
Les Cahiers du GERAD ISSN: 0711–2440

Empirical Rank Processes for Detecting
Dependence

Christian Genest
Bruno Rémillard

G–2002–03

January 2002
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Abstract

Exploiting an overlooked observation of Blum, Kiefer & Rosenblatt (1961), Du-
gué (1975) and Deheuvels (1981a) described a decomposition of empirical distribution
processes into a finite sum of asymptotically mutually independent terms whose lim-
iting distribution is simple under the hypothesis that a multivariate distribution is
equal to the product of its marginals. This paper revisits this idea and proposes to
test independence using a combination of Cramér-von Mises statistics arising from the
decomposition of the empirical copula process, which involves only the ranks of the
observations. Asymptotic and finite-sample tables of critical values are provided for
carrying out the test, based on Fisher’s method of combining P -values. While the new
statistic is inferior to the standard likelihood ratio test for multivariate normal data,
Monte Carlo simulations show that it can be much more powerful than the latter when
the marginal distributions of the data or their underlying dependence structure are
non-normal. Using the canonical decomposition of Dugué and Deheuvels, a graphical
device called a “dependogram” is also proposed which helps identify the dependence
structure when the null hypothesis is rejected. The mathematical exposition, which is
based on recent work of Ghoudi, Kulperger & Rémillard (2001), allows for a simulta-
neous treatment of the serial and non-serial case. It is shown, among other things, that
the asymptotic distribution of rank statistics based on the empirical copula process is
the same in both cases, thereby shedding new light on the theory of nonparametric
tests of serial dependence initiated by Hallin, Ingenbleek & Puri (1985).

Keywords: Copula, Cramér-von Mises statistic, empirical process, Möbius inver-
sion formula, pseudo-observations, semi-parametric models, serial dependence, tests of
independence.
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Résumé

Exploitant une importante remarque de Blum, Kiefer & Rosenblatt (1961) qui a été
négligée par la suite, Dugué (1975) and Deheuvels (1981a) décrivent une décomposition
d’un processus empirique en une somme finie de termes qui sont asymptotiquement
indépendants et dont la limite s’exprime simplement, sous l’hypothèse que la fonction
de répartition multivariée est le produit de ses marginales. Cet article jette un nouveau
regard sur cette idée et propose de tester l’hypothèse d’indépendance en utilisant une
combinaison de statistiques du type Cramé-von Mises provenant de la décomposition
de la copule empirique, qui s’écrit en fonction des rangs des observations. Des tableaux
pour les valeurs critiques d’un test basé sur la méthode de Fisher pour la combinaison
de probabilités critiques sont donnés, dans le cas de petits échantillons ainsi que dans
le cas limite. Comme on pouvait s’y attendre, le nouveau test proposé est inférieur
au test du rapport de vraisemblance dans le cas multivarié gaussien. Des simulations
Monte Carlo montrent qu’il peut être beaucoup plus puissant lorsque les lois marginales
ou la copule ne sont pas gaussiennes. Utilisant la décomposition canonique proposée
par Dugué et Deheuvels, un outil graphique appelé “dépendogramme” est proposé afin
de permettre l’identification de structures de dépendance lorsque l’hypothèse nulle
est rejetée. La méthodologie mathématique, basée sur le récent article de Ghoudi,
Kulperger & Rémillard (2001), permet le traitement simultané des cas sériels et non
sériels. En outre, il est montré que la loi asymptotique de statistiques de rangs basées
sur la copule empirique est la même dans les deux cas, expliquant ainsi les résultats de
la théorie des tests non paramétriques dans le cas de séries chronologiques initiés par
Hallin, Ingenbleek & Puri (1985).
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1 Introduction

In a seminal paper concerned with testing the null hypothesis of independence between the
p ≥ 2 components of a multivariate vector with continuous distribution H and marginals
F1, . . . , Fp, Blum, Kiefer & Rosenblatt (1961) investigated the use of a Cramér-von Mises
statistic derived from the process

Hn(t) =
√
n







Hn(t)−
p
∏

j=1

Fnj(tj)







, t = (t1, . . . , tp) ∈ IRp

that measures the difference between the empirical distribution function (EDF) Hn of H
and the product of the marginal EDFs Fjn associated with the p components of the random
vector. As Hoeffding (1948) had already noted, the asymptotic distribution of this test is
generally not tractable, and hence tables of critical values are required for its use. Such
tables were provided by Blum et al. (1961) themselves in the case p = 2, and were later
expanded to p ≥ 3 by Cotterill & Csörgő (1982, 1985), based on strong approximations of
Hn. See also Jing & Zhu (1996) for a bootstrap approach.

Despite this work and the anticipation that the Cramér-von Mises statistic
∫

H2
n dHn

should be powerful, most subsequent research focussed on the case p = 2, where alternative
tests (typically based on moment characterizations of independence) were proposed by
Feuerverger (1993), Shih & Louis (1996), Gieser & Randles (1997) and Kallenberg &
Ledwina (1999), among others.

Curiously, the literature seems to have largely ignored a suggestion of Blum et al. (1961)
to circumvent the inconvenience caused by the complex nature of the limiting distribution
of Hn. To be specific, let X1 = (X11, . . ., X1p), . . ., Xn = (Xn1, . . . , Xnp) be a random
sample from distribution H, and for arbitrary A ⊂ Sp = {1, . . . , p} with |A| > 1, consider
the empirical process

GA,n(t) =
1√
n

n
∑

i=1

∏

j∈A

{I (Xij ≤ tj)− Fnj (tj)}.

Using Möbius’ inversion formula (cf., e.g., Spitzer 1974, p. 127), Blum, Kiefer and Rosen-
blatt showed that Hn may be conveniently expressed as

Hn(t) =
∑

A⊂Sp, |A|>1

GA,n(t)
∏

j∈Sp\A

Fn,j(tj).

Although their paper only discussed the case p = 3, these authors claimed (and this was
later confirmed by Dugué 1975) that under the hypothesis of independence, GA,n converges
weakly to a continuous centered Gaussian process with covariance function

covA(s, t) =
∏

j∈A

[min{Fj(sj), Fj(tj)} − Fj(sj)Fj(tj)]
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whose eigenvalues, given by

1

π2|A|(i1 · · · i|A|)2
, i1, . . . , i|A| ∈ N = {1, 2, . . .}

may be deduced from the Karhunen-Loève decomposition of the Brownian bridge. More
importantly still, Blum et al. (1961) and Dugué (1975) pointed out that the processes GA,n

and GA′,n are mutually independent asymptotically whenever A 6= A′, so that Cramér-von
Mises statistics based on the individual GA,n’s could be combined to construct suitable
statistics for testing against independence.

An obvious limitation of tests based on this approach, however, is the dependence of the
asymptotic null distribution of the GA,n’s on the marginals of H. To alleviate this problem,
Deheuvels (1981a) suggested that the original observations X1, . . . , Xn be replaced by their
associated rank vectors R1 = (R11, . . . , R1p), . . . , Rn = (Rn1, . . . , Rnp). He then went on
to characterize the asymptotic behavior of a Möbius decomposition of the copula process

Cn(t) =
√
n







Cn(t)−
p
∏

j=1

tj







, (1)

where

Cn(t1, . . . , tp) =
1

n

n
∑

i=1

p
∏

j=1

I(Rij ≤ ntj)

is an estimation of the unique copula C defined implicitly by

C{F1(t1), . . . Fp(tp)} = H(t1, . . . , tp).

The latter reduces to C(t1, . . . , tp) = t1 · · · tp under the null hypothesis of independence.
Although Cramér-von Mises and Kolmogorov-Smirnov statistics based on Cn’s decompo-
sition were then proposed by Deheuvels (1982a,b,c), he did not compute the quantiles for
the asymptotic or finite-sample distribution of these statistics; nor did he mention how the
2p − p − 1 statistics derived from the rank analogues of the GA,n’s could be combined to
obtain a global statistic for testing independence.

The first objective of this paper is to fill this gap. In Section 2, unbiased variants
of Deheuvels’ rank-based processes GA,n are introduced, and their asymptotic theory is
briefly recapped. Two strategies for testing the null hypothesis of independence are then
described in Section 3. Since the Cramér-von Mises functional of the GA,n has a simple
limiting distribution that depends only on the size of A, one possibility is to fix a global
level for the test and to check for lack of independence in each subset A of variables at
appropriate subsidiary levels. A table of 5% critical values is provided for this procedure,
which allows for visual determination of specific violations of the independence assumption.
A second option consists of combining the p-values of the 2p − p − 1 tests into a single
statistic that is asymptotically distributed as a chi-square random variable with that many
degrees of freedom. As shown in Section 6, this statistic turns out to be quite powerful in



Les Cahiers du GERAD G–2002–03 3

a variety of settings, using as a benchmark the classical likelihood test statistic based on
the multivariate Gaussian model.

The second goal of the paper, pursued in Section 4, is to show how these developments
can be adapted easily to test against randomness in a time series context. Indeed, if vectors

Xi = (Yi, . . . , Yi+p−1) , 1 ≤ i ≤ n− p+ 1 (2)

are constructed from p consecutive values of a stationary univariate time series Y1, Y2, . . .,
recent results of Ghoudi, Kulperger & Rémillard (2001) imply that under the null hypoth-
esis of white noise, the serial and non-serial versions of the empirical rank processes GA,n

have the same asymptotic behavior when restricted to subsets A with 1 ∈ A and |A| > 1.
In other words, the fact that two successive values of Xi have p−1 components in common
(shifted by one) has no impact, in the limit. Given that many of the linear rank statistics
traditionally used for testing independence are simple continuous functionals of the GA,n’s,
it is not surprising, therefore, that serialized and non-serialized versions of Spearman’s rho
and other rank statistics (Laplace, van der Waerden, Wilcoxon, etc.) share the same limit-
ing distribution. This point, which is made in Section 5, sheds new light on earlier results
of Hallin, Ingenbleek & Puri (1985) obtained in the case |A| = 2.

For a general survey of the literature on rank tests of independence, see Hallin & Puri
(1992) or Hallin & Werker (1999). For specific tests of serial dependence based on the
Blum-Kiefer-Rosenblatt approach, refer to Skaug & Tjøstheim (1993) or Tjøstheim (1996).
Other recent contributions are those of Kulperger & Lockhart (1998), Hong (1998, 2000),
and Genest, Quessy & Rémillard (2001).

2 Set-indexed decomposition of the copula process

LetX1, . . . , Xn be independent random vectors in IRp with continuous distribution function
H and marginals Fj , 1 ≤ j ≤ p. Let also R1, . . . , Rn be the associated ranks vectors. A
simple application of Möbius’ formula implies that the empirical copula process Cn may
be expressed in the form

Cn(t) =
∑

A⊂Sp, |A|>1

GA,n(t)
∏

j∈Sp\A

tj

in terms of set-indexed processes

GA,n(t) =
1√
n

n
∑

i=1







p
∏

j=1

I (Rij ≤ ntj)−
p
∏

j=1

tj







defined for arbitrary A ⊂ Sp with |A| > 1. Following Blum et al. (1961) and Dugué
(1975), Deheuvels (1981a,b,c) proved that under the null hypothesis of independence, GA,n

converges weakly to a continuous centered Gaussian process GA with covariance function

ΓA(s, t) =
∏

j∈A

{min(sj , tj)− sjtj} . (3)
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Furthermore, he showed that GA,n and GA′,n are asymptotically independent whenever
A 6= A′, so that Cramér-von Mises or Kolmogorov-Smirnov statistics based on the GA,n’s
could be combined into a global test of independence.

It is worth pointing out in passing that if

tB =

{

tj if j ∈ B,
1 if j 6∈ B,

the asymptotic processes may actually be expressed as

GA(t) =
∑

B⊂A

(−1)|A\B|C
(

tB
)

∏

j∈A\B

tj

in terms of the limit C in D([0, 1]p) of the continuous functional

Hn{F−1
1 (t1), . . . , F

−1
p (tp)}

of the Blum-Kiefer-Rosenblatt process that would be obtained by applying the probability
integral transformation to the marginal distributions of the Xi’s, if they were known.
Alternatively, C in the above expression can be replaced by the limit in D([0, 1]p) of (1),
viz.

C̃(t) = C(t)−
p
∑

j=1

βj(tj)
∏

k 6=j

tk (4)

which Deheuvels (1979, 1980), Stute (1984) and Gänssler & Stute (1987) showed to be a
continuous centered Gaussian process involving p independent Brownian bridges β1, . . . , βp
connected to C through the relations

β1(u) = C(u, 1, . . . , 1), . . . , βp(u) = C(1, . . . , 1, u).

The occurrence of this linear combination of Brownian bridges in the limiting process (4)
is a consequence of the fact that these marginals are not known.

Section 3 describes how it is possible to exploit the asymptotic independence of the
GA,n’s to construct diagnostics and powerful tests of independence. In order to ensure the
quality of the asymptotic approximation in small samples, however, it is actually preferable
to work with zero-mean versions of the GA,n’s defined by

G?
A,n(t) =

1√
n

n
∑

i=1

∏

j∈A

[I {Rij ≤ (n+ 1)tj} − Un(tj)] ,

where Un is the distribution function of a discrete random variable U uniformly distributed
on the set {1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}, i.e.,

Un(u) = min

{

[(n+ 1)u]

n
, 1

}

(5)
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with [(n+ 1)u] standing for the integer part of (n+ 1)u.

The limiting behavior of the processes G?
A,n is given in the following extension of The-

orem 2 in Deheuvels (1981a).

Proposition 1. Under the null hypothesis of independence, the processes G?
A,n defined

for arbitrary A ⊂ Sp with |A| > 1 converge weakly to the mutually independent continuous

centered Gaussian processes GA with covariance function (3).

3 Tests statistics for independence

As is well known, p events E1, . . . , Ep are mutually independent if and only if for all
A ⊂ Sp = {1, . . . , p},

P

(

⋂

i∈A

Ei

)

=
∏

i∈A

P (Ei).

Likewise, a distributionH is equal to the product of its marginals if and only if its associated
copula C verifies the condition

∑

B⊂A

(−1)|A\B|C(tB)
∏

k∈A\B

tk = 0, (6)

for all t ∈ [0, 1]p and A ⊂ Sp, as proved in Ghoudi et al. (2001, Proposition 2.1). Condition
(6) is referred to as A-independence by Deheuvels (1981a). Now since it is generally true
that

∏

i∈A

(xi + yi) =
∑

B⊂A

(

∏

i∈B

xi

)

∏

j∈A\B

yj ,

it follows at once from the ergodic theorem that for all t ∈ [0, 1]p,

E

{G?
A,n(t)√
n

}

= E





∏

j∈A

[I {R1j ≤ (n+ 1)tj} − Un(tj)]





=
∑

B⊂A

(−1)|A\B| E





∏

j∈A\B

I {R1j ≤ (n+ 1)tj}





∏

k∈A\B

Un(tk)

tends to the left-hand term of (6). It seems reasonable, therefore, to reject the hypothesis
of independence whenever the process G?

A,n is significantly different from zero for some
A ⊂ Sp.

This suggests basing a test of independence on a combination of statistics involving all
the G?

A,n’s. For a fixed A, two obvious possibilities are the Cramér-von Mises statistic

TA,n =

∫

[0,1]p
{G?

A,n(t)}2 dt, (7)
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and the Kolmogorov-Smirnov statistic

SA,n = sup
t∈[0,1]p

|G?
A,n(t)|. (8)

Although the null distribution of these rank-based statistics can easily be tabulated for
any sample size, this paper focuses on the use of the TA,n’s because of their convenient
asymptotic distribution, given below. See Deheuvels (1981a, Section 3) for a proof of this
result.

Proposition 2. Under the null hypothesis of independence, the limiting distribution of

TA,n is the same as that of ξ|A|, where

ξk =
∑

(i1,...,ik)∈Nk

1

π2k(i1 · · · ik)2
Z2
i1,...,ik

,

and the Zi1,...,ik ’s are independent N(0, 1) random variables.

In the light of the above discussion, a reasonable testing procedure consists of rejecting
independence whenever the observed value tA,n of at least one of the TA,n’s is too large.
There are two natural ways to go about this: either critical values could be chosen for
each of the statistics so as to achieve a predetermined global level, or the p-values of
these statistics could be computed and then combined. The first option, considered in
Section 3.1, leads naturally to a diagnostic test that makes it possible to identify failures
of the independence assumption. As will be seen, however, the alternative test described
in Section 3.2 turns out to be more powerful.

3.1 Fixing a global level

One option consists of rejecting the null hypothesis of independence at approximate level
α if TA,n = tA,n > cA for some A ⊂ Sp, where cA = c|A| is chosen so that

P





⋃

A⊂Sp, |A|>1

{TA,n > cA}



 ≈ 1−
∏

A⊂Sp, |A|>1

P
(

ξ|A| ≤ c|A|
)

= 1−
p
∏

k=2

{P (ξk ≤ ck)}(
p
k) = α,

where the first identity is justified by the fact that the limiting distribution ξ|A| of TA,n

depends only on the size of A and TA,n ≡ 0 for |A| ≤ 1.
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Table 1. Critical values c2, . . . , cp for the global test of independence at level α = 5% for
a p-variate distribution, p = 2, . . . , 5, based on a random sample of size n = 20, 50, 100, 250
and n→∞.

n = 20 p = 2 p = 3 p = 4 p = 5

c2 0.052693 0.071797 0.085028 0.096548
c3 0.007985 0.009174 0.010018
c4 0.001184 0.001288
c5 0.000189

n = 50

c2 0.056104 0.078200 0.094521 0.109683
c3 0.009339 0.010883 0.012303
c4 0.001382 0.001516
c5 0.000205

n = 100

c2 0.057534 0.080452 0.097565 0.112749
c3 0.009768 0.011405 0.012908
c4 0.001450 0.001611
c5 0.000216

n = 250

c2 0.058256 0.081890 0.100115 0.115406
c3 0.010071 0.012099 0.013757
c4 0.001500 0.001668
c5 0.000221

n =∞
c2 0.059279 0.084364 0.102630 0.117481
c3 0.010358 0.012056 0.013358
c4 0.001511 0.001628
c5 0.000214

It is especially convenient to choose the ck’s in such a way that P(ξk ≤ ck) = β for all
2 ≤ k ≤ p, whence

α = 1− β
∑p

k=2 (
p
k),

that is, β = (1 − α)1/(2
p−p−1). Table 1 gives the values of c2, . . . , cp for p = 2, . . . , 5 and

α = 1, 5, 10%. These values were obtained from the Cornish-Fisher asymptotic expansion
of the distribution of ξk using its first six cumulants given by

κm =
2m−1(m− 1)!

π2km
ζ(2m)k, 1 ≤ m ≤ 6,

and ζ(·) denotes Riemann’s zeta function.

Besides the fact that it gives the same weight to all the TA,n’s, choosing P(ξk ≤ ck) = β
for all 2 ≤ k ≤ p allows for graphical representation of the test in the same spirit as the
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classical correlogram. On the x-axis of what can be called a “dependogram,” the subsets
A are ordered lexicographically by size, beginning with |A| = 2. The corresponding values
of TA,n are represented by vertical bars, and horizontal lines placed at height c|A| make it
easy to identify subsets leading of the rejection of the independence hypothesis.

Subsets

T
a

n

0 5 10 15 20 25

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

Figure 1. Dependogram of asymptotic level α = 5% constructed for a random sample of
size n = 50 from a vector (X1, . . . , X5) with standard normal marginals, pairwise but not
joint independence between X1, X2, X3, and corr(X4, X5) = 1/2. See end of Section 3.1
for details of construction.

The construction of the dependogram is illustrated in Figure 1 for a random sample
of size n = 50 from a vector (X1, . . . , X5) with standard normal marginals with X1 =
|Z1|sign(Z2Z3), X2 = Z2, X3 = Z3, X4 = Z4 and X5 = Z4/2 +

√
3Z5/2, where the Zi’s

are mutually independent standard normal random variates. In this case, X1, X2, X3 are
pairwise but not jointly independent (Romano & Siegel 1985, p. 33); they are, however,
independent from the pair (X4, X5). As can be seen on Figure 1, the subset A = {4, 5},
which is tenth on the list, exhibits a clear dependence at approximate level α = 5% between
the two corresponding variables. In addition, the eleventh subset, A = {1, 2, 3}, makes
apparent the joint dependence between variables X1, X2, X3 which the pairwise statistics
TA,n with A = {1, 2}, {1, 3} and {2, 3} could not possibly have detected.

3.2 Combining P -values

Under the null hypothesis of independence, the statistic TA,n has distribution function
F|A|,n and the corresponding P -value
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pA,n = 1− F|A|,n(TA,n)

is asymptotically uniform on the interval (0, 1). Since the pA,n’s are also mutually inde-
pendent in the limit, the combined statistic

TF,n = −2
∑

A⊂Sp, |A|>1

log (pA,n) ,

originally proposed by Fisher (1950, pp. 99–101), converges in law to a chi-square variable
with 2(2p − p − 1) degrees of freedom. As shown by Littell & Folks (1973), the statistic
TF,n is asymptotically Bahadur optimal within a large class of reasonable combination
procedures. Its good properties are confirmed in simulations reported in Section 6.

Table 2 below provides the α = 5% critical values of TF,n when n = 20, 50, 100. Note the
fairly quick convergence of the critical values to those of the chi-square with 2(2p − p− 1)
degrees of freedom, entered under n = ∞ in the table. Although it would be computa-
tionally more convenient to replace F|A|,n by the distribution function of ξ|A| identified in
Proposition 2, the convergence of the statistic would then be much slower, as intensive
simulations confirm.

Table 2. Critical points for testing independence at the α = 5% level using Fisher’s
combined P -value test for a p-variate distribution, p = 2, . . . 5, from a random sample of
size n = 20, 50, 100 and n→∞.

p = 2 p = 3 p = 4 p = 5

2(2p − p− 1) 2 8 22 52

n = 20 6.00 15.08 33.79 74.23
n = 50 6.00 15.43 34.02 72.14
n = 100 5.85 15.30 33.6 70.30
n =∞ 5.99 15.51 33.92 69.83

4 The serial case

This section describes how the previous results must be adapted to test the white noise
hypothesis for a stationary univariate time series Y1, Y2, . . . with continuous marginal dis-
tribution F . Tests of this hypothesis are commonly based on vectors Xi = (Yi, . . . , Yi+p−1)
of successive data points constructed as in (2) for each 1 ≤ i ≤ n + 1 − p. As noted by
Delgado (1996), the empirical process

Hs
n

{

F−1(t1), . . . , F
−1(tp)

}

=
1√
n

n−p+1
∑

i=1





p
∏

j=1

I
{

Yi+j−1 ≤ F−1(tj)
}

−
p
∏

j=1

tj





and its rank-based analogue

Cs
n(t) =

1√
n

n−p+1
∑

i=1







p
∏

j=1

I (Ri+j−1 ≤ ntj)−
p
∏

j=1

tj






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have unwieldy asymptotic limits in D ([0, 1]p). The latter are given respectively by Cs and

C̃s, which are shown in Appendix A to be connected by the relation

C̃s(t) = Cs(t)−
p
∑

j=1

β(tj)
∏

k 6=j

tk (9)

with β a Brownian bridge satisfying β(u) = Cs(u, 1, . . . , 1).

Applying the Möbius transformation to Cs
n allows one to write it as a weighted linear

combination of subprocesses

Gs
A,n(t) =

∑

B⊂A

(−1)|A\B|Cs
n(t

B)
∏

j∈A\B

tj

which converge weakly to

Gs
A(t) =

∑

B⊂A

(−1)|A\B|C̃s(tB)
∏

j∈A\B

tj =
∑

B⊂A

(−1)|A\B|Cs(tB)
∏

j∈A\B

tj ,

where the second equality is justified by the chain of identities
∑

B⊂A

(−1)|A\B|
∑

j∈B

aj =
∑

j∈A

aj
∑

B⊂A,B3j

(−1)|A\B|

=
∑

j∈A

aj(1− 1)|A|−1 = 0 (10)

with aj = β(tj)
∏

k 6=j tk. Following Theorem 2.2 in Ghoudi et al. (2001), the Gs
A have the

same joint distribution as the GA’s for all sets A satisfying 1 ∈ A and |A| > 1.

Let

Cs?
n (t1, . . . , tp) =

1√
n

n−p+1
∑

i=1





p
∏

j=1

I {Ri+j−1 ≤ (n+ 1)tj} −
p
∏

j=1

Un(tj)



 .

Since

Gs?
A,n(t) =

∑

B⊂A

(−1)|A\B|Cs?
n (tB)

∏

j∈A\B

Un(tj)

=
1√
n

n−p+1
∑

i=1

∏

j∈A

[I {Ri+j−1 ≤ (n+ 1)tj} − Un(tj)]

obviously has the same limit as Gs
A,n, the serial analogue of Proposition 1 reads as follows.

Proposition 3. Under the null hypothesis of independence, the processes Gs?
A,n defined for

arbitrary A ⊂ Sp such that 1 ∈ A and |A| > 1 converge weakly to the mutually independent

continuous centered Gaussian processes GA with covariance function (3).
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Table 3. Critical values cs2, . . . , c
s
p for the global test of white noise at level α = 5% against

dependence of order p = 2, . . . , 6, based on a stationary univariate time series of length
n = 20, 50, 100, 250 and n→∞.

n = 20 p = 2 p = 3 p = 4 p = 5 p = 6

c2 0.049223 0.059356 0.065056 0.070118 0.072402
c3 0.006363 0.006876 0.007412 0.007814
c4 0.001009 0.001087 0.001172
c5 0.000168 0.000180
c6 0.000031

n = 50
c2 0.054372 0.069768 0.081284 0.091476 0.100569
c3 0.008237 0.009278 0.010056 0.010866
c4 0.001221 0.001321 0.001429
c5 0.000202 0.000216
c6 0.000037

n = 100
c2 0.056516 0.073182 0.085884 0.097123 0.108527
c3 0.008938 0.010237 0.011310 0.012528
c4 0.001327 0.001451 0.001586
c5 0.000208 0.000221
c6 0.000036

n = 250
c2 0.057427 0.076014 0.090718 0.103241 0.116332
c3 0.009314 0.010697 0.012089 0.013313
c4 0.001402 0.001526 0.001625
c5 0.000210 0.000225
c6 0.000034

n =∞
c2 0.059279 0.079103 0.094541 0.108080 0.120404
c3 0.009855 0.011315 0.012543 0.013603
c4 0.001441 0.001555 0.001650
c5 0.000207 0.000216
c6 0.000030

Arguing as in Section 3.1, a serial version of the dependogram can be based on Proposi-

tion 3 by selecting critical values csk so that for each k, P(ξk ≤ csk) = β = (1−α)1/(2
p−1−1).

The global level of the test is then
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P





⋃

A⊂Sp, |A|>1, 1∈A

{T s
A,n > csA}



 ≈ 1−
∏

A⊂Sp, |A|>1, 1∈A

P
(

ξ|A| ≤ cs|A|

)

= 1−
p
∏

k=2

{P (ξk ≤ csk)}(
p−1
k−1) = α.

Table 3 gives the values of cs2, . . . , c
s
p for p = 2, . . . , 6 and α = 1, 5, 10%. These critical points

were again obtained from the Cornish-Fisher asymptotic expansion of the distribution of
ξk using its first few cumulants.

Subsets

T
a

n

0 5 10 15 20 25 30

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

Figure 2. Serial dependogram of asymptotic level α = 5% constructed for two intertwined
AR(1) series, each of length n = 50 and having autocorrelation coefficient of 1/2.

Figure 2 displays a serial dependogram with p = 6. This diagram allows both for a
visual inspection and a formal test of the white noise hypothesis at an asymptotic nominal
level α = 5%. The series analyzed here is composed of two intertwined AR(1) models
with an autocorrelation coefficient of 1/2 each, to ensure stationarity. The statistic TA,n

corresponding to the set A = {1, 3} is seen to be highly significant, as expected from the
fact that observations xt and xt+2 in the series are successive observations from the same
AR(1) process. The fact that no other statistic exceeds its threshold is a combined effect
of the quickly fading dependence within each series and the fact that the global level of
the test is 5%.

As a second example, consider the deterministic “tent map” series defined by Xi+1 =
f(Xi), where
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f(x) =

{

2x if 0 ≤ x ≤ 1/2,
2(1− x) if 1/2 < x ≤ 1,

and X0 is uniformly distributed on [0, 1]. As is well known (cf., e.g., Chatterjee & Yilmaz
1992), this series has the same autocorrelation function as white noise. In this situation,
which is typical of chaotic time series, the dependence is usually stronger for small lags but
slowly spreads to higher lags as the length of the series increases. This is clearly reflected
in Figure 3, which depicts the serial dependogram with p = 6 and α = 5% corresponding
to the series with initial value X0 = 0.1789.

Despite its interest as a graphical diagnostic tool, the test based on the serial dependo-
gram turns out to be somewhat less efficient than Fisher’s combined P -value statistic

T s
F,n = −2

∑

A⊂Sp, |A|>1, 1∈A

log
{

1− F|A|,n (TA,n)
}

,

which is asymptotically chi-square with 2(2p−1−1) degrees of freedom asymptotically. This
convergence, which is an immediate consequence of Proposition 3, is illustrated in Table 4,
where α = 5% critical values of T s

A,n are given for testing against dependence of order
p = 2, . . . , 6 from a univariate time series of length n = 20, 50, 100. Observe the somewhat
slow convergence of these critical points to the limiting values, especially when p = 6. This
is due to the relatively small number of (5-dependent!) Xi vectors; for instance, there are
only n+ 1− p = 15 data points to work with when n = 20 and p = 6!

Subsets

T
a

n

0 5 10 15 20 25 30

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

Figure 3. Serial dependogram of asymptotic level α = 5% constructed from the deter-
ministic tentmap series of length n = 100 with initial value X0 = 0.1789.
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Table 4. Critical points for Fisher’s combined P -value test of white noise at the α = 5%
level against dependence of order p = 2, . . . , 6 from a univariate time series of length
n = 20, 50, 100 and n→∞.

p = 2 p = 3 p = 4 p = 5 p = 6

n = 20 8.09 16.96 35.5 73.5 145.4
n = 50 6.50 13.55 25.9 50.7 104.0
n = 100 6.28 13.05 24.9 47.3 95.6
n =∞ 5.99 12.59 23.69 43.77 81.38

5 Relations with standard linear rank statistics

The purpose of this section is to highlight the implications of results presented in Sections
2 and 4 for the asymptotic theory of linear rank statistics traditionally used to test inde-
pendence, both in the serial and non-serial case. By a way of introduction, restrict initially
to the non-serial case and for given A = {j, k} of size 2, consider the statistic

ρA,n =
1

n

n
∑

i=1

(

Rij

n+ 1
− 1

2

)(

Rik

n+ 1
− 1

2

)

,

which is proportional to Spearman’s rho statistic between two components Xj and Xk of
a random vector (X1, . . . , Xp). A simple calculation shows that under the null hypothesis
of independence,

√
nρA,n =

∫

[0,1]p
G?

A,n(t) dt.

In view of Proposition 1, therefore, the
√
nρA,n’s are asymptotically normally distributed

with mean zero and variance 1/144 = 1/12|A|. In addition, ρA,n and ρA′,n are asymptoti-
cally independent whenever A 6= A′.

As already observed by Deheuvels (1981a, Theorem 6), a distinct advantage of the
above representation is that it generalizes readily to arbitrary subsets A of Sp = {1, . . . , p},
namely

ρA,n =
1

n

n
∑

i=1

∏

j∈A

(

Rij

n+ 1
− 1

2

)

= (−1)|A|
∫

[0,1]p
G?

A,n(t) dt.

Note in passing that the asymptotic distribution of this statistic is only equivalent to that
of Kendall’s tau when |A| = 2; cf., e.g., Barbe et al. (1996). A similar extension is also
possible in the serial case, viz.

ρsA,n =
1

n

n−p+1
∑

i=1

∏

j∈A

(

Ri+j−1

n+ 1
− 1

2

)

= (−1)|A|
∫

[0,1]p
Gs?

A,n(t) dt.

It follows from Propositions 1 and 3 that under the null hypothesis of independence (or
randomness), ρA,n and ρsA,n have the same asymptotic normal distribution with zero mean
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and variance 1/12|A|. Furthermore, stochastic independence between ρA,n and ρA′,n con-
tinues to hold asymptotically whenever A 6= A′, the same being true in the serial case
(with the restriction that the element 1 must belong to the subsets considered).

The following proposition generalizes these findings to a much larger class of linear rank
statistics which also includes as special cases the Laplace, van der Waerden and Wilcoxon
rank statistics. This sheds new light on earlier results of Hallin, Ingenbleek & Puri (1985,
1987) for the case |A| = 2.

Proposition 4. Let K = (K1, . . . ,Kp) be a vector whose jth component Kj is a distribu-

tion function with left-continuous inverses Lj = K−1
j and variance σ2

j <∞. For arbitrary

A ⊂ Sp with |A| > 1, define

IRA =





⊗

j∈A

IR









⊗

j∈Ac

[0, 1]





and

JA,n =
1√
n

n
∑

i=1

∏

j∈A

{

Lj

(

Rij

n+ 1

)

− L̄j

}

= (−1)|A|
∫

IRA
G?

A,n{K(x)} dx,

where

L̄j =
1

n

n
∑

i=1

Lj

(

i

n+ 1

)

.

When 1 ∈ A, let also

Js
A,n =

1√
n

n−p+1
∑

i=1

∏

j∈A

{

Lj

(

Ri+j−1

n+ 1

)

− L̄j

}

= (−1)|A|
∫

IRA
Gs?

A,n{K(x)} dx.

Under the null hypothesis of independence, the statistics JA,n and Js
A,n converge weakly

to mutually independent centered Gaussian variables

(−1)|A|
∫

IRA
GA{K(x)} dx

whose variances are equal to σ2
A =

∏

j∈A σ
2
j .

Taking Lj(u) = u for j = 1, . . . , p leads to the statistics ρA,n discussed by Deheuvels
(1981a). Similarly, the van der Waerden statistic obtains when L1(u) = · · · = Lp(u) =
Φ−1(u), the quantile function of the standard normal distribution. In this case, it is
easy to show that σA = 1 for all admissible subsets A ⊂ Sp. When p = 2, a third
example is provided by the Wilcoxon statistic, which corresponds to the choices L1(u) =
u and L2(u) = log{u/(1 − u)}. Finally, taking L1(u) = {1 + sign(u)}/2 and L2(u) =
log{2min(u, 1 − u)} yields the Laplace statistic also referred to as the median test-score
statistic.
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Once again, the asymptotic independence allows for construction of Spearman-ogram,
van der Waerden-ogram, etc.

Remark. Proceeding as in the proof of Proposition 4, it can readily be seen that if J̃A,n

and J̃s
A,n are defined as above in terms of distribution functions K̃1, . . . , K̃p), then for

arbitrary A,A′ ∈ Sp,

lim
n→∞

cov
(

JA,n, J̃A′,n

)

= lim
n→∞

cov
(

Js
A,n, J̃

s
A′,n

)

The latter equals

∏

j∈A

∫

{

Kj(xj) ∧ K̃j(yj)−Kj(xj)K̃j(yj)
}

dxj dyj

if A = A′ and zero otherwise.

6 Simulation study

In order to illustrate the above results and investigate the power of the two tests of indepen-
dence proposed in this paper, extensive simulations were run, both in serial and non-serial
contexts, and for a variety of alternatives. As the test based on Fisher’s combination of
P -values turned out to be generally the more powerful of the two for the models considered,
only those results are presented here. Since the conclusions were substantivally the same
for time series and multivariate data, this section concentrates mostly on the latter.

Given a random sample from some p-variate distribution, the most common proce-
dure used for checking independence is the likelihood ratio test (LRT), derived under the
assumption of multivariate normality. The statistic is defined as

LRT = −
(

n− 1− 2p+ 5

6

)

log{det(Rp,n)},

in terms of the empirical p× p correlation matrix Rp,n. Because

det(Rp,n) = 1− 1

n

∑

1≤i<j≤p

(√
nrij,n

)2
+ oP (1/n),

it is well known that, under the null hypothesis of independence, the test statistic converges
in law to

∑

1≤i<j≤p

Z2
ij ,

where the Zij are independent standard Gaussian random variables. Note that this remains
true whether the underlying population is multivariate normal or not. Therefore, the LRT
statistic is asymptotically chi-square with p(p − 1)/2 degrees of freedom, so long as the
second moments exist.

The following pages show comparative graphs of the power function of the LRT and
Fisher’s statistic TF,n for
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- two dimensions, viz. p = 2 and 5;

- three sample sizes, viz. n = 20, 50 and 100;

- three dependence structures, viz., the equicorrelated normal and two copula models,
i.e., those of Clayton (1978) and Gumbel (1960);

- four marginal distributions, viz., standard normal, exponential, and Cauchy, as well
as the Pareto distribution with distribution function 1− x−4 for x ≥ 1.

Here, the equicorrelated normal model refers to a p-variate Gaussian vector with compo-
nents

√
rZ0 +

√
1− rZi, 1 ≤ i ≤ p, where Z0, . . . , Zp form a random sample from the

standard univariate normal distribution.

The p-variate model of Clayton (1978), with arbitrary marginals F1, . . ., Fp, is defined
as

Cθ {F1(x1), . . . , Fp(xp)} (11)

in terms of the copula

Cθ(u1, . . . , up) =

(

p
∑

i=1

u−θi + p− 1

)−1/θ

, θ > 0

with C0(u1, . . . , up) = limθ→0 Cθ(u1, . . . , up) = u1 × · · · × up for all 0 ≤ u1, . . . , up ≤ 1.
This Archimedean copula model is quite popular in survival analysis, where it provides a
natural multivariate extension of Cox’s proportional hazards model; cf., e.g., Oakes (2001,
Section 7.3).

The p-variate copula model of Gumbel (1960), which arises in extreme value theory, is
also of the form (11), but with

Cθ(u1, . . . , up) = exp



−
{

p
∑

i=1

| log(ui)|1/θ
}θ


 , 0 < θ ≤ 1

with C1 being the independence copula.

Figures 4–6 pertain to the case n = 20, Figures 7–9 to the case n = 50, and Figures
10–12 to the case n = 100. In each figure, eight graphs are displayed in two columns,
corresponding to dimension p = 2 on the left, and p = 5 on the right. Each graph
compares the power curve of Fisher’s test TF,n (solid line) to that of the LRT (dotted line).
In order to facilitate comparisons between dependence structures, all curves are plotted as
a function of the population value of Kendall’s tau for the various bivariate alternatives.
Thus

τ =
2

π
arcsin(r)

for the equicorrelated normal model, while

τ =
θ

θ + 2
and τ = 1− θ
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for Clayton’s and Gumbel’s model, respectively; cf., e.g., Genest & MacKay (1986) or
Nelsen (1999, Chapter 5). All graphs were smoothed from 10,000 replicates obtained for
each value of τ = j/20 for 0 ≤ j ≤ 19, with j = 0 corresponding to the null hypothesis of
stochastic independence.

Detailed inspection of these 72 graphs leads to the following general observations:

a) both the dependence structure and the choice of marginals influence the relative
performance of the tests;

b) while the nonparametric test always maintains its nominal level, such is not the case
for the LRT, particularly when the marginals are Cauchy;

c) Fisher’s test is far superior to the LRT for a Clayton type of dependence, except
when the marginals are exponential;

d) for normal or Gumbel type dependences, the results are more mitigated when n = 20
or 50, but the new test outperforms the classical one, except in the case of multivariate
normality (for which the LRT is optimal) and either when Pareto marginals are
coupled with an Gumbel extreme value dependence structure, or when exponential
marginals are mixed with Clayton’s copula;

e) as a general rule, the LRT looses ground to the test based on TF,n when sample size
increases, so that TF,n gradually catches up with the LRT or leaves it further behind
as n→∞;

f) differences between the two tests are more noticeable for small to moderate degrees
of dependence (i.e., τ < 1/2) and far less perceivable with p = 5 than with p = 2.

As a numerical illustration of the final point, consider the ratio Q = Π(TF,n)/ Π(LRT)
comparing the power of the two tests for a random sample of size n = 100 from either
one of the nine p-variate families obtained by crossing the three dependence structures and
either normal, exponential or Pareto marginals. (The data for the Cauchy were ignored,
given the inappropriate level of the LRT). Looking at the range of Q reported in Table 5
for the case p = 2, one can see that except in the cases along the main diagonal, one has
nothing to loose — and potentially much to gain — by preferring the Fisher test TF,n to
the standard likelihood ratio test statistic. Judging from Table 6, however, larger sample
sizes are required to reach the same conclusion in a multivariate population of dimension 5.

Table 5. Range of the ratio Π(TF,n)/ Π(LRT) measuring the power of Fisher’s test TF,n
relative to the LRT for random samples of size n = 100 from the specified bivariate models
(p = 2).

Copula/Marginals Normal Exponential Pareto

Normal 0.86 – 1.00 0.98 – 1.10 1.00 – 1.45
Clayton 1.00 – 1.46 0.78 – 1.00 1.00 – 3.67
Gumbel 1.07 – 2.36 1.00 – 3.79 0.48 – 1.04
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Table 6. Range of the ratio Π(TF,n)/ Π(LRT) measuring the power of Fisher’s test TF,n
relative to the LRT for random samples of size n = 100 from the specified p-variate models
with p = 5.

Copula/Marginals Normal Exponential Pareto

Normal 0.60 – 1.00 0.67 – 1.00 0.62 – 1.07
Clayton 0.60 – 1.09 0.67 – 1.00 1.00 – 2.90
Gumbel 0.71 – 1.49 1.00 – 2.94 0.94 – 1.14

Much similar conclusions were obtained in simulations involving time series. In the
serial case, comparisons were made with the Ljung-Box statistic

(n− p)
2p−1−1
∑

j=1

r2
j,n,

where rj,n is the empirical autocorrelation coefficient of order j. Under the null hypothesis
of randomness, the latter is known to be asymptotically distributed as a chi-square with
2p−1 − 1 degrees of freedom, as long as the second moment exists.

Figure 13 offers an extreme illustration of the gains in power associated with the serial
version T s

F,n of Fisher’s test, based on 10,000 independent series of length n = 50 from the
deterministic tentmap series of Section 4, with initial value X0 drawn from the uniform
distribution on the unit interval. While the Ljung-Box test is incapable of detecting this
strong dependence because of the vanishing autocorrelation function, T s

F,n picks it up rather
easily, though much less quickly as p increases from 2 to 6.

In this case, the poor performance of the Ljung-Box statistic is easy to explain. Indeed,
a simple application of the central limit theorem for reverse martingales (cf., e.g., Genest et
al. 2001) shows that when the data arise from the tentmap series, the Ljung-Box statistic
converges in law to

2p−1−1
∑

j=1

Z2
j ,

where the Zj ’s are jointly centered Gaussian variables with variance 1 + 42−k/5 and
cov(Zj , Zk) = 3/4k−1 for 1 ≤ j < k.
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Figure 4. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 20 from a p-variate distribution, p = 2, 5,
with normal copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 5. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 20 from a p-variate distribution, p = 2, 5,
with Clayton copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.



Les Cahiers du GERAD G–2002–03 22

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Gaussian marginals (n=20, p = 2)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Gaussian marginals (n=20, p = 5)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Exponential marginals (n=20, p = 2)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Exponential marginals (n=20, p = 5)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Pareto marginals (n=20, p = 2)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Pareto marginals (n=20, p = 5)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Cauchy marginals (n=20, p = 2)

TF
LRT

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

tau

P
o

w
e

r

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

 Cauchy marginals (n=20, p = 5)

TF
LRT

Figure 6. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 20 from a p-variate distribution, p = 2, 5,
with Gumbel copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 7. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 50 from a p-variate distribution, p = 2, 5,
with normal copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 8. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 50 from a p-variate distribution, p = 2, 5,
with Clayton copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 9. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 50 from a p-variate distribution, p = 2, 5,
with Gumbel copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 10. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 100 from a p-variate distribution, p = 2, 5,
with normal copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 11. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 100 from a p-variate distribution, p = 2, 5,
with Clayton copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 12. Power curves of the LRT and Fisher’s TF,n test at the 5% level, based on 10,000
independent pseudo-random samples of size n = 100 from a p-variate distribution, p = 2, 5,
with Gumbel copula and marginal distributions that are either Gaussian, exponential,
Pareto or Cauchy.
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Figure 13. Power curves of the LRT and the serial version T s
F,n of Fisher’s test at the 5%

level, based on 10,000 independent tent map series of length n = 50.
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7 Conclusion

This paper has shown how it is possible to exploit the asymptotic independence of a
Möbius decomposition of the empirical copula process to devise powerful tests of inde-
pendence based on Cramér-von Mises statistics. Following the work of Deheuvels (1979,
1980, 1981a,b,c), two different strategies were proposed. Fixing the overall level of the
test first led to a graphical diagnostic tool for identifying failures of the independence hy-
pothesis in subsets of variables. A second approach, based on Fisher’s methods for the
combination of P -values, led to an even better test that compares quite favorably to the
standard likelihood ratio test statistic in a variety of settings. Both tests apply either to a
multivariate or serial context, and the treatment provided herein allows for a unified study
of the asymptotic behavior of linear rank statistics derived from copulas.

In future work, it would be of interest to calculate Pitman’s asymptotic relative ef-
ficiency of the newly proposed tests with respect to the likelihood ratio statistic, and
to extend numerical comparisons with alternative, more specialized, parametric tests. A
greater challenge would be to try to characterize structures of serial and non-serial depen-
dence for which Fisher’s test is most likely to be powerful in small samples and for large
dimensions.

Appendix A: Proof of Proposition 2

The derivation of representation (9) is based on the technique of pseudo-observations de-
veloped by Ghoudi & Rémillard (1998, 2000). To this end write Cs

n in the alternative
form

Cs
n(t) =

1√
n

n−p+1
∑

i=1





p
∏

j=1

I {Fn(Yi+j−1) ≤ tj} −
p
∏

j=1

tj





in terms of pseudo-observations ei,n = (Fn(Yi), . . . , Fn(Yi+p−1)), where Fn is the empirical
distribution function of the sample Y1, . . . , Yn.

Now, as is well known, Fn(y) =
√
n{Fn(y) − F (y)} converges in law to a continuous

Gaussian process F = β ◦ F , where β is a Brownian bridge having representation β(u) =
Cs(u, 1, . . . , 1).

Since conditions R1–R3 of Theorem 2.3 of Ghoudi et al. (2001) are easily verified, one
can conclude that the limit of Cs

n in D ([0, 1]p) can be written as

C̃s(t) = Cs(t)−
p
∑

j=1

µj(t,Hj),

where Hj = F. Here, the functional µj is defined by

µj(t, φ ◦ F ) = φ(tj)
∏

k 6=j

tk
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for any continuous function φ vanishing at both ends of the interval [0, 1]. Therefore,

µj(t,Hj) = µj(t, β ◦ F ) = β(tj)
∏

k 6=j

tk,

as claimed.

Appendix B: Proof of Proposition 4

As the proof is similar in the serial and non-serial cases, only the latter is sketched here.
Given M > 1, it is clear that the mapping

f 7→
∫

IRA∩[−M,M ]p
f ◦K(x) dx,

defined for all continuous functions f vanishing outside (0, 1)p, is continuous. To prove the
proposition, therefore, it suffices to show that the variance of

∫

IRA∩(IRp\[−M,M ]p)
G?

A,n{K(x)} dx

is arbitrarily small, when M is large enough.

Since

1− IE1×···×Ep =
∑

B⊂Sp, B 6=∅





∏

j∈Bc

IEj









∏

j∈B

IEc
j





for arbitrary events E1, . . . , Ep, then in particular, when E1 = · · · = Ep = [−M,M ],

var1/2

[

∫

IRA∩(IRp\[−M,M ]p)
G?

A,n{K(x)} dx
]

≤
∑

B⊂Sp, B 6=∅

var1/2

[

∫

EB,M

G?
A,n{K(x)} dx

]

by Minkowski’s inequality, where the event

EB,M = IRA
⋂





⊗

j∈Bc

Ej









⊗

j∈B

Ec
j





is either empty or has at least one component of the form [−M,M ]c. The latter occurs
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only when B ⊂ A, in which case

var

[

∫

EB,M

G?
A,n{K(x)} dx

]

=

{

1 +
(−1)|A|

(n− 1)|A|−1

}

×
∏

j∈B

{

∫

[−M,M ]c×[−M,M ]c
Vn(xj , yj) dxj dyj

}

×
∏

j∈A\B

{

∫

[−M,M ]2
Vn(xj , yj) dxj dyj

}

≤ 2





∏

j∈A\B

σ2
j





×
∏

j∈B

{

∫

[−M,M ]c×[−M,M ]c
Vn(xj , yj) dxj dyj

}

,

where Vn(xj , yj) = Un{Kj(xj ∧ yj)} − Un{Kj(xj)}Un{Kj(yj)} ≥ 0.

Since B 6= ∅, it only remains to show that for any 1 ≤ j ≤ p,

lim sup
n→∞

∫

[−M,M ]c×[−M,M ]c
Vn(xj , yj) dxj dyj → 0

as M tends to infinity. The left-hand side is the sum of three positive terms, each of which
involves V (xj , yj) = Kj(xj∧yj)−Kj(xj)Kj(yj) ≥ 0 as an integrand. They are respectively

∫ −M

−∞

∫ −M

−∞
V (xj , yj) dxj dyj ≤ −2

∫ −M

−∞
yjKj(yj)dyj ,

2

∫ −M

−∞

∫ ∞

M
V (xj , yj) dxj dyj =

∫ −M

−∞
Kj(yj)dyj

∫ ∞

M
{1−Kj(xj)} dxj ,

and
∫ ∞

M

∫ ∞

M
V (xj , yj) dxj dyj ≤ 2

∫ ∞

M
yj{1−Kj(yj)} dyj .

In all cases, the upper bound approaches 0 as M →∞ because σ2
j is finite.

Finally, the limiting variance σ2
A of JA,n is given by

σ2
A = E

[∫

IRA

∫

IRA

GA{K(x)}GA{K(y)} dx dy
]

=
∏

j∈A

[∫

IR

∫

IR
{Kj(xj ∧ yj)−Kj(xj)Kj(yj)} dxj dyj

]

=
∏

j∈A

σ2
j ,
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by Hoeffding’s identity.

For the non-serial case,

Iij,n =

∫ ∞

−∞

[

I
{

Rij

n+ 1
≤ Kj(xj)

}

− Un ◦Kj(xj)

]

dxj

=

n−1
∑

`=1

{

K−1
j

(

`+ 1

n+ 1

)

−K−1
j

(

`

n+ 1

)}{

I(` ≥ Rij)−
`

n

}

= −
n−1
∑

`=1

`

n

{

Lj

(

`+ 1

n+ 1

)

− Lj

(

`

n+ 1

)}

+
n−1
∑

`=Rij

{

Lj

(

`+ 1

n+ 1

)

− Lj

(

`

n+ 1

)}

= −Lj

(

Rij

n+ 1

)

+
1

n

n
∑

l=1

Lj

(

`

n+ 1

)

= −Lj

(

Rij

n+ 1

)

+ L̄j .

Therefore
∫

IRA
GA,n{K(x)} dx =

1√
n

n
∑

i=1

∏

j∈A

Iij,n = (−1)|A|JA,n.

The serial case is similar.
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