G-98-62
Minimax Estimation of Exponential Family Means over Bodies
, , , and
BibTeX referenceNon-parametric estimation of smooth functions belonging to Sobolev classes is closely related to the problem of estimating the (infinite dimensional) mean of a standard Gaussian shift when the mean is known to lie in an  body. Donoho, Liu and MacGibbon (1990) obtained exact results for the comparison between the linear maximum risk and the minimax risk among all estimates for this problem with Gaussian white noise.  Here we study minimax estimation of infinite dimensional exponential family mean parameters constrained to belong to
 body. Donoho, Liu and MacGibbon (1990) obtained exact results for the comparison between the linear maximum risk and the minimax risk among all estimates for this problem with Gaussian white noise.  Here we study minimax estimation of infinite dimensional exponential family mean parameters constrained to belong to  bodies under different loss functions. The results are illustrated using the Poisson distribution.
 bodies under different loss functions. The results are illustrated using the Poisson distribution.
Published November 1998 , 22 pages