unfortunately, this reduction in coverage rate variability as one opts for 
classical empirical Bayes, stochastic simulation, and hierarchical Bayes is tempered by sizeable 
increases in the computing time necessary to obtain the results. 
 
 A future simulation study will be done by relaxing the normality assumption on the prior 
distribution. The three methods suggested here will be compared to a non-normal stochastic 
simulation method similar to the one proposed by Zeger and Karim (1991). 
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