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Abstract

This paper investigates several questions related to the location of facilities in multi-
storey buildings in the presence of lifts. Where should facilities be located? What will
be the catchment area of each facility? What will be the relative use of each lift?
Simple rules and geometrical interpretations are provided.

Résumé

Cet article examine diverses questions reliées à la localisation d’installations dans des
édifices à plusieurs étages en présence d’ascenseurs. Où devrait-on localiser les instal-
lations? Quelle sera l’aire d’attraction de chaque installation? Quel sera l’usage relatif
de chaque ascenseur? On fournit des règles simples et des interprétations géométriques.
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1 Introduction

Throughout the twentieth century high-rises have proliferated in city centers, mostly in

response to soaring land prices. Corporate headquarters often occupy several floors of

the same building, thus allowing easier communication between departments or functional

areas. As a rule, the geometry of high-rises follows a relatively simple pattern, in order to

help reduce construction costs and facilitate the analysis of horizontal and vertical loads

(Cobreros, 1998). Of particular importance is the location of lifts which come to bear

on structural loads as they can help lower the center of gravity of the building. Lifts

also provide vertical bridges facilitating displacements in the building. While structural

problems are central to the design and engineering of high-rise buildings and have received

a great deal of attention, issues related to traffic flows, accessibility and facility location

are also important, but have been less investigated (Escrig, 1998).

We are interested in locational problems in multi-storey buildings in the presence of

lifts. Our unit of analysis may be an entire building, or several (usually contiguous) floors

occupied by a company in a high-rise building. We make no specific assumption about the

location of lifts. We assume, however, that all floors are identical and rectangular. Three

questions will retain our attention.

1) Given a building whose lift location is known and whose floors are already partitioned

into offices, where should common facilities be located to maximize accessibility (or,

equivalently, minimize overall travel time)? And what will be the use of each lift?

2) Defining the catchment area of the facility as the population that can access it within

r time units, where should p facilities be located in order to maximize the total

catchment?

3) Given several lifts and a common facility, what will be the relative use of these lifts

by people wishing to reach the facility?

The first question is largely operational in nature and, as will be seen, can readily

be answered using the standard location theory and methodology. The second question

can be used at the planning level since the relative position of offices can be arranged to

maximize the population covered by a set of already located facilities. The third question

also arises at the planning stage. All too often, lift usage in a building is uneven, resulting

in overusage and excessive wear and tear of the most frequented lifts.
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2 Multi-storey facility location

First consider the problem of locating p identical communal facilities (e.g., meeting rooms,

photocopying machines, etc.) in an already partitioned multi-storey building. Objectives

may be considered, like a median objective or a covering objective. In median problems,

the objective is to minimize the sum of distances or traveling times from users to their

closest facility. In covering problem, facilities must be located so as to ensure that a given

proportion of users (sometimes all) are within r distance or time units from it or to ensure

that a maximum number of users are within r units of their closest facility (see Daskin,

1995 for an overview of basic location problems).

These problems and others can readily be solved by means of classical location

models and algorithms (see, e.g., Daskin, 1995). Indeed, the building may be modeled as

an undirected graph G = (V, E) where V is a vertex set and E is an edge set. In practice,

V contains one element for each office door and one for each lift. An edge corresponds to

a direct corridor link between two vertices. To solve location problems on G, the shortest

travel time tij must be computed between each pair {i, j} of vertices. Let L ⊂ V be the

set of lifts and let fi be the floor of i. If fi = fj , then tij is simply computed as the length

(in time units) of a shortest path between i and j. If fi 6= fj , then

tij = min
`∈L
{ti` + t`j}+ |fi − fj |s, (1)

where s is the travel time by lift between two consecutive floors. Here as in the remainder

of our analysis, congestion and waiting times at lifts are disregarded.

In the latter case, the optimal lift `∗ used between i and j is given by

ti`∗ + t`∗j = min
`∈L
{ti` + t`j}, (2)

i.e., the right-hand side is constant c and the equation ti`∗ + t`∗j = c is that of an ellipse

with foci i and j. Elementary analytical geometry allows for an interesting representation

of (2). Order the lifts ` in non-decreasing order of ti` + t`j = c` and consider the family of

concentric ellipses corresponding to each c` (` ∈ L). Then the optimal lift is that associated

with the innermost ellipse. Since the travel times tij do not in general correspond to any

classical metric, equation (2) is not that of an ellipse in the usual geometrical since, but it

would be if a Euclidean metric was used (Figure 1).

Figure 2 shows “ellipses” obtained for a Manhattan metric, more representative of

reality in a typical office building.
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Figure 1: Concentric ellipses for a Euclidean metric.

i

j

2

1

Figure 2: Concentric ellipses for a Manhattan metric.

Given an origin-destination matrix between all vertex pairs in a multi-storey build-

ing and the estimated frequency of travel between these points, the above analysis can

help determine the relative lift utilization given that people usually travel using short-

est paths. Embedding this information within a simulation model should help determine

facility locations that will produce a balanced lift usage.

3 Maximizing the catchment area of a facility

The catchment area of a facility is the set of all points in the building that are within

r time units from it. We are first interested here in locating a single facility i in order

to maximize its catchment area. This situation is best understood by using a continuous
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representation of the building (i.e., no wall partitions) and a Euclidean metric. On floor

fi, the catchment area of i includes all points within a circle of radius r centered at i.

On other floors, users will use the lift ` closest to i on floor fi and walk to i. Thus the

catchment area of i on floor fj (i 6= j) is a circle of radius rj around lift `, where

rj = max{0, r − ti` − |fi − fj |s} (3)

(see Figure 3). For any j 6= i, the value of rj is maximized if ti` = 0, i.e., if facility i is

i

    floor fi

     floor f  + 1i

     floor f  + 2i

Figure 3: The catchment area of facility i.

located at lift `. Hence, a simple geometrical analysis confirms what our intuition suggests:

common facilities that cannot be located on each floor should be located as close to lifts as

possible. This analysis also suggests that if p identical common facilities are to be located

(where p is less than the number of floors), then these should be located near lifts on

equally spaced floors since solutions of this type will maximize the total catchment areas

of all facilities.

4 Determining the catchment area of a lift

Finally, we consider a facility i located on floor fi and another floor fj . The problem is to

determine the relative usage of lifts by users of floor fj on their way to facility i. In other

words, how is floor j partitioned into catchment areas, one for each lift. Such a partition

is often referred to as a Voronoi partition (Okabe, Boots and Sugihara, 1992). Again, we

assume a continuous space.
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This question is answered by considering two lifts k and ` and determining the

condition under which lift k is preferred to lift `. Performing this analysis for all pairs of

lifts will yield the desired Voronoi partition. Given a point j floor fj , lift k is equivalent

to lift ` if

tjk + tki = tj` + t`i, (4)

in other words, if

tjk − tj` = t`i − tki. (5)

Thus the right-hand side of (5) is a constant. This equation is that of a hyperbola with

foci k and `, and with one branch passing through facility i. If i is closer to lift ` than it

is to lift k, then lift ` is preferred by all users of facility i, except those located in the area

bounded by the hyperbola branch associated with lift k (see Figure 4).

ik

Figure 4: The catchment area of lift k.

Again, considering in turn several potential locations for i, a lift Voronoi partition

can be computed to determine relative use and possibly arrive at a satisfactory solution.
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