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Abstract

In this paper, we survey applications and algorithms pertaining to an important
class of price setting problems formulated in the framework of bilevel programming.

Keywords: Bilevel programming. Pricing. Revenue Management. Transportation.

Résumé

Plusieurs problèmes de tarification se formulent naturellement sous la forme d’un
programme mathématique à deux niveaux. Ce rapport présente un survol de modèles
de tarification formulés sur des réseaux ainsi que les algorithmes adaptés à leur résolution.
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Introduction

Bilevel programming is the adequate framework for asymmetric games where one player
(the leader) calls the shots first, taking into account the optimal reaction of the second
player (the follower). If one denotes by x (respectively y) the decision vector of the leader
(respectively the follower), a bilevel program can be expressed as

min
x,y

f(x, y)

subject to (x, y) ∈ X
y ∈ S(x),

where S(x) denotes the set of optimal solutions of a mathematical program parameterized
in the leader’s vector x, i.e.,

S(x) = argmin
y

g(x, y)

subject to (x, y) ∈ Y.
The above formulation implicitly assumes that, if the lower level problem admits multiple
solutions, ties are broken in favor of the leader. Alternative situations, where the follower
reacts in an antagonistic fashion, have been analyzed by Loridan and Morgan [13].

Bilevel programs are closely related to mathematical programs with equilibrium con-
straints (MPECS), where the lower level corresponds to an equilibrium problem. Indeed,
whenever the objective g of the lower level program is differentiable and convex in y and
the set Y is convex, y ∈ S(x) if and only if (x, y) ∈ Y and satisfies the variational inequality

〈∇yg(x, y), y − y′〉 ≤ 0

for all y′ such that (x, y′) ∈ Y . Letting Y (x) = {y : (x, y) ∈ Y } this leads to the one-level
optimization formulation

min
x,y

f(x, y)

subject to (x, y) ∈ X
y ∈ Y (x)
〈∇yg(x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x)

which subsumes the more general form of an MPEC:

min
x,y

f(x, y)

subject to (x, y) ∈ X
y ∈ Y (x)
〈G(x, y), y − y′〉 ≤ 0 ∀y′ ∈ Y (x),

where the vector function G need not be a gradient mapping with respect to the variable y.
Conversely, an MPEC can be reformulated as a standard bilevel program by noting that
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a vector y is solution of the lower level variational inequality if and only if it globally
minimizes, with respect to the argument y, the strongly convex function gap(x, y) defined
as (see Fukushima [5]):

gap(x, y) = max
y′∈Y (x)

〈G(x, y), y − y′〉 − 1
2
‖y − y′‖2.

The reader interested in the theory and applications of bilevel programming and MPEC
is referred to the recent books by Shimizu, Ishizuka and Bard [16] and by Luo, Pang and
Ralph [14].

Being generically nonconvex and nonsmooth, bilevel programs are difficult optimization
problems. Even in the simple situation where both objectives are affine and the constraint
sets are polyhedral, determining whether a solution is locally optimal is strongly NP-hard.
This explains why global optimization techniques such as implicit enumeration, cutting
planes or metaheuristics have been proposed for its solution (see e.g. [6] and [7]). These
are most successful when the set S(x) assumes a piecewise polyhedral structure, for instance
when the lower level problem takes the form of a convex quadratic program. In the absence
of such property, two main lines of attack have been pursued. The first, based on sensitivity
analysis, adapts descent methods that are compatible with the optimality requirements of
the follower, and relies on recent nonsmooth analysis results; the work of Kocv̌ara, Outrata
and Zowe [15] is typical of this trend. A drawback of this approach is that, even under
strong regularity assumption, it may fail to uncover even a local optimum for the bilevel
program.

A second approach applies standard optimization techniques to a one-level reformula-
tion, smooth or not, of the bilevel program. A recent member of this family have been
proposed by Scholtes and Stohr [17].

The present paper focuses on a specific class of bilevel problems that arises naturally
when tariffs, tolls or devious taxes are imposed on a set of commodities. Not only does
this class encompass several important optimization problems encountered in the trans-
portation, telecommunication and airline industries, but its structure makes it amenable
to efficient solution techniques. In this paper we present several such models and briefly
discuss, in the final section, algorithmic approaches, either exact or heuristic, that can be
applied to large scale problems within this class. Throughout the paper, the words “price”
and “tax” are synonymous.

The price setting problem

Let x and y be real vectors that specify the respective levels of taxed and untaxed activities
(commodities or services), and T be a tax vector attached to the activity vector x. For a
given vector T , in control of the leader, the follower strives to minimize its operating costs,
while the leader seeks to maximize the revenues raised from taxation. If one denote by F
and f the leader’s and follower’s respective objective functions, the leader maximizes his
profit by solving the bilevel program
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max
T,x,y

F (T, x, y)

subject to (x, y) ∈ arg min
(x′,y′)∈Π

f(T, x′, y′) (1)

where Π represents the constraint set of the second level player. From now on, we will
record programs of the form (1) in the vertical format:

max
T

F (T, x, y)

min
x,y

f(T, x, y) (2)

subject to (x, y) ∈ Π.

This seemingly simplistic model can cover a wide variety of situations. For instance the
vector T may embody subsidies as well as taxes, while the vectors x and y may represent
consumption or production levels. Alternatively, the lower level can represent the group
behavior of economic agents competing for scarce resources; if the equilibrium states of the
system are the solutions of a variational inequality parameterized in the leader’s decision
variables, we obtain an MPEC.

Let us first consider a basic model where the leader’s revenues are proportional to tax
and consumption levels, and where all constraints are linear. The resulting bilevel program,
where both objectives are bilinear, takes the form

max
T

Tx

min
x,y

(c1 + T )x+ c2y

subject to A1x+A2y = b
x, y ≥ 0.

(3)

From the leader’s perspective, the objective function Tx is discontinuous at the points T
that induce a change of optimal basis in the follower’s linear program.

Assuming that the polyhedron {(x, y) : A1x + A2y = b, x, y ≥ 0} is bounded and that
the recourse polyhedron {y : A2y = b, y ≥ 0} is nonempty, the lower level always admits
an optimal solution for any value of the tax vector T . Therefore, one can replace the lower
level problem by its primal-dual optimality conditions to obtain the mathematical program
with linear and complementarity constraints

max
T,x,y,λ

Tx

subject to A1x+A2y = b
x, y ≥ 0
λA1 ≤ c1 + T
λA2 ≤ c2
(c1 + T − λA1)x = 0
(c2 − λA2)y = 0
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or the equivalent program

max
T,x,y,λ

λb− (c1x+ c2y)

subject to A1x+A2y = b
x, y ≥ 0
λA1 ≤ c1 + T (4)
λA2 ≤ c2
(c1 + T − λA1)x = 0
(c2 − λA2)y = 0.

It is not difficult to see that (4) admits an optimal solution of the form T = λA1 − c1.
Upon substitution, we obtain the simplified model

max
x,y,λ

λb − (c1x+ c2y)

subject to λA2 ≤ c2 A1x+A2y = b
x, y ≥ 0

(c2 − λA2)y = 0

(5)

If we relax its complementarity constraint, (5) decomposes into two linear programs in-
volving respectively the dual vector λ and the primal vectors x and y. The linear program
associated with the primal variables corresponds to the solution of the lower level problem
of (3) with taxes set at zero. The dual of the linear program associated with the dual
variables is again the lower level linear program of (3), where the choice of activities is
restricted to untaxed ones or, equivalently, where taxes are set to arbitrary high values.

Returning to the single-level formulation (5), one can penalize the complementarity
constraint into the objective function, yielding a bilinear problem separable in the dual
vector λ on the one hand, and in the primal vectors x and y on the other hand:

max
x,y,λ

λb− (c1x+ c2y)−M(c2 − λA2)y

subject to λA2 ≤ c2
A1x+A2y = b (6)
x, y ≥ 0.

Labbé, Marcotte and Savard [11] have established the existence of an exact penalty param-
eter M∗ such that any optimal solution of (6) is also optimal for (5) whenever M exceeds
M∗. Now, for fixed primal variables x and y, let us replace the objective function λb by
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its dual objective; this yields the linear bilevel program:

max
x,y

−c1x− (M + 1)c2y + c2y′

subject to A1x+A2y = b
x, y ≥ 0

(7)
min

y′ c2y
′

subject to A2y
′ = b+MA2y

y′ ≥ 0.

An intuitive economic interpretation of the linear bilevel program (7) in terms of a second
best alternative for the follower has been discussed [11].

We close this section with computational complexity considerations. In the absence
of constraints on the tax vector T , we could not prove that (3) is NP-hard, although we
suspect it is. However we proved that a variant of (3) where taxes are bounded from below
is strongly NP-hard. The proof relies on a reduction from the “Hamiltonian Path” problem
in a directed graph to a price setting problem with lower bound constraints.

Toll setting

The problem of selecting optimal highway tolls clearly fits our price-setting framework. Let
us consider a multicommodity network where each commodity k ∈ K is associated with an
origin-destination pair (o(k), d(k)) of a transportation network G defined by its node set
N and arc set A. The set A is partitioned into the subset A1 of toll arcs and the subset
A2 of toll-free arcs. With each arc a of A1 is associated a generalized travel cost composed
of a fixed part ca representing the minimal travel cost per unit and an additional toll Ta,
converted into time units. Any toll-free arc a of A2 bears a fixed unit travel cost da and
we assume that the toll Ta cannot exceed a prescribed upper bound Tmax

a , which could be
infinite.

A travel demand vector {nk}k∈K induces the nodal demand vectors

bki =



nk if i = o(k),
−nk if i = d(k),
0 otherwise.

The lower level variable xk
a corresponds to the number of users of commodity k on arc

a ∈ A1 and the variable yk
a to the number of users of commodity k on arc a ∈ A2.

Neglecting congestion effects, assuming that demand is fixed and that users minimize
their individual generalized travel costs, the toll setting problem can be formulated as a
bilevel program with bilinear objectives and linear constraints:
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max
T

∑
a∈A1

Ta

∑
k∈K

xk
a

subject to Ta ≤ Tmax
a ∀a ∈ A1

min
x,y

∑
k∈K

( ∑
a∈A1

(ca + Ta)xk
a +

∑
a∈A2

day
k
a

)

subject to
∑
a∈i+

(xk
a + y

k
a)−

∑
a∈i−

(xk
a + y

k
a) = b

k
i ∀k ∈ K ∀i ∈ N

xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2,

where i+ (respectively i−) denotes the set of arcs having i as their tail node (respectively
head node).

One can introduce more realism into the previous model by considering congestion
effects and/or a nonuniform distribution of the “trade-off value of time” across the popu-
lation. These features will be incorporated in the next applications.

Price setting of telecommunication networks

This application concerns the optimal pricing of links in a packet-switched telecommuni-
cation network. We assume that the users select a telecommunication provider according
to two key criteria: cost and quality of service, the latter being in direct relationship with
the capacities of the links. The problem of the leader company is to price the arcs of
its subnetwork such as to maximize profit, while taking into account the user-optimized
behavior of the customers. If the arrival rate of messages follows a Poisson process and is
independent of the service time, and the length of a message is distributed according to an
exponential random variable, then the average delay of a message through the network is
given by the formula

T (f) =
1
γ

∑
a∈A

(
fa

Ca − fa + µfapa

)
, (8)

where fa denotes the total flow on arc a ∈ A, γ the total demand on the network, Ca the
capacity of the arc a ∈ A, µ the average message length and pa the propagation delay along
arc a ∈ A. The first term in the summation, the node delay, reflects congestion at nodes.
Under normal conditions, the second term (the arc delay) is negligible and can safely be
discarded.

Upon introduction of trade-off parameters αa that translate quality of service in terms
of cost units, and of average generalized costs dk

a along the arcs of the competing firms,
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the price-setting problem takes the form

max
T

∑
a∈A1

∑
k∈K

T k
a x

k
a

subject to Ta ≤ Tmax
a ∀a ∈ A1

min
f,x,y

∑
a∈A

αafa
γ(Ca − fa) +

∑
k∈K

∑
a∈A1

T k
a x

k
a +

∑
k∈K

∑
a∈A2

dk
ay

k
a

subject to
∑
a∈i+

(xk
a + y

k
a)−

∑
a∈i−

(xk
a + y

k
a) = b

k
i ∀k ∈ K ∀i ∈ N

fa =
∑
k∈K

xk
a ∀a ∈ A1

fa =
∑
k∈K

yk
a ∀a ∈ A2

xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2.

In this formulation, arc prices are not required to be identical for all commodities. This
opens room for discrimination of the users and would make the problem entirely separable
by commodity, hence trivial to solve, were it not for the congestion effects.

Yield management in the airline industry

Yield management in the airline industry has been an area of active research for the
past few years (see [18]). It addresses four issues that deeply impact the industry revenues:
forecasting, overbooking, seat allocation and pricing. Ideally, these four components should
be part of an integrated profit-maximizing model. However, the complexity and the size of
such a model would prevent the computer resolution of problem instances of any realistic
size. At the present time, the four issues are treated independently, even though the strong
interaction between seat allocation and pricing is widely acknowledged. Our model, which
addresses jointly the issues of seat allocation and pricing, is distinguished by three key
features: its bilevel nature allows for an endogenous representation of the price-demand
relationship, network interactions among the various carriers are explicitly considered, and
the utility function of each user takes into account three criteria: fare, time and quality
of service. Two parameters, α and β, translate time and quality of service into cost units;
these parameters are distributed across the population according to a density φk(α, β)
which may vary by origin-destination pair k. This flexibility allows the model to assign a
given user to a fare class according to his personal preference.
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Let T denote the fare vector and x (respectively y) denote the passenger flow vector for
the leader airline (respectively the competition), indexed by booking classes b and flights
f connecting the origin-destination pair k. The revenue of the leader airline is

f(T, x, y) =
∑

k

∑
f∈C1

∑
b∈B(f)

T k
bf

∫
α

∫
β
xk

bf (α, β) dα dβ,

where C1 is the set of flights of the leader company and B(f) is the set of booking classes
available on flight f . A passenger whose utility parameters are α and β will select a flight
that minimizes his generalized cost

fare + (α × flight length) + (β × flight quality).

Hence, at the lower level, the passengers are assigned to the flights and booking classes
that minimize the objective

g(x, y) =
∑

k

{∑
f∈C1

∑
b∈B(f)

∫
α

∫
β
(T k

bf + αlf + βqbf )x
k
bf (α, β) dα dβ +

∑
f∈C2

∑
b∈B(f)

∫
α

∫
β
(T k

bf + αlf + βqbf )y
k
bf (α, β) dα dβ

}
,

where C2 is the set of flights of the competing firms and, lf and qbf the respective length
and quality index associated with flight f and booking class b. The functions xk

bf (α, β) and
yk

bf (α, β) are the flow densities for booking class b of flight k associated with parameter
couples (α, β). Their integrals represent the respective market shares of the leader airline
and the competition.

Let F1(k) (respectively F2(k)) be the set of flights of the leader (respectively the compe-
tition) available for origin-destination k and {dk}k∈K the demand vector. Let A(f) denote
the set of legs that make up flight f . After incorporating the flow conservation and capac-
ity constraints, we formulate a bilevel model involving both finite-dimensional (the fares)
and infinite-dimensional (the flow densities) decision variables:

max
T,x,y

∑
k

∑
f∈C1

∑
b∈B(f)

T k
bf

∫
α

∫
β
xk

bf (α, β) dα dβ

subject to Tmin
bf ≤ Tbf ≤ Tmax

bf ∀f ∈ C1∀b ∈ B(f)

min
x,y

∑
k

{∑
f∈C1

∑
b∈B(f)

∫
α

∫
β
(T k

bf + αlf + βqbf )x
k
bf (α, β) dα dβ

+
∑
f∈C2

∑
b∈B(f)

∫
α

∫
β
(T k

bf + αlf + βqbf )y
k
bf (α, β) dα dβ

}

subject to xa =
∑

k

∑
f :a∈A(f)

∑
b∈B(f)

∫
α

∫
β
xk

bf (α, β) dα dβ ∀a ∈ A1
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φk(α, β)dk =
∑

b∈B(f)

{ ∑
f∈F (k)

xk
bf (α, β) +

∑
f∈F ′(k)

yk
bf (α, β)

}

∀k ∈ K
xa ≤ xmax

a ∀a ∈ A1

xk
bf (α, β) ≥ 0 ∀f ∈ C1 ∀b ∈ B(f)
yk

bf (α, β) ≥ 0 ∀k ∈ K ∀f ∈ C2 ∀b ∈ B(f).
Note that the above model is pessimistic in the sense that the competition’s capacity is
assumed to be illimited; this assumption makes sense if the leader company’s market share
is small.

Traffic management through link tolls

On a transportation network, Wardrop’s user principle states that, at equilibrium, flows
should be assigned to shortest routes with respect to current travel delays. If the network
is heavily congested, such an assignment may lead to an inefficient use of the network
capacity. It is well known that marginal cost pricing induces the network users to behave
in a fashion that is socially optimal. However, this scheme is not alone to possess that
property, and one might prefer to implement a regulating policy that minimizes the total
amount of tolls raised from the users (see e.g. Hearn and Ramana [8] and Larsson and
Patriksson [12]). Denoting by xk the flow vector associated with origin-destination k, x
the vector of aggregate flows, x∗ the vector of system-optimal flows, Ca(x) the congestion
delay along arc a and {Xk}k∈K the sets of feasible flows per commodity, this is achieved
by solving the MPEC

min
T≥0

∑
k∈K

∑
a∈A

Tax
k∗
a

subject to
∑
a∈A

(
Ca(

∑
l∈K

xl∗
a ) + Ta

)
(xk∗

a − xk
a) ≤ 0 ∀xk ∈ Xk ∀k ∈ K,

where Xk = {Bxk = bk, xk ≥ 0 }.

Algorithms

The price setting problem

The basic bilinear model can be solved as a linear bilevel program using the reformula-
tion (7). However, to preserve the structure of the problem, it is better to work directly on
the formulation (5), which can be solved by a Branch-and-Bound procedure where branch-
ing is performed with respect to the complementarity constraint, i.e., the alternative

(c2 − λA2)i = 0 or yi = 0.
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Whenever the index set P of positive variables yj (j ∈ P ) in an optimal solution is specified
at a given node of the enumeration tree, an optimal λ-vector can be recovered by solving
the linear program:

max
λ

λb

subject to (λA2 − c2)j ≤ 0 ∀j /∈ P
(λA2 − c2)j = 0 ∀j ∈ P
λA1 ≤ c1,

whose dual

min
x,y

c1x1 + c2y

subject to A1x+A2y = b
x ≥ 0
yj unrestricted ∀j ∈ P
yj≥ 0 ∀j /∈ P

has a structure similar to that of the original lower level LP. If this “inverse optimization”
procedure is carried out at each node of the implicit enumeration tree, then the algorithm
may heuristically be halted before termination and yet produce a solution of high quality.
Actually, the dual vector λ derived from an optimal solution of the lower level problem
with T = 0 frequently yields a very good initial solution.

In practice, it is frequently the case that the size of the taxed flow vector x is much
smaller than the size of y. If this is the case, the knowledge of the vector x (not only the
index set of its positive components, but also their values) allows to derive the values of y
by solving the LP:

min
y

c2y

subject to A2y = b−A1x

y ≥ 0.

As before, an optimal tax vector corresponding to the vector y can easily be recovered.
Another approach, which is better suited to the solution of large scale problems, consists

in penalizing the complementarity constraint of (5) to obtain the bilinear program

min
x,y,λ

c1x+ c2y − λb+M(c2 − λA2)y

subject to A1x+A2y = b
x, y ≥ 0 (9)
λA2 ≤ c2
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for some penalty parameter M . Variants of the Gauss-Seidel iterative procedure, coupled
to a clever update of the parameter M , performed very well on single-commodity toll
setting problems.

Toll setting

In contrast with the basic model, the multicommodity network model has three distin-
guished features: (i) its network structure, (ii) upper bounds on the tolls and (iii) tolls
that apply to total flow, not individual commodity flows. The presence of a network
structure allows for a mixed-integer formulation that involves a relatively small number of
integer variables, i.e., one per toll arc and per commodity. We express the flow variables
as proportions of the demand nk associated with the origin-destination couple k and the
nodal demands are set to eki = sgn(bki ). We then obtain the formulation

max
T,x,y,λ

∑
k∈K

∑
a∈A1

nkT k
a

subject to
∑
a∈i+

(xk
a + y

k
a)−

∑
a∈i−

(xk
a + y

k
a) = e

k
i ∀i ∈ N ∀k ∈ K

λk
i − λk

j ≤ ca + Ta ∀a = (i, j) ∈ A1 ∀k ∈ K
λk

i − λk
j ≤ da ∀a ∈ A2 ∀k ∈ K∑

a∈A1

(ca xk
a + T

k
a ) +

∑
a∈A2

da y
k
a = λk

o(k) − λk
d(k) ∀k ∈ K

−Mxk
a ≤ T k

a ≤Mxk
a ∀k ∈ K ∀a ∈ A1

−M(1− xk
a) ≤ T k

a − Ta ≤M(1− xk
a) ∀k ∈ K ∀a ∈ A1

xk
a ∈ {0, 1} ∀k ∈ K ∀a ∈ A1

yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2

Ta ≤ Tmax
a ∀a ∈ A1.

The fourth constraint of the above program ensures that complementarity slackness of the
lower level problem is satisfied, while the next two constraints ensure that the commodity
tolls T k

a are equal to the actual common toll Ta if the commodity flow xk
a is positive. This

formulation allowed us to solve to optimality small instances of the multicommodity toll
problem (see e.g. Brotcorne [2] and Brotcorne et al [1]) .

While the treatment of upper bounds in the multicommodity model constitutes a mere
technicality, the presence of multiple commodities makes the resolution of (9) by a Gauss-
Seidel strategy significantly more complex. Specifically, the inverse optimization procedure
described earlier must now rely on the solution of a multicommodity flow problem with
upper bounds on arc flows. To avoid this difficulty, we propose simply to replace the global
toll vector T by commodity tolls T k that must satisfy the compatibility constraint

Tk = T1 ∀k.
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By penalizing this constraint into the objective, one obtains the bilinear-quadratic program

max
λ,x,y

∑
k∈K

[
λkbk − (c1xk + c2yk)−M1‖(λk − λ1)A1‖2

−M2(c2 − λkA2)yk
]

subject to A1x
k +A2y

k = bk ∀k ∈ K
xk, yk ≥ 0 ∀k ∈ K
(c2 − λkA2)yk = 0 ∀k ∈ K
λkA1 − c1 ≤ u ∀k ∈ K.

Once the quadratic penalty term is linearized (à la Frank-Wolfe), the Gauss-Seidel strategy
may be applied to the resulting bilinear program. Provided that the penalty parameters
M1 and M2 are calibrated in a suitable way, the coupling of the Gauss-Seidel and inverse
optimization strategies could uncover solutions of large-scale problems whose objective
values were typically within one percent of the optimal values, when these were known
(see[1]).

Price setting of telecommunication networks

The algorithmic approaches presented for the multicommodity network model can be ex-
tended to the nonlinear telecommunication model. To see this, let us replace the lower
level by its optimality conditions:

max
T,x,y,λ

∑
a∈A1

∑
k∈K

T k
a x

k
a

subject to Ta ≤ Tmax
a ∀a ∈ A1

T k
a +

αaCa

γ(Ca − fa)2 − λk
j + λ

k
i − µk

a = 0 ∀a ∈ A1 ∀k ∈ K

dk
a +

αaCa

γ(Ca − fa)2 − λk
j + λ

k
i − µk

a = 0 ∀a ∈ A2 ∀k ∈ K
∑
a∈i+

(xk
a + y

k
a)−

∑
a∈i−

(xk
a + y

k
a) = b

k
i ∀i ∈ N ∀k ∈ K

fa =
∑
k∈K

xk
a ∀a ∈ A1

fa =
∑
k∈K

yk
a ∀a ∈ A2

µk
ax

k
a = 0, µk

a ≥ 0, xk
a ≥ 0 ∀k ∈ K ∀a ∈ A1

µk
ay

k
a = 0, µk

a ≥ 0, yk
a ≥ 0 ∀k ∈ K ∀a ∈ A2.
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Using the same argument as the one developed for the general model, we obtain, after
straightforward albeit tedious calculations:

∑
a∈A1

∑
k∈K

T k
a x

k
a =

∑
i∈N

∑
k∈K

λk
i b

k
i −

∑
a∈A1

αaCafa
γ(Ca − fa)2

−
∑

a∈A2

αaCafa
γ(Ca − fa)2 −

∑
a∈A2

∑
k∈K

dk
af

k
a .

We linearize both the congestion function (by a piecewise linear curve) and the comple-
mentarity constraints (as previously and with the help of the binary variables zka). If
map corresponds to a breakpoint, wap to the binary variable associated with the pth seg-
ment and, tap the variable associated with the convex combination of the pth segment, one
obtains the mixed integer linear program

max
T,x,y,w,z

∑
i∈N

∑
k∈K

λk
i b

k
i −

∑
a∈A1

n+1∑
p=1

αaCa

γ
taph(map)

−
∑

a∈A2

n+1∑
p=1

αaCa

γ
taph(map)

−
∑

a∈A2

∑
k∈K

dk
af

k
a

subject to

Ta ≤ Tmax
a ∀a ∈ A1

λk
j − λk

i −
n+1∑
p=1

αaCa

γ
tapg(map) ≤ dk

a ∀k ∈ K ∀a ∈ A2

fa =
n+1∑
p=1

tapmap ∀a ∈ A

fa =
∑
k∈K

xk
a ∀a ∈ A1

fa =
∑
k∈K

yk
a ∀a ∈ A2

n+1∑
p=1

tap = 1 ∀a ∈ A

ta1 ≤ wa1 ta(n+1) ≤ wan ∀a ∈ A
tap ≤ wa(p−1) + wap p = 2, ..., n ∀a ∈ A
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n∑
p=1

wap = 1 ∀a ∈ A
∑
a∈i+

(xk
a + y

k
a)−

∑
a∈i−

(xk
a + y

k
a) = e

k
i ∀i ∈ N∀k ∈ K

dk
a +

n+1∑
p=1

αaCa

γ
tapg(map)− λk

j + λ
k
i −Mzka ≤ 0 ∀a ∈ A2 ∀k ∈ K

fk
a ≤M(1− zka) ∀a ∈ A2 ∀k ∈ K
fk

a ≥ 0 ∀a ∈ A ∀k ∈ K
wap ∈ {0, 1} p ∈ {1, 2, ..., n} ∀a ∈ A
tap ≥ 0 p ∈ {1, 2, . . . , n+ 1} ∀a ∈ A
zka ∈ {0, 1} ∀a ∈ A2 ∀k ∈ K.

The above model can only be solved to optimality for small instances. For larger
instances, Julsain [10] implemented the following procedure: for fixed price levels, an
equilibrium flow solution of the lower level problem traffic assignment problem is obtained;
next, the optimal price schedule corresponding to this flow is determined by solving a linear
inverse optimization problem. The process is iterated until no change is observed, at which
point the best solution obtained by the inverse optimization procedure is retained.

Yield management in the airline industry

The yield management problem is by far the most ambitious model presented in this sur-
vey, involving the solution of an infinite-dimensional lower level problem. Working in
infinite dimension could, surpisingly, prove an asset from the computational point of view,
since the continuous distribution of the trade-off values α and β across the population
smoothes out the lower level reaction to the upper level fares and makes the lower level
solution unique. It is then conceivable to address the bilevel problem as a single-level dif-
ferentiable optimization problem, whose objective can be computed by tedious but rather
straightforward implicit derivation rules. Alternatively, one could discretize the distribu-
tion functions and apply the algorithmic ideas presented for the other applications. A
mixed continuous-discrete approach which mixes both ideas is currently investigated.

Traffic management through link tolls

In contrast with the previous applications, the traffic management problem is not a bona
fide bilevel program but actually an inverse optimization problem that can be solved easily.
Let us first analyze the case of a single origin (single commodity), which can be written,
using obvious vector and matrix notation, as
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max
T≥0

Tx∗

subject to 〈C(x∗) + T, x∗ − x〉 ≤ 0 ∀x ∈ X = {Bx = b, x ≥ 0}.
Since the solution of the lower level variational inequality is known to be x∗, this vector is
a solution of the primal-dual system

Bx∗ = b

x∗ ≥ 0 (10)
λB ≤ C(x∗) + T

〈C(x∗) + T − λB, x∗〉 = 0.

If x∗a is positive, the corresponding toll is set to Ta = (λB − C(x∗))a; otherwise, the toll
Ta can be set to any value that exceeds the maximum equilibrium delay, which is known.
To simplify the presentation, we assume that all components of the vector x∗ are positive.
The traffic management problem can then be reduced to the linear program

min
λ

〈λB − C(x∗), x∗〉
subject to λB − C(x∗) ≥ 0,

whose dual
max
x∈X

C(x∗)x

consists in finding a longest path tree in an acyclic network, and is solvable by a greedy
algorithm in linear time (Dial[3]).

In the multicommodity case, let xa denote the total flow on arc a. The equivalent
of (10) is

Bxk∗ = bk ∀k ∈ K
xk∗ ≥ 0 ∀k ∈ K
λkB ≤ C(x∗) + T ∀k ∈ K∑
k∈K

〈C(x∗) + T − λkB, xk∗〉 = 0.

The dual of the problem of maximizing Tx∗ subject to the last two constraints is

max
x,α

〈C(x∗), αx∗ − z〉

subject to z =
∑
k∈K

zk

z ≤ (1 + α)x∗

Bzk = αbk, zk ≥ 0 ∀k ∈ K
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which, after performing the scaling z = αx′, becomes

max
α

φ(α) := α max
x′∈∏

k Xk

〈C(x∗), x∗ − x′〉

subject to x′ ≤ (1 + 1/α)x∗. (11)

The function φ is concave, increasing, piecewise linear, and its maximum is achieved for any
sufficiently large value of the variable α. For such values of α, an optimal tax vector will
be recovered from the dual vector λ associated with the capacity constraint (11) of a linear
multicommodity flow problem. A slightly different multicommodity formulation involving
a nonnegativity constraint on the sum of commodity flows was derived by Dial [4].

While the multicommodity problem is considerably more difficult to solve than finding
a longest path tree in an acyclic network, it is nonetheless manageable, even for large scale
networks. Actually, by penalizing the upper bound constraints, an approximate solution
can be computed by solving a convex flow problem which is at least as easy to solve as the
traffic assignment problem which had to be solved in order to determine the system-optimal
flow vector x∗ in the first place.

If only a subset of arcs is subject to tolls, then it might be impossible to induce a
system-optimal flow pattern. If one adopts as maximization criterion the social surplus,
then the problem becomes an authentic bilevel program to which the techniques presented
earlier can be applied.

Conclusion

In this paper, we have presented a short survey of pricing situations modeled as bilevel
programs, as well as several avenues for their numerical resolution. We firmly believe that
this approach will gain in popularity both in the economic and mathematical programming
communities, and that the day is not far where these models will be routinely solved for
near-optimal solutions.
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