Retour aux activités
    
       
  
  
        
            Séminaire du GERAD
        
        
    Clustering methods for stochastic optimisation
Janosch Ortmann – Professeur adjoint, Département d'analytique, opérations et technologies de l'information, Université du Québec à Montréal, Canada

In stochastic optimisation, some quantity is to be minimised subject to certain, random, constraints. Often, in order to quantify the randomness, scenarios are formed. However, optimizing with respect to each scenario is computationally costly. Moreover, it is often difficult to see how a change in assumptions changes the optimal solution. I will discuss how applying unsupervised clustering methods to the scenarios can lead to better understanding of the problem and lead to new heuristics, upper and lower bounds.
*Le webinaire sera suivi d'un cocktail.
 
            
              Marilène Cherkesly
              responsable
            
          Lieu
          
              Webinaire
          
          
      Zoom
Montréal Québec
Canada
        Montréal Québec
Canada
Organisme associé
Centre de recherche sur l’intelligence2 en gestion de systèmes complexes (CRI2GS)
JanoschOrtmann-030620.png (550 Ko)